TEMA 1 EL NÚMERO REAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 1 EL NÚMERO REAL"

Transcripción

1 Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8 Deciml ecto, Frccionrio, Rcionl, Rel 0 = Nturl, Entero, Rcionl, Rel -, =, Deciml periódico puro, Frccionrio, Rcionl, Rel 7 Deciml no periódico, Irrcionl, Rel = Nturl, Entero, Rcionl, Rel Deciml no periódico, Irrcionl, Rel - Entero negtivo, Entero, Rcionl, Rel 7, Deciml periódico mito, Frccionrio, Rcionl, Rel EJERCICIO : Sitú cd número en su lugr correspondiente dentro del digrm:,; ; ; 8; ; ; ;,... EJERCICIO : Represent sobre l rect los siguientes números: 7,; ;

2 Tem El número rel Ejercicios resueltos Mtemátics B º ESO EJERCICIO : Represent en l rect rel los siguientes números, utilizndo el Teorem de Pitágors: ) 0 8 ) 0 7 L hipotenus de un triángulo rectángulo de ctetos 7 y es l longitud pedid. Con el compás podemos trsldr est medid donde deseemos. 8 9 EJERCICIO : Represent en l rect rel los siguientes números, utilizndo el Teorem de Pitágors: ) 8 EJERCICIO : Represent en l rect rel: ),7, )

3 Tem El número rel Ejercicios resueltos Mtemátics B º ESO INTERVALOS Y SEMIRECTAS EJERCICIO 7 : Escribe en tods ls forms posibles los siguientes intervlos y semirrects: / b, c Números myores que - d, b / c, d [, 7] Intervlo semibierto Semirrect Semirrect Intervlo cerrdo Números comprendidos entre - y, incluido - Números menores o igules que - / / 7 Números comprendidos entre y 7, mbos incluidos FRACCIONES, POTENCIAS Y DECIMALES EJERCICIO 8 Oper y simplific el resultdo: b Simplific:, Epresmos N, en form de frcción: 00N,... 0N, N 0 N 90 Opermos y simplificmos: b EJERCICIO 9 Clcul y simplific el resultdo: b Simplific, usndo ls propieddes de ls potencis: Epresmos N 0,8 en form de frcción: 00N 8,... 0N 8, N 7 N 90 Opermos y simplificmos: 0,8 -

4 Tem El número rel Ejercicios resueltos Mtemátics B º ESO b 0 EJERCICIO 0 ) Efectú y simplific:, 9 Reduce un sol potenci: 0 ) Epresmos N, en form de frcción: 00N,... 0N, N 0 N 90 Opermos y simplificmos: : EJERCICIO Oper y simplific:, 8 b Reduce un sol potenci y clcul: Epresmos N, en form de frcción: 00N,... 0N,... : 9 90N 9 N 90 Opermos y simplificmos: b : : RAÍCES EJERCICIO : Averigu el vlor de k en cd cso: ) k 7 k c) k

5 Tem El número rel Ejercicios resueltos Mtemátics B º ESO ) k 7 7 k k 0 k k k c) k k k EJERCICIO : Epres como potenci de y simplific. D el resultdo finl en form de ríz: ) c) ) 7 7 EJERCICIO : Etre del rdicl todos los fctores que se posible: ) 8 b c) y z b c 7 ) 8 b b b b y y y z z z c) 7 c) b c b c c EJERCICIO : Simplific y etre los fctores que pueds fuer del rdicl: ) c) ) c) 0 EJERCICIO : Epres como potenci de eponente frccionrio y simplific. D el resultdo finl en form de ríz: ) 0 c) 9 7

6 Tem El número rel Ejercicios resueltos Mtemátics B º ESO ) 0 0 / / c) 9 7 EJERCICIO 7 ) Oper y simplific: 00 Rcionliz y simplific: ) EJERCICIO 8 ) Clcul y simplific: 8 7 Rcionliz y simplific: ) EJERCICIO 9 ) Efectú y simplific: 0 8 Rcionliz y simplific: ) EJERCICIO 0 ) Oper y simplific: 8 00 Rcionliz y simplific: 8

7 Tem El número rel Ejercicios resueltos Mtemátics B º ESO 7 ) EJERCICIO ) Efectú y simplific: Rcionliz y simplific: 8 7 ) EJERCICIO Clcul y simplific : b Rcionliz y simplific : b EJERCICIO Oper y simplific : 7 b Rcionliz y simplific : b EJERCICIO Oper y simplific: 00 b Rcionliz y simplific:

8 Tem El número rel Ejercicios resueltos Mtemátics B º ESO b 0 EJERCICIO : Clcul y simplific: ) 8 8 ) EJERCICIO : Oper y simplific: ) 7 7 ) EJERCICIO 7 : Clcul y simplific el resultdo: ) ) EJERCICIO 8 : Oper y simplific: ) )

9 Tem El número rel Ejercicios resueltos Mtemátics B º ESO EJERCICIO 9 : Clcul y simplific: ) ) EJERCICIO 0 Simplific y etre los fctores que pueds fuer del rdicl: 9 I 7 0 II III b b Rcionliz y simplific : ) I II III b 9 b 0 b EJERCICIO : Epres como un solo rdicl: ) c) 7 7 ) c) EJERCICIO : Rcionliz y simplific: ) c) )

10 Tem El número rel Ejercicios resueltos Mtemátics B º ESO 0 8 c) EJERCICIO : Rcionliz y simplific: ) c) ) c) EJERCICIO : Rcionliz y simplific: ) c) ) c) EJERCICIO : Rcionliz y simplific: ) 7 c) ) c) 8 7 7

11 Tem El número rel Ejercicios resueltos Mtemátics B º ESO APROXIMACIONES Y ERRORES EJERCICIO : Hll con yud de l clculdor, proimndo, cundo se necesrio, hst ls centésims: ) ) 7 8, 777 c) 7 c) 7,0 d),7 EJERCICIO 7 : Aproim cd un de ls siguientes cntiddes, dndo dos cifrs significtivs: I Hy 7 estudintes en un instituto. II Victori pes 8, kg. b Hll el error bsoluto y el error reltivo cometidos l hcer ls proimciones. I 7 estudintes cientos de estudintes Error bsoluto Vlor rel Vlor proimdo = estudintes 7 Error _ reltivo 0,078..., II 8, kg 8 kg Error bsoluto 8, 8 0, kg 0, Error _ reltivo, ,9.0 8, EJERCICIO 8 Aproim hst ls décims cd uno de los siguientes números: A,8 B 9,7 b Hll el error bsoluto y el error reltivo que se cometen l tomr ess proimciones. d) A,8,8 Error bsoluto Vlor rel Vlor proimdo =,8,8 0,0 0,0 Error _ reltivo 0,079...,8.0,8 B 9,7 9, Error bsoluto 9,7 9, 0,0 0,0 Error _ reltivo 0, ,.0 9,7 EJERCICIO 9 : D un cot pr el error bsoluto y otr pr el error reltivo cometidos l hcer ls siguientes proimciones: L ltur de un edificio es de metros. b En un bibliotec hy miles de libros. El error bsoluto es menor que medi unidd del orden de l últim cifr significtiv:error bsoluto Un cot pr el error reltivo es: Error reltivo Vlor proimdo

12 Tem El número rel Ejercicios resueltos Mtemátics B º ESO Por tnto: ) Error bsoluto 0, metros Error bsoluto 00 libros Error _ reltivo 0, 0,08...,.0 00 Error _ reltivo 8, ,9.0 EJERCICIO 0 Epres con un número rzonble de cifrs significtivs cd un de ls siguientes cntiddes: I 8 ejemplres vendidos de un libro. II Hemos gstdo,8 en nuestrs vcciones. b Qué error bsoluto estmos cometiendo l considerr 9 miles de hbitntes como proimción de 9 8? Y error reltivo? I 8 ejemplres 8 cientos de ejemplres II,8 cientos de b Error bsoluto Vlor rel Vlor proimdo hbitntes 8 Error _ reltivo 8, , EJERCICIO : En un librerí se hn vendido 7 ejemplres de un determindo libro,, cd uno. ) Cuánto dinero se h recuddo en l vent? Aproim l cntidd obtenid dndo dos cifrs significtivs. Di cuál es el error bsoluto y cuál el error reltivo cometidos l hcer l proimción. ) 7, 7 0,9 7 decens de miles de Error bsoluto Vlor rel Vlor proimdo 7 0, ,9 0,9 Error _ reltivo,0...0,.0 70,9 NOTACIÓN CIENTÍFICA EJERCICIO Escribe en form deciml estos números: A, 0 B, 0 8 b Epres en notción científic ls siguientes cntiddes: C D 0, E A B 0, b C, 0 D 0 8 E 8, 0 EJERCICIO Al relizr con l clculdor l operción 0 hemos obtenido en l pntll lo siguiente: Epres en notción científic el número nterior. De cuánts cifrs es dicho número? b Aproim el resultdo nterior dndo tres cifrs significtivs. D un cot pr el error bsoluto y otr pr el error reltivo cometidos l hcer l proimción.,089 0 Tiene cifrs

13 Tem El número rel Ejercicios resueltos Mtemátics B º ESO b Aproimción,0 0 Error bsoluto 0 0 Error reltivo 0, <,.0 - Vlor proimdo,0 0 EJERCICIO Si clculmos 0 con l clculdor, obtenemos en pntll: Epres el número nterior en notción científic y en form deciml. b Aproim el resultdo nterior dndo dos cifrs significtivs. D un cot pr el error bsoluto y otr pr el error reltivo cometidos l hcer l proimción. 9,7 0 7 Notción científic 0, Notción deciml b Aproimción 9, 0 7 Error bsoluto Error reltivo 0,00. <,7.0-7 Vlor proimdo 9, 0 EJERCICIO : Clcul, epresndo el resultdo en notción científic con tres cifrs significtivs: ) c) I) I) I),8 0 8, II), 0 7,8 0, 0 8, 0, , 0, 0 0 II), 0 9, 0 8, 0 0 II), 0 8,0 0 9, 0 7,8 0 8,0 9,8, 0 7, ) I) 7,09 0 7, II), 0 7,8 0, 0 8 0, , , 0,9 0 8,9 0 8, 0,80,,8 0 9,0 0 ) I),80 0, II), 0 9, 0 8, 0 0, 0 8, ,, 0 8 8, 0 8,8 0 0, , 0,0 8,, 0 8,7 0 ) I), 0, II), 0 8,0 0 9, 0 7, , 0 7, 0, 0 7,79 0 7,79 0 9, 0 9 EJERCICIO : Ddos los números: A, 0 8 B,0 0 7 C 0 9

14 Tem El número rel Ejercicios resueltos Mtemátics B º ESO Efectú ls siguientes operciones, dndo el resultdo en notción científic con dos cifrs significtivs: I) A B C II) A B C 8 7, 0,0 0,,0 0,79 0 ) I) 7, , II), 0 8, , 0 7, ,, ,8 0 7,8 0 9, 0 9 EJERCICIO 7 ) Hll, con yud de l clculdor, el resultdo de ests operciones en notción científic con tres 8, 7 0, 0 cifrs significtivs:, 0, 0 D un cot pr el error bsoluto y otr pr el error reltivo cometidos l dr el resultdo proimdo. ) (.7 EXP 8. EXP ) (. EXP. EXP ) Por tnto: Error bsoluto 0,7 0, 0, 0, 0 8,9 0 Error reltivo Error reltivo 0,00 Vlor rel Vlor proimdo EJERCICIO 8 ) Hll, con yud de l clculdor, dndo el resultdo en notción científic con tres cifrs 9 8, 8 0, 0 significtivs:, 0, 0 D un cot pr el error bsoluto y otr pr el error reltivo cometidos l dr el resultdo proimdo. ) (.8 EXP 9. EXP 8 ) (. EXP /. EXP / ) ,8 0, 0, 0, Por tnto: Error bsoluto 0 7, 0 Error reltivo Error reltivo 0,000. <, 0 - Vlor rel Vlor proimdo EJERCICIO 9 : L velocidd de l luz, en el vcío, es km/s. Cuántos metros recorre l luz en un dí?. Epres el resultdo en notción científic. 8 dí =00=8.00 s e 0 8,0 =,90 m. 0

15 Tem El número rel Ejercicios resueltos Mtemátics B º ESO EJERCICIO 0 :Un determind bcteri mide.0 - m. Cuánts bcteris colocds en líne rect serín necesris pr cubrir metro de longitud? 0 =0, bcteris. EJERCICIO : El diámetro de l lun es de 00 Km., proimdmente, cuánto tiempo trdrí en dr un vuelt complet un stélite cuy órbit se encuentr 00 Km. de l superficie lunr, si su velocidd medi es de m./h? L LUNA= r = 90 =, 0 Km =, 0 7 m. t =, 0 v e 0, 0 hors = hors, 8 minutos y segundos proimdmente. EJERCICIO : Un virus se duplic cd minutos. Podrís decir cuántos virus hbrá l cbo de un hor?, y de un dí? Inicio: virus A los min. : = virus A los min.: = virus... A los 0 min. 0 =, virus EJERCICIO : Sbemos que un ño luz equivle 9,.0 Km. Si l distnci de l Tierr Andrómed son,.0 ños luz. Cuántos kilómetros son l distnci que nos sepr de Andrómed? 9, 0, 0, Km. CALCULADORA EJERCICIO : Hll, con yud de l clculdor:, 0, 0, b 7 (, EXP 8, EXP 7 ), EXP / Por tnto:, 0, 0, , 0 b 7. y ( ) Por tnto: 7,0 9 EJERCICIO : Utiliz l clculdor pr hllr el resultdo de ests operciones:, 0, 0, 0 0 b

16 Tem El número rel Ejercicios resueltos Mtemátics B º ESO (, EXP /, EXP / ), EXP Por tnto:, 0, 0, 0 0,0 0 8 b ( ) Por tnto: EJERCICIO : Hll, con yud de l clculdor:,,9 0, 0, b (,9 EXP 9, EXP 0 ), EXP /..078 Por tnto:,9 0, 0, 0 9 0, 0 b. /y.88.. Por tnto:, EJERCICIO 7 : Utiliz l clculdor pr obtener el resultdo de ests operciones:,0 0, (,0 EXP /, EXP 7 / ) EXP Por tnto:,0 0, ,0 0 b ( X ) Por tnto:,99 EJERCICIO 8 : Hll con yud de l clculdor:,8 0, 0, 0 b (,8 EXP, EXP ), EXP /... Por tnto:,8 0, 0, 0 b y.(..87., 0 Por tnto:,

17 Tem El número rel Ejercicios resueltos Mtemátics B º ESO 7 CUESTIONES EJERCICIO 9 : Rzon si ls siguientes igulddes son verdders o flss: ) c) d) : 0 ) Flso, l epresión no puede ser reducid un único sumndo. c) Verddero. -(-) d) Flso, : = =. 0 Verddero, = =. EJERCICIO 0 : Rzon si ls siguientes igulddes son verdders o flss: b b ) b b b +b ) Flso, =. b b b d) Verddero, =. c) b b Flso. c) Verddero. b b d)

Multiplicar por la potencia de 10 adecuada para convertirlo en entero. Despejar N 119. Simplificar la fracción, si es posible N = 50

Multiplicar por la potencia de 10 adecuada para convertirlo en entero. Despejar N 119. Simplificar la fracción, si es posible N = 50 .0 INTRODUCCIÓN º.0. ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS º RACIONALES(Q)???????? NO RACIONALES NATURALES(N) 0 ; ; ; 8... ENTEROS (Z) - ENTEROS NEGATIVOS -; ; 8... Decimles exctos :0,; ;... FRACCIONARIOS.

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

Ejercicios de números reales

Ejercicios de números reales Ejercicios de números reles Clsific los siguientes números como nturles, enteros, rcionles o reles:, Ejercicio nº.- Consider los siguientes números: 1,000000... 1,,1... Clsifíclos según sen nturles, enteros,

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,

Más detalles

1. Números reales. Resuelve BACHILLERATO. Página 25

1. Números reales. Resuelve BACHILLERATO. Página 25 . Números reles Unidd. Números reles Mtemátics plicds Mtemátics ls I Ciencis Sociles I Resuelve Págin A l F B d C. Demuestr que los triángulos ABF EBD son semejntes (es decir, demuestr que sus ángulos

Más detalles

4º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES

4º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. NÚMEROS REALES.- Escrie un número que cumpl: ) Pertenece N y I. ) Pertenece R pero no Q. c) No pertenece R. d) Pertenece Q pero no N. ) IMPOSIBLE

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21 TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,

Más detalles

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9 Números reles E S Q U E M A D E L A U N I D A D.. Los números rcionles págin.. Los números irrcionles págin. Números y expresiones decimles págin. El conjunto de los números reles págin 8 4.. Orden y desiguldd

Más detalles

1. Números reales. Resuelve BACHILLERATO. Página 29

1. Números reales. Resuelve BACHILLERATO. Página 29 . Números reles Unidd. Números reles Mtemátics plicds Mtemátics ls I Ciencis Sociles I Resuelve Págin 9 A l F B d C. Demuestr que los triángulos ABF y EBD son semejntes (es decir, demuestr que sus ángulos

Más detalles

LITERATURA Y MATEMÁTICAS. El código Da Vinci

LITERATURA Y MATEMÁTICAS. El código Da Vinci Números reles SOLUCIONARIO Números reles LITERATURA Y MATEMÁTICAS El código D Vinci El profesor Lngdon se sintió un vez más en Hrvrd, de nuevo en su clse de «Simbolismo en el Arte», escribiendo su número

Más detalles

1. NÚMEROS RACIONALES

1. NÚMEROS RACIONALES IES Jun Grcí Vldemor Deprtmento de Mtemátics 4º ESO Mtemátics B. NÚMEROS RACIONALES Desde l prición de ls socieddes humns los números desempeñn un ppel fundmentl pr ordenr y contr los elementos de un conjunto.

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

Unidad 2. Fracciones y decimales

Unidad 2. Fracciones y decimales Mtemátics Múltiplo.º ESO / Resumen Unidd Unidd. Frcciones y decimles FRACCIONES NÚMEROS DECIMALES EXPRESIÓN, 8, 9 SIGNIFICADO FRACCIONES EQUIVALENTES 0 30 0 0 Prte de un unidd Prte de un cntidd ORDENACIÓN

Más detalles

MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION

MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION MATEMATICAS º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION FRACCIONES Ejercicio 1: resuelve l siguiente operción psndo cd número deciml frcción previmente: ' '1'6 '1 0'15 Ejercicio : simplific ls

Más detalles

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción. MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones. DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS

Más detalles

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa:

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa: Ejercicios Tema 1 Números Reales Ejercicio 1. Clasifica los siguientes números en el lugar que conjunto que corresponde: a) b) c) Ejercicio 2. Clasifica los siguientes números: Ejercicio 3. a) Cuáles de

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

Ejercicios. Números enteros, fraccionarios e irracionales.

Ejercicios. Números enteros, fraccionarios e irracionales. CEPA Enrique Tierno Glván. Ámbito Científico-Tecnológico. Nivel Ejercicios. Números enteros frccionrios e irrcionles. Números enteros. Represent en l rect rel los siguientes números enteros - 0 - -. Qué

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando: Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Unidad 4 Lección 4.3. Exponentes Racionales y Radicales. 26/02/2012 Prof. José G. Rodríguez Ahumada 1 de 20

Unidad 4 Lección 4.3. Exponentes Racionales y Radicales. 26/02/2012 Prof. José G. Rodríguez Ahumada 1 de 20 Unidd Lección. Eponentes Rcionles Rdicles /0/0 Prof. José G. Rodríguez Ahumd de 0 Actividd. Ejercicios de práctic: o Sección 7. Rices Rdicles; Ver ejemplos,,, ; relizr prolems impres del l 8 de ls págins

Más detalles

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO 6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas: EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.

Más detalles

TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS. LA FUNCIÓN EXPONENCIAL Ejercicio: º) Resuelve ls siguientes ecuciones plicndo ls propieddes de ls potencis:. = 8 + 6 9. 5. = = 0. + = 6 8

Más detalles

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P. Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:

Más detalles

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales Mtemátics II TEMA 7 Repso del conjunto de los números reles y de funciones reles El conjunto de los números reles El conjunto de los números reles, R, es el más mplio de los números usules Puede considerrse

Más detalles

Actividades propuestas

Actividades propuestas Cpítulo 1: Números reles TEORÍA. Mtemátics º de ESO En este primer cpítulo vmos repsr muchs coss que y conoces, como ls operciones con los números, representr los números en un rect, ls potencis Si todo

Más detalles

Potencias y radicales

Potencias y radicales CUADERNO Nº Potencis y rdicles Es necesrio que repsemos ls propieddes de ls potencis. En l escen puedes bordr este repso y ver múltiples ejemplos de cd propiedd. Complet l siguiente tbl: Propiedd (Complet

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

NÚMEROS RACIONALES. Los números racionales son todos aquellos números de la forma b

NÚMEROS RACIONALES. Los números racionales son todos aquellos números de la forma b NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números enteros y b distinto de cero. El conjunto de los números rcionles se represent por l letr Q. IGUALDAD ENTRE

Más detalles

de Thales y Pitágoras

de Thales y Pitágoras 8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

EJERCICIOS DE RAÍCES

EJERCICIOS DE RAÍCES EJERCICIOS DE RAÍCES º ESO RECORDAR: Definición de ríz n-ésim: n x x Equivlenci con un potenci de exponente frccionrio: n m x Simplificción de rdicles/índice común: Propieddes de ls ríces: x m/n n n b

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8} NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS. POTENCIAS L epresión n se llm potenci de bse y eponente n: Si n es un número nturl: n =, n veces. 0 =, = n m n n m = y = n Ejercicios: º)

Más detalles

Repaso de Matemática Básica

Repaso de Matemática Básica Addison-Wesley s Repso de Mtemátic Básic Números Propieddes Importntes NÚMEROS NATURALES NÚMEROS ENTEROS NO NEGATIVOS {, 2, 3, 4, 5, } {0,, 2, 3, 4, } NÚMEROS ENTEROS {, 3, 2,, 0,, 2, } Rect Numéric 5

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

MATEMÁTICAS: 4ºA ESO Capítulo 1: Números reales LibrosMareaVerde.tk

MATEMÁTICAS: 4ºA ESO Capítulo 1: Números reales LibrosMareaVerde.tk MATEMÁTICAS: ºA ESO Cpítulo : Números reles 6. DISTINTOS TIPOS DE NÚMEROS Índice.. OPERACIONES CON NÚMEROS ENTEROS, FRACCIONES Y DECIMALES.. NÚMEROS RACIONALES. FRACCIONES Y EXPRESIONES DECIMALES.. NÚMEROS

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área Núeros irrcionles Algun vez hs utilizdo núeros irrcionles? Se dese clculr l longitud de un ldo de un pist de bile de for cudrd, cuy áre es 6 u A = 6 u x x Definios los eleentos: x = ldo del cudrdo A =

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas

Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas Formlizción de los Números Reles M. en I. Gerrdo Avilés Ross Agosto de 016 Tem Formlizción de los Números Reles Objetivo: El lumno plicrá ls propieddes de los números reles y sus subconjuntos, pr demostrr

Más detalles

(lo podemos visualizar como el área de un cuadrado de lado 4) Pues bien, diremos que la base de dicha potencia, 4, es su raíz cuadrada exacta: 16 = 4.

(lo podemos visualizar como el área de un cuadrado de lado 4) Pues bien, diremos que la base de dicha potencia, 4, es su raíz cuadrada exacta: 16 = 4. Deprtmento de Mtemátics http://www.colegiovirgendegrci.org/eso/dmte.htm ARITMÉTICA: Rdicles. RADICALES... Ríz cudrd. Anlicemos los siguientes ejemplos: == es un potenci de se y exponente. El resultdo,,

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

1. Se entregará escrito a mano en un cuaderno u hojas sueltas, con el nombre y. 2. Sólo se realizarán las actividades indicadas por el profesor.

1. Se entregará escrito a mano en un cuaderno u hojas sueltas, con el nombre y. 2. Sólo se realizarán las actividades indicadas por el profesor. Actividdes de refuerzo pr º E. S. O. Opción A -- I. E. S. Sbinr NORMAS DE REALIZACIÓN DEL TRABAJO:. Se entregrá escrito mno en un cuderno u hojs suelts, con el nombre pellidos en tods ls hojs en tl cso..

Más detalles

Potencias y radicales

Potencias y radicales Potencis y rdicles POTENCIAS DE EXPONENTE ENTERO NOTACIÓN CIENTÍFICA RADICALES EQUIVALENTES SEMEJANTES OPERACIONES CON RADICALES SUMA Y RESTA PRODUCTO Y COCIENTE POTENCIA Y RAÍZ RACIONALIZACIÓN DENOMINADOR

Más detalles

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros

Más detalles

5 2 B) C) o 16 1 C) 2 D) 16 E)-2. Sesión Si una progresión geométrica tiene primer término 243 y el quinto término es

5 2 B) C) o 16 1 C) 2 D) 16 E)-2. Sesión Si una progresión geométrica tiene primer término 243 y el quinto término es Sesión.- Si un progresión geométric tiene primer término y el quinto término es entonces l rzón r es igul : Unidd I Progresiones y series. D. Progresión geométric..- L poblción de un ciudd h umentdo de

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

3º DE EDUCACIÓN SECUNDARIA OBLIGATORIA MATEMÁTICAS UNIDAD 1 LOS NÚMEROS REALES

3º DE EDUCACIÓN SECUNDARIA OBLIGATORIA MATEMÁTICAS UNIDAD 1 LOS NÚMEROS REALES º DE EDUCACIÓN SECUNDARIA OBLIGATORIA MATEMÁTICAS UNIDAD LOS NÚMEROS REALES Presentción b) Evlución Inicil c) Conceptos d) Actividdes e) Autoevlución f) Otros recursos: bibliogrfí y recursos en red g)

Más detalles

Números reales. Objetivos. Antes de empezar. 1. Los números reales pág. 22 Números irracionales. Números reales

Números reales. Objetivos. Antes de empezar. 1. Los números reales pág. 22 Números irracionales. Números reales Números reles Ojetivos En est quincen prenderás : Clsificr los números reles en rcionles e irrcionles. Aproimr números reles por truncmiento y redondeo. Representr gráficmente números reles. Comprr números

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

OPERACIONES CON RADICALES

OPERACIONES CON RADICALES OPERACIONES CON RADICALES RAÍCES Y RADICALES L ríz n-ésim de un número, representd por n, es un operción sore que d como resultdo un número tl que n. Si n es pr, h dos resultdos posiles: positivo negtivo:,

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

Hasta el momento solo hemos trabajado con funciones reales de la forma

Hasta el momento solo hemos trabajado con funciones reales de la forma Función eponencil: Hst el momento solo hemos trbjdo con funciones reles de l form f( ) = P( ) donde P ( ) es un polinomio f ( ) = donde y es un vrible, entre otros pero hor vmos trbjr con funciones donde

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números Colegio Antil Mwid Deprtmento de Mtemátic Profesor: Nthlie Sepúlved Guí de Trjo n Octvo ño ásico Refuerzo Contenido y Aprendizje N Fech Tiempo 2 Hors Nomre del/l lumno/ Unidd Nº Núcleos temáticos de l

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL Mtemátics pendientes de 1º (º prcil) 1 EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES º PARCIAL Fech tope pr entregrlos: 17 de bril de 015 Exmen el 3 de bril de 015

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA

UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA C u r s o : Mtemátic Mteril N 7 UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA GUÍA TEÓRICO PRÁCTICA Nº DEFINICIÓN : Si n es un entero pr positivo es un rel no negtivo, entonces n es el único

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

Manual de teoría: Álgebra Matemática Bachillerato

Manual de teoría: Álgebra Matemática Bachillerato Mnul de teorí: Álgebr Mtemátic Bchillerto Relizdo por José Pblo Flores Zúñig Álgebr: José Pblo Flores Zúñig Págin Contenido: ) Álgebr. Fctorizción. Simplificción de epresiones lgebrics. Ecuciones Álgebr:

Más detalles