Conquistando terrenos y haciendo pompas de jabón

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Conquistando terrenos y haciendo pompas de jabón"

Transcripción

1 Conquistndo terrenos y hciendo pomps de jbón Crlos Prieto de Cstro Universidd Ncionl Autónom de México 2º Encuentro con los números Envigdo, Antioqui, Colombi 19 de octubre de

2 El origen de Crtgo 2

3 L fundción de Crtgo En el siglo noveno ntes de nuestr er, l ciudd fenici de Tiro, en el Oriente Medio, tení un rey llmdo Belus. Belus tení dos hijos, l hermos princes Dido y el fmoso Pigmlión. A l muerte de Belus, Pigmlión sumió el reindo. Cuent l leyend que Dido se hbí csdo con un cudldo hombre llmdo Siqueo, quien Pigmlión sesinó pr robr sus riquezs. 3

4 El fntsm de Siqueo se le preció Dido pr contrle los trágicos contecimientos, decirle dónde tení escondido su tesoro y pedirle que lo buscr y, llevándoselo, bndonr Tiro. Así, Dido decidió prtir, encbezndo un flot de nves, tods bien crgds del oro y l plt que hbí recibido de Siqueo. 4

5 Atrvesó el Mediterráneo en busc de nuevs tierrs en donde sentrse. Finlmente rribó un sitio en el norte de Áfric, muy cerc de l ctul ciudd de Túnez. Reinb hí Irbs, quién le compró un pedzo de tierr junto l mr. Acordó con Irbs que, por el dinero pgdo, podrí fundr su ciudd en l porción de tierr que pudier roder con l piel de un buey, que el propio Irbs le hbí obsequido, confido en que con un piel de vc serí poco lo que Dido podrí roder. 5

6 No obstnte, Dido cortó l piel en tirs mucho muy ngosts, que unió cuiddosmente pr formr un lrg tir y con ell ceñir un grn espcio; el myor que fuese posible. En él fundó l ciudd de Crtgo de l cul se convirtió en rein. 6

7 Dido medit sobr l form que deberá tener su terreno pr obtener l myor áre posible, donde poder fundr su grndios ciudd. Hbrí formdo un triángulo? De ser sí, serí éste equilátero o rectángulo? O hbrí quizá formdo un rectángulo? Pero de qué proporciones? Quizás hbrá sido un semicírculo? O un círculo? 7

8 Problem Si tenemos un cordón con el que desemos roder un ciert superficie, qué form debemos drle ést pr que quél encierre l myor áre posible? 8

9 Conjuntos convexos Se dice que un figur pln es un figur convex si tiene l siguiente propiedd: Si tommos dos puntos culesquier dentro de l figur, entonces todos los puntos del segmento rectilíneo que los une mbos tmbién están dentro de ell. Figur convex Figur 5 9

10 Culquier solución del problem isoperimétrico debe ser un figur convex bolldur Figur 1 Figur 2 Figur 3 Figur 4 10

11 Prlelogrmos isoperimétricos b h Figur 8 b De l siguiente secuenci de figurs, es clro que el prlelogrmo de myor áre es el rectángulo. b b b b b b Figur 9 11

12 Teorem. De entre todos los prlelogrmos con ldos y b, el rectángulo es el que tiene myor áre. Est áre es A = b. 12

13 b b Si tenemos un rectángulo de bse y ltur b, su áre está dd por A = b y su perímetro por P = 2( + b). Si llmmos x = ( + b)/2, entonces podemos suponer = x + c, b = x c 13

14 x 2 x x 2 c 2 x + c x x c Así, el cudrdo de ldo x y el rectángulo de ldos x + c y x c tienen igul perímetro, y sus áres son x 2 y (x + c)(x c) = x 2 c 2, respectivmente. Así, el áre es máxim si c = 0. 14

15 En generl, el máximo es pr = P/4 Así, obtenemos Teorem. De todos los prlelogrmos isoperimétricos, es el cudrdo el que tiene áre máxim. Si el perímetro es P, entonces est áre es A = P 2 / 16 = P 2. 15

16 Pr triángulos se procede de form nálog, con un función. De dos triángulos isoperimétricos de igul bse, es el isósceles el que tiene myor áre. Y de los triángulos isósceles isoperimétricos, es el equilátero el que tiene l máxim áre. 16

17 En generl, pr polígonos de n ldos tenemos: Teorem. De entre todos los polígonos con n ldos y con perímetro P, es el regulr el que tiene myor áre. 17

18 Pr polígonos, en generl, tenemos: Teorem. De entre dos polígonos regulres con perímetro P, es el de myor número de ldos el que tiene myor áre. 18

19 Polígono regulr Áre en términos del perímetro P Cudrdo (4 ldos) P 2 Pentágono (5 ldos) Hexágono (6 ldos) P P 2 Heptágono (7 ldos) P 2 Octágono (8 ldos) P 2 Nonágono (9 ldos) P 2 Decágono (10 ldos) P 2 Endecágono (11 ldos) P 2 Dodecágono (12 ldos) P 2 13-gono (13 ldos) P 2 14-gono (14 ldos) P 2 Tbl 1 19

20 Solución del problem isoperimétrico Ddo que cd vez que tengmos un polígono con n ldos y perímetro P, el que tiene n + 1 ldos y el mismo perímetro tiene más áre, no puede hber un polígono que teng áre máxim. De ciert form, l únic posibilidd es pensr en un polígono regulr que teng un número infinito de ldos. Éste sólo puede ser el círculo, que es el límite de los polígonos regulres cundo el número de ldos tiende infinito. 20

21 Si el perímetro de un círculo es P, entonces el rdio debe ser r = P/2 ; por lo tnto, el áre debe ser A = r 2 = (P/2 ) 2 = P 2 /4 = (1/4 )P 2 = = P 2. 21

22 Teorem. De tods ls figurs plns con el mismo perímetro P, es el círculo l que tiene myor áre. Ést es A = P 2. 22

23 L figur muestr que si tenemos un fmili de elipses isoperimétrics, si los ejes myor y menor b son distintos, entonces el áre no puede ser máxim. Y que el áre es A = b y el perímetro es P = ( + b), el mismo rgumento de los rectángulos prueb que de entre ls elipses isoperimétrics, el círculo tiene áre máxim.mm 23

24 EN EL ESPACIO. L nturlez resuelve el problem isoperimétrico en el espcio, plicndo el principio de mínim energí. Un ejemplo son ls pomps de jbón. L form esféric, es de mínim energí y de máximo volumen. 24

25 EN EL ESPACIO. Ls superficies mínims son ejemplos de superficies de áre mínim con un perímetro determindo: 25

26 EN EL ESPACIO. 26

27 EN EL ESPACIO. 27

28 EL ÁREA DE UN CÍRCULO El áre de un círculo l prueb del tiburón Círculo de rdio 1 (o r) Cudrdo inscrito de áre 2 (o 2r 2 ) Cudrdo circunscrito de áre 4 (o 4r 2 ) El áre del círculo debe estr entre 2 y 4 (o entre 2r 2 y 4r 2 ). 28

29 EL ÁREA DE UN CÍRCULO v v r r r r r r r r Trnsformmos el círculo en (csi) un rectángulo de bse r y ltur r: r r r 29

30 EL ÁREA DE UN CÍRCULO Si cd vez tommos los gjos más y más ngostos, l figur se prece más y más un rectángulo de bse r ltur r: r Arquímedes Así, en el límite, el áre del rectángulo se vuelve r r = r 2 30

31 EL MÉTODO EXHAUSTIVO DE ARQUÍMEDES L ide de l demostrción nterior l prueb del tiburón- se remont Arquímedes, quien creó el método de exhución o método exhustivo, e ides precids como l de ir proximndo un rectángulo por sectores circulres cd vez más ngostos. Arquímedes tmbién lo hizo sí: 31

32 ...nunc seré bogdo si no comprendo lo que signific demostrr. Slí de Springfield y regresé cs de mi pdre, de donde no slí hst que hube demostrdo cd proposición de cd uno de los seis libros de Euclides. Entonces supe el significdo de demostrr y regresé mis estudios de leyes. Abrhm Lincoln MUCHAS GRACIAS! 32

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 9 Prolems métricos en el plno Recuerd lo fundmentl Nomre y pellidos:... Curso:... Fech:... GEOMETRÍ MÉTRIC PLN TEOREM DE PITÁGORS Se verific en los triángulos... c = EJEMPLO: Si en un cono l genertriz

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

Compilado por CEAVI: Centro de Educación de Adultos

Compilado por CEAVI: Centro de Educación de Adultos olígonos Un polígono es l región del plno limitd por tres o más segmentos. lementos de un polígono Ldos: on los segmentos que lo limitn. Vértices: on los puntos donde concurren dos ldos. Ángulos interiores

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRI 0. n l figur, G es prlelo y el áre del prlelogrmo es 8 m. Hlle el áre sombred. ) m ) 8 m ) 9 m ) m ) 6m 0. n un trpecio ( // ), se tom punto

Más detalles

Introducción: La palabra polígono está formada por el prefijo POLI= mucho y el sufijo GONOS que significa ángulos. Luego polígonos = muchos ángulos.

Introducción: La palabra polígono está formada por el prefijo POLI= mucho y el sufijo GONOS que significa ángulos. Luego polígonos = muchos ángulos. TEMA 2. LOS POLÍGONOS Introducción: L plbr polígono está formd por el prefijo POLI= mucho y el sufijo GONOS que signific ángulos. Luego polígonos = muchos ángulos. 1.- DEFINICIÓN: form pln delimitd por

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G es prlelo y el áre del prlelogrmo es 8. Hlle el áre sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ), se

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRI ÁR RGINS URNGULRS 0. n l figur, G // y el áre del prlelogrmo es 8. Hlle el áre de l región sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ),

Más detalles

22 a OLIMPIADA MEXICANA DE MATEMÁTICAS SOLUCIONES PARA EL EXAMEN FINAL ESTATAL

22 a OLIMPIADA MEXICANA DE MATEMÁTICAS SOLUCIONES PARA EL EXAMEN FINAL ESTATAL 22 OLIMPIAA MEXIANA E MATEMÁTIAS SOLUIONES PARA EL EXAMEN FINAL ESTATAL 1 Sen A, B y los vértices del triángulo, con AB = c, B = y A = b Primer form Sen h A, h B y h ls lturs desde los vértices A, B y,

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G es prlelo y el áre del prlelogrmo es m. Hlle el áre sombred. ) m ) m ) 9 m ) m ) 6m G 0. n un trpecio (

Más detalles

Triángulos: Puntos notables y construcciones. Traza el ORTOCENTRO de este triángulo. Traza el INCENTRO de este triángulo y la circunferencia INSCRITA

Triángulos: Puntos notables y construcciones. Traza el ORTOCENTRO de este triángulo. Traza el INCENTRO de este triángulo y la circunferencia INSCRITA Trz el INNTRO de este triángulo y l circunferenci INSRIT Trz el IRUNNTRO de este triángulo y l circunferenci IRUNRIT Trz el RINTRO de este triángulo. Trz el ORTONTRO de este triángulo. onstruye el triángulo

Más detalles

12. Los polígonos y la circunferencia

12. Los polígonos y la circunferencia l: ldo SLUINI 107 1. Los polígonos y l circunferenci 1. PLÍGNS PIENS Y LUL lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos:? l: ldo? 4. ivide un circunferenci de de rdio en seis prtes

Más detalles

HOJA 6 GEOMETRÍA Y TRIGONOMETRÍA

HOJA 6 GEOMETRÍA Y TRIGONOMETRÍA 2x x + 30 x 2x x + 20 5x 2x x -2 x 3x + 18 x 4. Rects prlels cortds por un trnsversl. lculr los vlores de x e y en cd cso y fundmentr ls relciones estblecids Ejercicio 1 Ejercicio 2 3x -20º y 2x x + y

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL Mtemátics pendientes de 1º (º prcil) 1 EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES º PARCIAL Fech tope pr entregrlos: 17 de bril de 015 Exmen el 3 de bril de 015

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G // y el áre del prlelogrmo es 8. Hlle el áre sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ), se tom punto

Más detalles

7 ACTIVIDADES DE REFUERZO

7 ACTIVIDADES DE REFUERZO 7 ACTIVIDADES DE REFUERZO Nombre: Curso: Fech: 1. Dibuj un segmento AB de 2 cm de longitud. Trz un circunferenci con centro A y otr con centro B de 2 cm de rdio. Dibuj l rect que ps por los puntos de corte

Más detalles

. Triángulos: clasificación

. Triángulos: clasificación . Triángulos: clsificción Propieddes básics importntes En todo tringulo se verific: 1.- l sum de los ángulos interiores es 180º 2.- l sum de los ángulos exteriores es 360º 3.-un Angulo exterior es siempre

Más detalles

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad?

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad? PÁGIN 164 El director del equipo nliz un plno en el cul 1 cm corresponde 20 m en l relidd. Su mquet de l moto es l décim prte de lrg que l moto rel. L moto de l fotogrfí es l mism que se ve en l mquet.

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

QUADERN DE RECUPERACIÓ 4t ESO PDC

QUADERN DE RECUPERACIÓ 4t ESO PDC QUDERN DE RECUPERCIÓ 4t ESO PDC ssigntur: Educció Plàstic i Visul. Professor: Frederic Csnov Mrtí. Per presentr-se l exmen s hn de presentr els exercicis del qudern. Exercicis relitzr per superr l ssigntur

Más detalles

Exámen Final B (resuelto)

Exámen Final B (resuelto) Exámen Finl B (resuelto) Ejercicio nº.- Clcul: ) ( + + ) ( + ) b) ( + ) ( ) ( + ) ( ) c) ( ) ( + ) ( ) ( + ) ) ( + + ) ( + ) ( + ) ( + ) b) ( + ) ( ) ( + ) ( ) ( 0) ( ) 0 + c) ( ) ( + ) ( ) ( + ) ( ) (

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRI 01. n l figur, ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo, se trz l ltur H, tl que m = m H. Hlle,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

Guía número 4. Cuartos medios

Guía número 4. Cuartos medios Guí número 4 urtos medios UNI: GMTRÍ PRÍMTRS Y ÁRS Perímetro de un polígono, es l sum de ls longitudes de todos sus ldos. l perímetro se denotrá por p y el semiperímetro por s. Áre es l medid que le corresponde

Más detalles

Clasificación de los polígonos convexos. Polígono. Definición. 1. Polígono equiángulo. 2. Polígono equilátero

Clasificación de los polígonos convexos. Polígono. Definición. 1. Polígono equiángulo. 2. Polígono equilátero olígonos y udriláteros olígono efinición Es l reunión de tres o más segmentos consecutivos y coplnres, tl que el etremo del primero coincid con el etremo del último; ningún pr de segmentos se intercepten,

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRI 01. n l figur: ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo se trz l ltur H tl que m = m H. Hlle si

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRÍ 1. n l figur: ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 60 ) 5. n un triángulo se trz l ltur H tl que m < = m < H. Hlle si

Más detalles

Instituto Tecnológico Metropolitano. Actividad práctica: el triángulo. Geometría integrada. Docente: Carlos A. Ríos Villa

Instituto Tecnológico Metropolitano. Actividad práctica: el triángulo. Geometría integrada. Docente: Carlos A. Ríos Villa Instituto Tecnológico Metropolitno Actividd práctic: el triángulo Geometrí integrd Docente: Crlos A. Ríos Vill Doctrin sine vit rrogntem reddit. Vit sine doctrin inutilem fcit. (Sore l puert del Instituto

Más detalles

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos Centro Educcionl Sn Crlos de Argón. Dpto. Mtemátic. Nivel: NM 4 Prof. Ximen Gllegos H. PSU Mtemátic NM-4 Guí : Congruenci de Triángulos Nombre: Curso: Fech: - Contenido: Congruenci. Aprendizje Esperdo:

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS ASESORÍA FINAL DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS ASESORÍA FINAL DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SSRÍ INL GTRI 01. n l figur, ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo, se trz l ltur H, tl que m = mh. Hlle, si

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras.

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras. POIROS - PRISMS POIRO I. POIRO: es el sólido limitdo por cutro o más regiones poligonles llmdos crs. RIST TR TUR RIST SI PRISM VRTI S R 1. PRISM: l prism es un poliedro cuys crs lterles son tres o más

Más detalles

ELEMENTOS BÁSICOS DE GEOMETRÍA

ELEMENTOS BÁSICOS DE GEOMETRÍA ELEMENTOS BÁSICOS DE GEOMETRÍ (La Geometría es la parte de las Matemáticas que estudia las propiedades de las figuras y las relaciones entre elementos) PUNTO : es una posición y no tiene dimensiones. B

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 06 EJERCICIOS Tipos de poliedros 1 Di, justificdmente, qué tipo de poliedro es cd uno de los siguientes: A B C D E Hy entre ellos lgún poliedro regulr? A Prism pentgonl recto. Su bse es un

Más detalles

11 Perímetros y áreas de figuras planas

11 Perímetros y áreas de figuras planas 86464 _ 0371-0384.qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem

Más detalles

Enunciados y Soluciones

Enunciados y Soluciones L limpid mtemátic Espñol (oncurso Finl) Enuncidos y Soluciones 1. Es posible disponer sobre un circunferenci los números 0, 1, 2,..., 9 de tl mner que l sum de tres números sucesivos culesquier se, como

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

MANEJAR UNIDADES DE LONGITUD Y SUPERFICIE

MANEJAR UNIDADES DE LONGITUD Y SUPERFICIE 12 MANEJAR UNIDADES DE LONGITUD Y SUPERICIE REPASO Y APOYO OBJETIVO 1 Nombre: Curso: ech: UNIDADES DE LONGITUD El metro es l unidd principl de longitud. Abrevidmente se escribe m.?????? dm m dm cm mm ACTIVIDADES

Más detalles

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que:

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que: Axiom de división del espcio: Todo plno del espcio determin en éste dos regiones tles que: - Cd punto del espcio pertenece un de ls dos regiones o l plno - Dos puntos de un mism región determinn un segmento

Más detalles

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori

Más detalles

9Soluciones a los ejercicios y problemas PÁGINA 196

9Soluciones a los ejercicios y problemas PÁGINA 196 PÁGIN 196 Pág. 1 P RCTIC Ángulos 1 Hll el vlor del ángulo en cd uno de estos csos: ) b) 11 37 48 48 c) d) 35 40 ) 37 b 11 b 180 11 68 180 37 68 75 b) 360 48 8 13 c) 40 b b 180 90 40 50 180 50 130 d) 35

Más detalles

Qué se puede hacer? Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Qué se puede hacer? Plan de clase (1/2) Escuela: Fecha: Profr. (a): Qué se puede hcer? Pln de clse (1/) Escuel: Fech: Profr. (): Curso: Mtemátics 1 secundri Eje temático: FEyM Contenido: 7..6 Justificción de ls fórmuls de perímetro y áre de polígonos regulres, con poyo

Más detalles

AMPLIACIÓN DE TRIGONOMETRÍA

AMPLIACIÓN DE TRIGONOMETRÍA Alonso Fernández Glián 1. EL TEOREMA DEL SENO AMPLIACIÓN DE TRIGONOMETRÍA 1.1. OTRA DEMOSTRACIÓN DEL TEOREMA DEL SENO 1.. MEDIDA DE UN ÁNGULO INSCRITO EN UNA CIRCUNFERENCIA 1.3. UN COROLARIO DEL TEOREMA

Más detalles

Clase. Congruencia y semejanza de triángulos

Clase. Congruencia y semejanza de triángulos lse ongruenci y semejnz de triángulos Resumen de l clse nterior Triángulo rectángulo Pitágors Teorems Euclides Relciones métrics 5º 2 5º 2 + b 2 = c 2 Tríos pitgóricos h c 2 = p q 2 = q c b 2 = p c h c

Más detalles

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental L myorí de los omres ncen como originles y terminn como copis 15 ESO Orientl ÍNDICE: MILLA NÁUTICA PISTA DE ATLETISMO 1. FÓRMULAS FUNDAMENTALES PARA CÁLCULO DE LONGITUDES, SUPERFICIES Y VOLÚMENES. LONGITUDES

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN Pág. 1 ENUNCIADOS 1 En el punto C hy td un cuerd de 5 m que sujet un cbr. Hll l superficie de l cs y l superficie de hierb que puede comer l cbr. m CASA m 10 m C 45 Investig: Qué relción hy entre ls superficies

Más detalles

Retos Matemáticos visuales

Retos Matemáticos visuales Retos Mtemáticos visules Bdjoz, 5 de junio de 207 Dpto. de Mtemátics Univ. de Extremdur Retos Mtemáticos visules Dpto. de Mtemátics Univ. de Extremdur «Retos Mtemáticos visules. 5 de junio de 207 Tem

Más detalles

GEOMETRÍA 2º DE ESO CURSO

GEOMETRÍA 2º DE ESO CURSO EJERCICIOS DE GEOMETRÍ 2º ESO Profesors: Mónic Mrtínez Espín Inmculd Grcí Ruiz Mónic Mrtínez Espín Lámins GEOMETRÍ 2º DE ESO CURSO 2018-2019 1. CRTÓN. Indic el vlor de los ángulos que formn un crtón. Ángulo

Más detalles

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II)

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II) CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II) Dnte Guerrero-Chnduví Piur, 015 FACULTAD DE INGENIEÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II)

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

SOLUCIONES ABRIL 2018

SOLUCIONES ABRIL 2018 Págin de OLUCIONE ABRIL 08 AUTOR: Ricrd Peiró i Estruch IE Abstos lènci ABRIL -8: Clculr el ángulo que formn dos digonles de un cubo Nivel: A prtir de EO olución: e ABCDA B C D el cubo de rist AB Aplicndo

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR UNIVERSIDD NCIONL DE FRONTER CEPREUNF CICLO REGULR 017-018 CURSO: FISIC Elementos básicos de un vector: SEMN TEM: NÁLISIS VECTORIL Origen Módulo Dirección CLSIFICCION DE LS MGNITUDES FÍSICS POR SU NTURLEZ

Más detalles

Triángulos II: Líneas y Puntos Notables

Triángulos II: Líneas y Puntos Notables Triángulos : Línes y Puntos Notbles 1. ltur Segmento que prte de un vértice y cort en form perpendiculr l ldo opuesto o su prologción. t. rtocentro s el punto donde se intersectn ls tres lturs de un triángulo.

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de ángulos, polígonos y cuadriláteros GUICEN022MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de ángulos, polígonos y cuadriláteros GUICEN022MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Conceptos generles de ángulos, polígonos y cudriláteros Progrm Entrenmiento Desfío En l figur I se muestr un crtulin cudrd PQRS de ldo 1. Se doln los ldos SP y RQ por ls línes

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

b a a 1 + = si denominamos x al cociente

b a a 1 + = si denominamos x al cociente Número de oro l número de oro es l relción de proporcionlidd entre dos ojetos (líne, plno o volumen) su símolo es φ y su vlor es de 1,61803. L proporción áure se logr l dividir un segmento en dos prtes

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1 GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,

Más detalles

DEFINICIÓN DE LA INTEGRAL DE RIEMANN. Sea una función f : [a, b] R, positiva (f 0) y cuya gráfica presenta una situación del tipo:

DEFINICIÓN DE LA INTEGRAL DE RIEMANN. Sea una función f : [a, b] R, positiva (f 0) y cuya gráfica presenta una situación del tipo: ANÁLISIS MATEMÁTICO BÁSICO. DEFINICIÓN DE LA INTEGRAL DE RIEMANN. Se un función f : [, b] R, positiv (f 0) y cuy gráfic present un situción del tipo: Figur 1. Aproximción por rectángulos. Antes de proximr

Más detalles

Identificación de propiedades de triángulos

Identificación de propiedades de triángulos Grdo 10 Mtemtics - Unidd 2 L trigonometrí, un estudio de l medid del ángulo trvés de ls funciones Tem Identificción de propieddes de triángulos Nombre: Curso: Ls ctividdes propuests continución se centrn

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

Problemas de fases nacionales e internacionales

Problemas de fases nacionales e internacionales Problems de fses ncionles e interncionles 1.- (Chin 1993). Ddo el prlelogrmo ABCD, se considern dos puntos E, F sobre l digonl AC e interiores l prlelogrmo. Demostrr que si existe un circunferenci psndo

Más detalles

Polígonos Regulares: Definición de polígono:

Polígonos Regulares: Definición de polígono: 1 Polígonos Regulares: Definición de polígono: Un polígono es una figura plana cerrada, limitada por segmentos de recta llamados lados del polígono. Los puntos donde se unen dos lados consecutivos se llaman

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112 MtemáticsI UNIDAD 5: Trigonometrí II ACTIVIDADES-PÁG.. L primer iguldd es verdder y ls otrs dos son flss. Pr probrlo bst con utilizr l clculdor.. El áre del círculo es π 0 = 56,64 cm. El ldo y l potem

Más detalles

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota:

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota: Tz lines ects plels en posición hoizontl Tz lines ects plels en posición veticl Tz lines ects pependicules ls dds Tz lines ects plels l diección indicd Tz lines ects pependicules ls dds Tz lines ects pependicules

Más detalles

4. Geometría. 4.1 Ángulos. Construir un ángulo igual a otro con el auxilio de un compás. Trazado de la bisectriz de un ángulo utilizando compás.

4. Geometría. 4.1 Ángulos. Construir un ángulo igual a otro con el auxilio de un compás. Trazado de la bisectriz de un ángulo utilizando compás. Ministerio de Educción Universidd Tecnológic Ncionl Fcultd Regionl Rosrio Secretrí cdémic Áre Ingreso RIENTIÓN UNIVERSITRI 4. Geometrí 4.1 Ángulos ángulo convexo (< 180 ) ángulo llno = 180 ángulo cóncvo

Más detalles

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a Perímetros EL PEÍMETO: udrdo: P El perímetro de ls figurs puede medirse usndo uniddes de medid de longitud. Por lo tnto se puede medir en centímetros, decímetros, metros. Ejemplo: El perímetro del triángulo

Más detalles

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(

Más detalles

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3). ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA)

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3-1 Desempeño: Determina la clasificación

Más detalles

Ecuación de la circunferencia de centro el origen C(0, 0) y de

Ecuación de la circunferencia de centro el origen C(0, 0) y de CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd

Más detalles

MATEMÁTICAS-FACSÍMIL N 9

MATEMÁTICAS-FACSÍMIL N 9 MTEMÁTIS-FSÍMIL N 9. b b b ) - b ) b - ) b D) E) 6 cm ( b) =. El triángulo está inscrito en l mitd de l circunferenci. Si h c = cm y el ldo = 5cm. El rdio de l circunferenci es: ) cm ) 6 cm ) 6 cm O D)

Más detalles

Resolución de triángulos cualesquiera tg 15 tg 55

Resolución de triángulos cualesquiera tg 15 tg 55 Resuelve los siguientes triángulos: ) 3 cm 17 cm 40 ) 5 cm c 57 cm 65 c) 3 cm 14 cm c 34 cm ) c 3 +17 3 17 cos 40 c 1,9 cm 17 3 + 1,9 3 1,9 cos 9 56' '' 10 ( + ) 110 3' 5'' ) 5 + 57 5 57 cos 65 79,7 cm

Más detalles

Polígonos y Triángulos

Polígonos y Triángulos 7 o Básico 2015 Profesor Alberto Alvaradejo Ojeda 1. Polígono Un polígono es una figura plana cerrada formada por trazos o segmentos. Los polígonos se pueden clasificar en: Cóncavos: son los aquellos polígonos

Más detalles

La Hipérbola. César Román Martínez García Conalep Aztahuacan. 20 de noviembre de 2005

La Hipérbola. César Román Martínez García  Conalep Aztahuacan. 20 de noviembre de 2005 L Hipérbol Césr Román Mrtínez Grcí cesrom@esfm.ipn.mx, mcrosss666@hotmil.com Conlep Azthucn 20 de noviembre de 2005 Resumen Estudiremos l ecución de l hipérbol 1. Hipérbol Definición 0.1 Un hipébol es

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 UÍ TÓRIO PRÁTI Nº 11 UNI: OMTRÍ POLÍONOS URILÁTROS POLÍONOS INIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus puntos

Más detalles

Circunferencia y elipse

Circunferencia y elipse GAE-05_M1AAL5_circunferenci_elipse Circunferenci y elipse Por: Sndr Elvi Pérez Circunferenci Comienz por revisr l definición de circunferenci. Un circunferenci es un curv formd por puntos que equidistn

Más detalles

Retos Matemáticos visuales

Retos Matemáticos visuales Retos Mtemáticos visules Bdjoz, 28 de mrzo de 208 Volumen 5 c Retos Mtemáticos visules Volumen 5 Retos Mtemáticos visules. 28 de mrzo de 208 Tem Prolems visules y otros prolems Un cónic es l curv otenid

Más detalles

DADO EL CUADRILÁTERO ABCD, COPIARLO A PARTIR DE A': Por copia de ángulos y segmentos

DADO EL CUADRILÁTERO ABCD, COPIARLO A PARTIR DE A': Por copia de ángulos y segmentos EL PLÍGN, PIRL PRTIR E ': Por tringulción E ' EL URILÁTER, PIRL PRTIR E ': Por copi de ángulos y segmentos ' EL HEXGN IRREGULR EF, PIRL PRTIR E ', N LS ENTRS y ' S: Por rdición ' F E EL URILTER E, PIRL

Más detalles

GUÍA NÚMERO 17 POLIGONOS:

GUÍA NÚMERO 17 POLIGONOS: Saint Gaspar ollege MISIONEROS DE L REIOS SNGRE Formando ersonas Íntegras Departamento de Matemática RESUMEN SU MTEMTI GUÍ NÚMERO 7 OLIGONOS: Figura plana limitada por lados rectos. De acuerdo al nº de

Más detalles

2 Números reales: la recta real

2 Números reales: la recta real Unidd. Números reles ls Enseñnzs Aplicds Números reles: l rect rel Págin. ) Justific que el punto representdo es. 0 Represent 7 (7 ) y 0 (0 + ). ) Aplicndo Pitágors: x x + x + x x 0 7 7 0 0 7 0 0 7. Qué

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 1 de Septiembre de 2003 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 1 de Septiembre de 2003 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen de 1 de Septiembre de 3 Primer prte Ejercicio 1. Un vsij que tiene l form del prboloide de revolución de eje verticl obtenido l girr l curv y

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

Geometría del Espacio

Geometría del Espacio Geometrí del Espcio GEMETRÍA DE ESPACI. Denomind tmbién Esterenometrí, estudi tods ls propieddes en Geometrí Pln, y plicds en plnos diferentes. ESPACI. El espcio geométrico euclidino es el conjunto de

Más detalles

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1 TEMA : Logritmos y ecuciones rítmics Tem : Logritmos y ecuciones rítmics ESQUEMA DE LA UNIDAD.- Logritmos...- Logritmo de un número rel...- Logritmos decimles y neperinos..- Propieddes de los ritmos..-

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros

Más detalles