Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )"

Transcripción

1 Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres y cntiddes vectoriles. Definición de segmento dirigido. Componentes esclres de un segmento dirigido en l dirección de los ejes coordendos. El vector como tern ordend de números reles. Definición de módulo de un vector e interpretción geométric. Vector de posición de un punto. Vector nulo. Vector unitrio. Vectores unitrios i, j, k. Vectores representdos por un combinción linel de los vectores i, j, k. 3.3 Definición de iguldd de vectores. Operciones con vectores: dición, sustrcción y multiplicción por un esclr. Propieddes de ls operciones. 3.4 Producto esclr de dos vectores y propieddes. Condición de perpendiculridd entre vectores. Componente esclr y componente vectoril de un vector en l dirección de otro. Ángulo entre dos vectores. Ángulos, cosenos y números directores de un vector. 3.5 Producto vectoril: definición, interpretción geométric y propieddes. Condición de prlelismo entre vectores. Aplicción del producto vectoril l cálculo del áre de un prlelogrmo. 3.6 Producto mixto e interpretción geométric. Sistem crtesino tridimensionl Se divide en ocho octntes, cutro superiores y cutro inferiores. Primer octnte Segundo octnte Tercer octnte Curto octnte P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Quinto octnte Sexto octnte Séptimo octnte Octvo octnte P ( X, Y,-Z ) P (-X, Y,-Z ) P (-X,-Y,-Z ) P ( X,-Y,-Z )

2 Simetrí de puntos Pr todo punto de coordends P(X, Y, Z), se tienen ls siguientes simetrís: Respecto l origen: P (-X,-Y,-Z ) Respecto l eje X: P ( X,-Y,-Z ) Respecto l eje Y: P (-X, Y,-Z ) Respecto l eje Z: P (-X,-Y, Z ) Respecto l plno XY: P ( X, Y,-Z ) Respecto l plno YZ: P (-X, Y, Z ) Respecto l plno XZ: P ( X,-Y, Z ) Respecto un punto culquier: P (X, Y, Z) Cntiddes Esclres: mgnitud Vectoriles: mgnitud y dirección (sentido) Representción geométric de un vector Se reliz trvés de un segmento dirigido Ejemplo: Determinr el vlor del vector representdo por el segmento dirigido AB, si se conocen los puntos A(3,,1) y B(-5,7,9). AB =(-5-3, 7-, 9-1)=(-8, 5, 8)

3 Iguldd de vectores. Dos o más vectores son igules, si tienen l mism mgnitud y dirección. Un vector no se lter si se mueve prlelmente sí mismo, como se muestr en l siguiente figur. Componentes esclres de un segmento dirigido sobre los ejes coordendos. Un vector en el espcio de coordends crtesins tridimensionl, qued definido nlíticmente trvés de un tern ordend de números, que representn ls proyecciones del vector sobre los ejes X, Y y Z respectivmente.

4 Vector de posición Pr el punto A de coordends A( 1,, 3 ), perteneciente l espcio crtesino tridimensionl, su vector de posición será el vector =( 1,, 3 ), formdo por l mism tern de números del punto que represent. Culquier punto siempre tendrá su representción vectoril trvés de su VECTOR DE POSICIÓN. Módulo de un vector Al hblr de módulo, nos referimos l mgnitud o tmño del vector. Si tommos como referenci l figur de l derech, l plicr el teorem de Pitágors sobre el triángulo rectángulo OCB contenido en el plno XY, tenemos que: OB OC CB 1 Posteriormente l plicr el mismo teorem sobre el triángulo OBA, tenemos: OA OB AB Ejemplo: Demostrr que los puntos A(7, 5), B(, 3) y C(6,-7) son los vértices de un triángulo rectángulo.

5 El vector como un conjunto ordendo de n números reles Un vector pude tener más de tres dimensiones, unque su representción geométric quede limitd los vectores tridimensionles. Pr un vector de dimensión n tenemos que: =( 1,,, n ) Operciones con vectores. Podemos relizr ls siguientes operciones sobre culquier vector de dimensión n. 1. Adición y sustrcción.. Multiplicción por un esclr. 3. Producto esclr (punto). 4. Producto vectoril (Cruz). 5. Producto mixto. Adición y sustrcción de vectores. Sen los vectores = ( 1,,, n ) y b = (b 1, b,, b n ), el vector + b se obtiene sumndo de form ordend cd un de ls componentes de los vectores y b. + b = ( 1+ b 1, + b,, n + b n ) Pr poder relizr l dición o sustrcción de vectores éstos deben ser de ls misms dimensiones. Propieddes de l dición de vectores. 1. Sí y b son de dimensión "n" entonces + b tmbién lo será.. +( b + c ) = ( + b )+ c 3. + b = b = ; 0 =(0, 0,, 0) (Vector nulo o vector cero) 5. +(- )= 0 Interpretción geométric de l sum y diferenci de vectores. Método del prlelogrmo Método del triángulo

6 Multiplicción por un esclr Si R, entonces = ( 1,,, n )= ( 1,,, n ) Propieddes de l multiplicción por un esclr Si y R y, b son de l mism dimensión: 1) + b + b ) ( = 3) ( = ) 4) = 5) 0 = 0 ; 1 = ; -1 = - ; - 0 = 0 Si >1: Vector prlelo con l mism dirección y de myor tmño Si 0< 1: Vector prlelo con l mism dirección y de menor tmño Si -1< 0: Vector prlelo con dirección opuest y de menor tmño Si <-1: Vector prlelo con dirección opuest y de myor tmño Vector unitrio. Pr un vector culquier = ( 1,,, n ) el vector unitrio de estrá ddo por: 1 n 1 u= (,,..., ) = (1,,, n ) Pr un vector en el espcio de tres dimensiones, tenemos: u= (,, ) = (1,, 3 ) 1 y u tienen l mism dirección y sentido y que > 0 Ejemplo: Obtener el vector unitrio del vector : Si = ( 4,, 1). = ( 4) ( ) ( 1) u= (,, ) Distnci entre dos puntos como el módulo de l diferenci de dos vectores Si ( 1,, 3) y b ( b1, b, b3) AB ( b1 1, b, b3 3) dba dab b dab ( b1 1) ( b ) ( b3 3) Producto esclr de dos vectores. Sen los vectores = ( 1,,, n ) y b = (b 1, b,, b n ) n k k 1 b b b b... k 1 1 n b n

7 Propieddes del producto esclr. Ddos los vectores, b y c y el esclr, se cumple que: 1. b = b. ( b c) b c 3. ( ) b ( b) 4. Ortogonlidd. Dos vectores y b son ortogonles si y sólo si b= 0 Ejemplo: Determinr si los vectores ddos en cd inciso son ortogonles. ) b) c) Componente vectoril y esclr de un vector sobre otro. Ángulo entre dos vectores Ejemplo: Form trinómic de un vector. Pr el vector =( 1,, 3 ), su form trinómic es: = Donde:,, son los vectores unitrios en dirección de los ejes X, Y y Z respectivmente.

8 Ángulos y cosenos directores de un vector Los ángulos directores de un vector, son los ángulos, y que respectivmente form el vector con los vectores unitrios, y. Cosenos directores Son los cosenos de los ángulos directores. Producto vectoril de dos vectores. Sólo es plicble pres de vectores Al relizr el producto cruz se obtiene un tercer vector ortogonl los vectores y. Propieddes del producto vectoril Prlelismo Áre de un prlelogrmo

9 Producto mixto Definición: ddos tres vectores culesquier b y c, el producto mixto se define como el esclr: Se cumple que el resultdo del producto mixto no se lter l cmbir cíclicmente el orden de los vectores (se intercmbin en el determinnte los renglones un pr de veces), esto es: Volumen de un prlelepípedo. Se obtiene trvés del producto mixto de tres vectores concurrentes en un mismo vértice y que son rists del prlelepípedo.

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Vectores. Dr. Rogerio Enríquez

Vectores. Dr. Rogerio Enríquez Vectores Dr. Rogerio Enríquez Objetivo Eductivo Reflexión sobre lo que y se sbe Dominr los conceptos como mestros Unir l geometrí con el álgebr Deducir lógicmente el álgebr Explorr el dominio mtemático

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero Vectores en el espcio º Bchillerto An Mª Zptero El conjunto R Es un conjunto de terns ordends de números reles R { ( x, y, z ) / x R, y R, z R } Primer componente Segund componente Tercer componente Iguldd

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

Suma de DOS vectores angulares o concurrentes

Suma de DOS vectores angulares o concurrentes Suma de DOS vectores angulares o concurrentes y F 2 o a q=? F 1 x Suma de DOS vectores angulares o concurrentes Trángulo oblcuo: aquel que no tene nngún ángulo recto Ley de los Senos Ley de los Cosenos

Más detalles

TEMA 1. CÁLCULO VECTORIAL.

TEMA 1. CÁLCULO VECTORIAL. TEMA 1. CÁLCUL VECTRIAL. MAGNITUDES FÍSICAS ESCALARES Son quells que quedn determinds por su vlor numérico y l unidd de medid. Ejemplos: ms, energí, tiempo, tempertur, etc. MAGNITUDES FÍSICAS VECTRIALES

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES CPITULO II MGNITUDES ESCLRES Y VECTORILES 1 CONTENIDO 1. VECTORES Y ESCLRES 2. ELEMENTOS DE UN VECTOR, CONCEPTO DE DIRECCION Y SENTIDO 3. LGEBR DE VECTORES 4. METODOS GRFICOS Y NLITICOS 5. COMPOSICION

Más detalles

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades Tem 1: Introducción y fundmentos mtemáticos Antonio González Fernández Deprtmento de Físic Aplicd III Universidd de Sevill Prte 3/4 es en físic I: Definiciones y propieddes Ls mgnitudes se clsificn en

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

Vectores en el espacio. Producto escalar

Vectores en el espacio. Producto escalar Geometrí del espcio: Vectores; producto esclr Vectores en el espcio Producto esclr Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril si en él se definen dos operciones,

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Unidad Nº 4: VECTORES en IR 2 y en IR 3

Unidad Nº 4: VECTORES en IR 2 y en IR 3 Unidd Nº 4: VECTORES en IR y en IR 3 Sistem de coordends crtesins ortogonles en el Plno y en el Espcio. Expresión de n ector en IR y en IR 3. Igldd de ectores. Sm de ectores. Mltiplicción de n esclr por

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Nombre: Curso: Las cantidades vectoriales se representan gráficamente mediante un trazo dirigido (vector geométrico)

Nombre: Curso: Las cantidades vectoriales se representan gráficamente mediante un trazo dirigido (vector geométrico) Dpto. de Físic 1 Nomre: Curso: GUÍA DE VECTORES 3 E. M. electivo Mgnitudes o Conceptos Esclres: En el estudio de l Físic encontrmos conceptos o mgnitudes tles como: el tiempo, ms, crg eléctric, tempertur,

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre los ejes coordenados X,

Más detalles

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros.

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros. 4. Espcios vectoriles, definición propieddes Viguers En l Físic, con frecuenci se us el término vector pr descriir mgnitudes como l fuer, l velocidd, l celerción, otros fenómenos de l nturle, sin emrgo

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

r = 1 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R DESPLAZAMIENTO Y VECTORES

r = 1 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R DESPLAZAMIENTO Y VECTORES 1 Introducción l Físic Prlelos 10 13. Profesor RodrigoVergr R DPLAZAMIT Y VCTR 1) Repso de trigonometrí Definir plicr ls 3 funciones trigonométrics ásics en triángulos rectángulos. Definir ls funciones

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

Vectores en el espacio

Vectores en el espacio Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

VECTORES PLANO Y ESPACIO

VECTORES PLANO Y ESPACIO TETO º 3 ECTOES PLAO ESPACIO Conceptos Básicos Ejercicios esueltos Ejercicios Propuestos Edict Arrigd D. ictor Perlt A Diciemre 008 Sede Mipú, Sntigo de Chile Introducción Este mteril h sido construido

Más detalles

x R, y R Según estas coordenadas dividiremos al plano en cuatro cuadrantes a saber:

x R, y R Según estas coordenadas dividiremos al plano en cuatro cuadrantes a saber: Apéndice A Coordenadas A.1 Coordenadas en el Plano R A.1.1 Cartesianas (x, y) Dotar al plano bidimensional R de coordenadas cartesianas D es establecer una biyección entre el conjunto de puntos del plano

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero

Más detalles

DPTO. FISICA APLICADA II - EUAT

DPTO. FISICA APLICADA II - EUAT Cpítulo 1 Álgebr vectoril Glileo decí que l Físic está en un grn libro que se bre continumente nte nuestros ojos y que no se puede comprender sin ntes prender l lengu en que está escrito. Es lengu es l

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Marcelo Lugo. Figura 1

Marcelo Lugo. Figura 1 Los esclres los vectores Durnte cientos de ños los humnos hn desrrolldo vris forms pr contr los objetos. Pr contr, registrr, comprr o comunicr se usn símbolos que permiten identificr l número de objetos,

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

UNIDAD. Vectores y rectas

UNIDAD. Vectores y rectas UNIDAD 6 Vectores y rects L os ectores fcilitn el estudio de los elementos del plno y los prolems que se pueden estlecer entre ellos En su origen, el concepto de ector prece en Físic pr crcterizr cierts

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

DESPLAZAMIENTO VECTORES

DESPLAZAMIENTO VECTORES CAPÍTULO DESPLAZAMIENTO ECTORES Hemos indicdo que un cuerpo se mueve cundo cmi de posición en el espcio. Es mu importnte en Físic ser medir ese cmio de posición, introduciendo el concepto de desplzmiento.

Más detalles

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3). ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo

Más detalles

VECTORES EN EL PLANO. PRODUCTO ESCALAR.

VECTORES EN EL PLANO. PRODUCTO ESCALAR. UNIDAD DIDÁCTICA 5 VECTORES EN EL PLANO. PRODUCTO ESCALAR. 1º BACHILLER 97 OBJETIVOS DIDÁCTICOS: 1. Operr con vectores utilizndo sus coordends y en form gráfic.. Estudir l dependenci e independenci linel

Más detalles

Aplicaciones Lineales Entre Espacios Vectoriales

Aplicaciones Lineales Entre Espacios Vectoriales Aplicciones lineles Bloque 2 Lección 2.2.- Aplicciones Lineles Entre Espcios Vectoriles Progrm: 0.- Concepto de Homomorfismo. Propieddes. Homomorfimos de grupos, nillos y cuerpos. 1- Concepto de plicción

Más detalles

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales Apéndie V Ing. José Cruz Toledo M. Vetores tridimensionles En este péndie se present un resúmen de ls reliones vetoriles que son referenidos en este liro. y(j) (x,y,z) y Simologí (Ver Fig. V-1): ( x i

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo = π. r 360º = πrd = 400 G α º = α R = α G 360º π 400 G C = π. rdio Longitud de l Circunferenci Áre de Anillo

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

es pa c i o s c o n p r o d U c t o

es pa c i o s c o n p r o d U c t o Unidd 5 es p c i o s c o n p r o d U c t o i n t e r n o (n o r M, d i s t n c i ) Objetivos: Al inlizr l unidd, el lumno: Aplicrá los conceptos de longitud y dirección de vectores en R. Aplicrá el concepto

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL Mtemátics pendientes de 1º (º prcil) 1 EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES º PARCIAL Fech tope pr entregrlos: 17 de bril de 015 Exmen el 3 de bril de 015

Más detalles

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II)

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II) CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II) Dnte Guerrero-Chnduví Piur, 015 FACULTAD DE INGENIEÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II)

Más detalles

VECTORES. b procesador de texto lo más usual es escribirlo con negrita (a). Ambas notaciones se leen el vector a. De ahora en

VECTORES. b procesador de texto lo más usual es escribirlo con negrita (a). Ambas notaciones se leen el vector a. De ahora en /o Físic Generl. FCQN. UNM. Ciclo Lectio 008 VECTORES En físic eisten cntiddes que quedn representds por un número, ests cntiddes dimensionles pueden ser: el umento de un lente ( M 3); el coeficiente de

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

A B C D E F G H I J USOS DE LA ESCUADRA Y EL CARTABÓN TB1. Grupo. Apellido Apellido, Nombre. Fecha. Título de la lámina

A B C D E F G H I J USOS DE LA ESCUADRA Y EL CARTABÓN TB1. Grupo. Apellido Apellido, Nombre. Fecha. Título de la lámina Emplendo l escudr y el crtbón rellen los tres espcios continución con prlels ls direcciones dds. Procur que l distnci entre ls prlels se l mism que l que te d el ejercicio y preséntlo cbdo tint negr. continución,

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr

Más detalles

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano Cpítulo 4 Números Rcionles. Luego de construir los Números Nturles, se presentron ciertos problems como Cuál es el resultdo de 3 menos 5?, pr poder encontrr un solución se creó prtir de N el conjunto de

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

Guía de Sustentación Matemática. 1º medio A 3, 2. h) H. c) El cuarto cuadrante d) El segundo cuadrante 5, 2

Guía de Sustentación Matemática. 1º medio A 3, 2. h) H. c) El cuarto cuadrante d) El segundo cuadrante 5, 2 Royl Americn School Profesor An Mendiet Guí de Sustentción Mtemátic 1º medio A Formndo persons: Responsles respetuoss honests y leles 1) Represent en el plno crtesino los siguientes puntos: ) A(-1) d)

Más detalles

1.- VECTORES EN EL PLANO. OPERACIONES. Cualquier vector v tiene dos componentes (v 1. v = (4,3) 1 2 1 2 u v. u = v (u, u ) = (v, v )

1.- VECTORES EN EL PLANO. OPERACIONES. Cualquier vector v tiene dos componentes (v 1. v = (4,3) 1 2 1 2 u v. u = v (u, u ) = (v, v ) º Bchillerto Mtemátics I Dpto e Mtemátics- I.E.S. Montes Orientles (Iznlloz-Curso 0/0 TEMA 8.- GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS.- VECTORES EN EL PLANO. OPERACIONES. Concepto e vector Un

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden

Más detalles

Vectores en R 2 y R 3

Vectores en R 2 y R 3 Vectores en R R 3 Vectores en R R 3 Mgnitudes esclres vectoriles H mgnitudes que quedn determinds dndo un solo número rel. Por ejemplo: l longitud de un regl, l ms de un cuerpo o el tiempo trnscurrido

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - TEORÍA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS TEÓRICOS

Más detalles

C A P I T U L O I V E C T O R E S Y F U E R Z A S

C A P I T U L O I V E C T O R E S Y F U E R Z A S C P I T U L I V E C T R E S U E R S I.1. Mgnitudes esclres vectoriles. Esclres: Pr su interpretción precisn del vlor numérico de l unidd de medid. Ej.: m 3, 0 V, 50 km, 5 ºC. Vectoriles: Si decimos que

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

VECTORES 1 AGRADECIMIENTOS. Patiño Nepomuceno

VECTORES 1 AGRADECIMIENTOS. Patiño Nepomuceno VECTORES 1 GRDECIMIENTOS VECTORES 2 Deseamos agradecer ampliamente a todos lo que han contribuido para la realización del presente material. En primer lugar agradecemos al Colegio de Ciencias y Humanidades

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

Problemas de fases nacionales e internacionales

Problemas de fases nacionales e internacionales Problems de fses ncionles e interncionles 1.- (Chin 1993). Ddo el prlelogrmo ABCD, se considern dos puntos E, F sobre l digonl AC e interiores l prlelogrmo. Demostrr que si existe un circunferenci psndo

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

DETERMINANTES. Determinantes

DETERMINANTES. Determinantes Determinntes DETERMINANTES Autores: Jun Alberto Rodríguez Velázquez (jrodriguezvel@uoc.edu), Cristin Steegmnn Pscul (csteegmnn@uoc.edu), Ángel Alejndro Jun Pérez (junp@uoc.edu). ESQUEMA DE CONTENIDOS Definición

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS ELECTROMGNETISMO PR INGENIERÍ ELECTRÓNIC. CMPOS Y ONDS Fundmentos de Cálculo Vectoril Introducción Cpítulo 1 El Cálculo Vectoril es un herrmient fundmentl pr el modeldo de ls intercciones de nturle electromgnétic,

Más detalles

CÁLCULO DE ÁREAS. Dados los siguientes paralelogramos (cuadrados o rectángulos), calcula las áreas de cada figura: 1. a.

CÁLCULO DE ÁREAS. Dados los siguientes paralelogramos (cuadrados o rectángulos), calcula las áreas de cada figura: 1. a. CÁLCULO DE ÁREAS. Ddos los siguientes prlelogrmos (cudrdos o rectángulos), clcul ls áres de cd figur: 1. k m y y A = = A = k m = mk A = 141. p m g s g t. 8p 5p m 7m 5k p. 4,5m 8p 7,m 1 k 5m 1 k Ddos los

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

NÚMEROS RACIONALES. Los números racionales son todos aquellos números de la forma b

NÚMEROS RACIONALES. Los números racionales son todos aquellos números de la forma b NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números enteros y b distinto de cero. El conjunto de los números rcionles se represent por l letr Q. IGUALDAD ENTRE

Más detalles

TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores.

TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores. J.A DÁVILA BAZ - J. PAJÓN PERMUY CÁLCULO VECTORIAL 29 UNIDAD DIDÁCTICA I: CÁLCULO VECTORIAL. TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS 2.1.- Definicion, notacion y clasificacion de los vectores. Un vector

Más detalles

SISTEMA DE COORDENADAS CARTESIANAS

SISTEMA DE COORDENADAS CARTESIANAS SISTEMA DE COORDENADAS CARTESIANAS Definición El siste de coordends crtesins en el plno está constituido por dos rects perpendiculres que se intersecn en un punto O l que se le ll el origen. Un de ls rects

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

ALGEBRA DE VECTORES Y MATRICES VECTORES

ALGEBRA DE VECTORES Y MATRICES VECTORES ALGEBRA DE VECTORES Y MATRICES VECTORES DEFINICIÓN DE ESCALAR: Cantidad física que queda representada mediante un número real acompañado de una unidad. EJEMPLOS: Volumen Área Densidad Tiempo Temperatura

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática 12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +

Más detalles