Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales."

Transcripción

1 UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos que llmmos vector un elemento de un espcio vectoril. En el cso en que dicho espcio se n, los vectores serán n-upls y los introduciremos en Mthemtic como un list formd por n elementos de. Así, por ejemplo el vector v = (1,, 3) de 3, lo escribiremos: v={1,-,3}; Pr culquier otro espcio vectoril V sobre, de dimensión n, utilizremos su identificción con n trvés de ls coordends respecto de un determind bse. Por ejemplo, el polinomio p(x) = 3x + x + de P () lo identificmos con (,1,3) pues ésts son sus coordends respecto de l bse cnónic {1, x, x }. 1. BASES Y COORDENADAS 1.1. INDEPENDENCIA INEA En un espcio vectoril V, un conjunto finito de vectores se dice linelmente independiente si el vector cero se escribe de form únic como combinción linel de dichos vectores y, por tnto, con esclres cero. Pr espcios de dimensión finit, esto puede trducirse en el estudio de los sistems homogéneos que tienen como mtriz de coeficientes quell en l que sus columns son ls coordends, respecto de un determind bse (elegiremos siempre que se posible l cnónic), de los vectores que estmos estudindo. El teorem de Rouché-Frobenius nos permite deducir que un conjunto de r vectores es linelmente independiente si y sólo si el rngo de l mtriz cuys columns son ls coordends de los vectores respecto de un bse, es igul l número de vectores. Por ejemplo, si queremos estudir l dependenci o independenci linel de los vectores de 3 v = (1, 0, 0) y w = ( 1, 1, 0), escribiremos: {{1,0,0},{-1,1,0}}; MtrixForm[RowReduce[Trnspose[]]] Out[]= i 1 0y 0 1 j z k 0 0{ Así, el rngo es, igul l número de vectores, y el conjunto es linelmente independiente. 1.. BASE Y COORDENADAS RESPECTO DE UNA BASE Sbemos que un bse de un espcio vectoril V es un conjunto de vectores linelmente independiente y que demás es un sistem de generdores de dicho espcio. Durnte est práctic tomremos como ejemplo V = 3 cuyos elementos son terns (x, y, z) con cd un de sus componentes en. Como ejemplo consideremos l siguiente bse de 3 : - 1 -

2 B 1 = {(1, 0, 1), ( 1, 1, 0), (0, 1, 1)} PRÁCTICAS DE ÁGEBRA INEA DE ÁGEBRA II s bses ls introducimos en Mthemtic como mtrices, es decir, como list de lists siendo cd un de sus componentes uno de los vectores de l bse: b1={{1,0,0},{-1,1,0},{0,1,-1}}; Pr probr si dichos vectores formn bse de 3 y como conocemos l dimensión del espcio que es 3, nos bstrá con ver que son linelmente independientes, pues como sbemos tres vectores linelmente independientes en un espcio de dimensión 3 formn bse. Pr ver que son linelmente independientes bst con clculr su determinnte, si es distinto de cero formn bse y si es cero son linelmente dependientes y no formn bse. Det[b1] Out[]= -1 Por tnto, B 1 es bse de 3. s coordends de un vector respecto de un bse se pueden clculr medinte l resolución de un sistem de ecuciones. Consideremos el vector v de 3 con coordends (4, 1, ) respecto de l bse cnónic, vemos cuáles son sus coordends respecto de l bse B 1. s coordends buscds serán los números x, y, z tles que: (4, 1, ) = x(1, 0, 0) + y( 1, 1, 0) + z(0, 1, 1) es decir, l solución del sistem: x 4 1 y = 1 1 z con mtriz de coeficientes quell cuys columns son ls coordends de los vectores de l bse y cuyo vector de términos independientes es el vector v. En Mthemtic: v={4, 1, -}; vb1=inersolve[trnspose[b1], v] Out[]= {3,-1,} Comprobemos que ésts son ls coordends del vector v respecto de l bse B 1 : Out[]= v==sum[vb1[[i]]b1[[i]],{i,3}] 1.3. CAMBIO DE BASE Supongmos que tenemos dos bses B 1 y B de un espcio vectoril, nos proponemos encontrr l mtriz del cmbio de bse B 1 B, que nos permite clculr ls coordends de culquier vector respecto de B, conocids ls coordends de dicho vector respecto de B 1. Como sbemos l mtriz del cmbio de bse es l mtriz regulr que tiene por columns ls coordends de los vectores de l primer bse, B 1 respecto l segund bse, B. Como ejemplo consideremos ls bses de 3 B 1 = {(1,0,1),(-1,1,0),(0,1,-1)} B = {(1,0,-1),(,1,0),(-1,1,1)} En primer lugr introducimos ls bses en el Mthemtic y comprobmos que relmente lo son: - -

3 PRÁCTICAS DE ÁGEBRA INEA DE ÁGEBRA II b1={{1,0,0},{-1,1,0},{0,1,-1}}; Det[b1] Out[]= -1 b={{1,0,-1},{,1,0},{-1,1,1}}; Det[b] Out[]= - Teniendo en cuent lo nterior, l mtriz del cmbio de bse de B 1 B se puede construir como sigue: P = Trnspose[Tble[inerSolve[Trnspose[B],B1[[i]]],{i,1,3,1}]]; MtrixForm[P] Out[]= Un vez construid l mtriz del cmbio de bse es inmedito obtener ls coordends del vector v = (4, 1, -) respecto de l bse B conocids ls coordends del mismo respecto de B 1. Por l práctic nterior introducimos el vector y clculmos sus coordends respecto de B 1 : v = {4, 1, -}; vb1 = inersolve[trnspose[b1], v] Out[]= {3,-1,} Pr clculr ls coordends respecto de l nuev bse, utilizremos el cmbio de bse, con lo que bst con multiplicr dich mtriz por el vector vb1: vb= P.vb1 Out[]= {,1,0} Podemos comprobr que el cmbio de bse se h relizdo stisfctorimente trnsformndo mbos vectores sus coordends respecto de l bse cnónic de 3 pr lo cul solo hy que sumr los productos de cd un de ls componentes del vector v1 por el respectivo elemento de l bse: Sum[v1[[i]]*b1[[i]],{i,1,3}] == Sum[v[[i]]*b[[i]],{i,1,3}]. APICACIONES INEAES Ddos V y V dos espcios vectoriles sobre un cuerpo, un plicción f: V V se dice que es un plicción linel si verific: 1. f(u + v) = f(u) + f(v), u, v V.. f(αu) = αf(u), α, u V. En Mthemtic trbjremos con ls coordends de los vectores respecto de un bse y no con los vectores. Pr definir un plicción linel debemos de seguir ls regls hbitules de Mthemtic: nombre[vrible_]:= expresión - 3 -

4 PRÁCTICAS DE ÁGEBRA INEA DE ÁGEBRA II Teniendo en cuent que en este cso tendremos como vrible un vector y como expresión otro vector: Ejemplo. Definir en Mthemtic l plicción linel f: 3 4 dd por f(x, y, z) = (x, x + y, 3x + y z, y + 5z) y clculr f(3,,1): f[{x_,y_,z_}]:={x,x+y,3x+y-z,y+5z}; f[{3,,1}] {6, 5, 10, 7} En l práctic pr estudir si f es plicción linel se suele usr l definición l siguiente crcterizción: plicción f: V V es linel si, y solo si, Estudimos si l plicción nterior es linel. f(αu + βv) = αf(u) + βf(v), α, β ¼, u, v V. f[{x_,y_,z_}]:={x,x+y,3x+y-z,y+5z}; Simplify[f[*{x1,y1,z1}+b*{x,y,z}]]== Simplify[*f[{x1,y1,z1}]+b*f[{x,y,z}]] Ejemplo. Estudir si l plicción g: 3 dd por g(x, y, z) = (xy, x + y) es linel. g[{x_,y_,z_}]:={x*y,x+y}; Simplify[g[*{x1,y1,z1}+b*{x,y,z}]] == Simplify[*g[{x1,y1,z1}] + b*g[{x,y,z}]] {(x + b x1), (x + b x1 + y + b y1)} == { x + b x1, x + b x1 + y + b y1}.1. EXPRESIÓN MATRICIA DE UNA APICACIÓN INEA Se f: V V un plicción linel y se B = {e 1, e,..., e n } un bse de V. Entonces f está totlmente determind por ls imágenes de los vectores de B, es decir, f(e 1 ), f(e ),..., f(e n ), pues ddo un vector x de V de coordends x ª (x 1,...,x n ) B, entonces, f(x) = f(x 1 e x n e n ) = x 1 f(e 1 ) x n f(e n ) Se hor B ={u 1,..., u m } bse de V y consideremos ls coordends de los vectores f(e 1 ),..., f(e n ) respecto de B : De est form se tiene: f(e 1 ) ª ( 11,, m1 ) B f(e ) ª ( 1,, m ) B f(e n ) ª ( 1n,, mn ) B f(x) ª ( 11 x n x n, 1 x n x n,..., m1 x mn x n ) B Ahor bien, si denotmos ls coordends de f(x) por f(x) ª (y 1,..., y m ) B, entonces se obtiene: y 1 = 11 x n x n - 4 -

5 PRÁCTICAS DE ÁGEBRA INEA DE ÁGEBRA II y = 1 x n x n y m = m1 x mn x n o mtricilmente: y y M y 1 m 11 1 = M m1 1 M m O 1n x1 n x M M mn xn Est expresión recibe el nombre de ecución mtricil de un plicción linel f respecto de ls bses B y B. mtriz 11 1 A = M m1 1 M m O 1 n n, M mn recibe el nombre de mtriz socid f respecto de ls bses B y B que denotremos por A = M B,B (f). (Notr que el número de columns es igul l dimensión de V y su número de fils igul l dimensión de V ). Así, pr clculr l mtriz socid podemos dividirlo en dos psos: Pso 1: Clculmos ls imágenes de los vectores de l bse B de V: f(e 1 ),..., f(e n ). Pso : Clculmos ls coordends de lo obtenido en el pso nterior respecto de l bse B de V. Recordemos que si f es un endomorfismo, V =V, l bse B de V se tom como B. Ejemplo. Clculr l expresión mtricil de l plicción linel f: 3 4 dd por f(x, y, z) = (x, x + y, 3x + y z, y + 5z) respecto de ls bses B = {(1, 1, 1), (1, 1, 0), (1, 0, 0)} y B = {(1,, 3, 0), (, 4, 6, 1), (1, 0, 0, 0), (0, 1, 0, 0)}. f[{x_,y_,z_}]:={x,x+y,3x+y-z,y+5z} B= {{1,1,1},{1,1,0},{1,0,0}}; Bp={{1,,3,0},{,4,6,1},{1,0,0,0},{0,1,0,0}}; A= Trnspose[Tble[ inersolve[trnspose[bp], f[b[[i]]]],{i,1,3}]]; MtrixForm[A] REACIÓN ENTRE EXPRESIONES MATRICIAES ASOCIADAS A A MISMA APICACIÓN INEA RESPECTO DE DISTINTAS BASES Se f: V V un plicción linel con n = dim(v), m = dim(v ), y consideremos B y B bses de V y B y B bses de V, si A es l mtriz socid f respecto de B y B y C es l mtriz socid f respecto de B y B, se tiene que C y A son mtrices equivlentes, demás C = Q -1 AP, donde P es l mtriz del cmbio de bse en V de B B y Q es l mtriz del cmbio de bse en V de B B. En el cso prticulr de un endomorfismo y tomndo l mism bse en el espcio de prtid y en el de llegd, l relción entre A y C es C = P -1 AP. Dos mtrices cudrds A y C pr ls que existe un mtriz regulr P de form que C = P -1 AP se dice que son semejntes

6 PRÁCTICAS DE ÁGEBRA INEA DE ÁGEBRA II Proposición. 1. Dos mtrices son equivlentes si, y solo si, son mtrices socids l mism plicción linel respecto de distints bses.. Dos mtrices son semejntes si, y solo si, son mtrices socids l mismo endomorfismo respecto de distints bses. Ejemplo. Comprobr l relción entre l mtriz socid f respecto de ls bses nteriores y l mtriz socid f respecto de ls bses cnónics. f[{x_,y_,z_}]:={x,x+y,3x+y-z,y+5z} Bc3= IdentityMtrix[3]; Bc4=IdentityMtrix[4]; c= Trnspose[Tble [f[bc3[[i]]],{i,1,3}]]; B= {{1,1,1},{1,1,0},{1,0,0}}; Bp={{1,,3,0},{,4,6,1},{1,0,0,0},{0,1,0,0}}; A= Trnspose[Tble[ inersolve[trnspose[bp], f[b[[i]]]],{i,1,3}]]; P=Trnspose[Tble[inerSolve[Trnspose[B],Bc3[[i]]],{i,3}]]; Q=Trnspose[Tble[inerSolve[Trnspose[Bp],Bc4[[i]]],{i,4}]]; Inverse[Q].A.P==c.3. OPERACIONES CON APICACIONES INEAES Y REACIÓN CON AS MATRICES ASOCIADAS Ddos V y V dos espcios vectoriles sobre un cuerpo, denotremos por Hom (V, V ) l conjunto de tods ls plicciones lineles de V en V. En este conjunto se podemos definir operciones sum y producto por esclr de l form: Dds f, g Hom (V, V ) y λ se define ls plicciones lineles: f + g: V V ; (f + g)(u) = f(u) + g(u) λf: V V ; (λf)(u) = λf(u) Dds plicciones lineles f: V V y g: V V, su composición g ë f: V V definid por (gë f)(x) = g(f(x)) es tmbién linel. Vemos cómo l signción un plicción linel de su mtriz socid se comport bien respecto ls operciones con plicciones lineles: Proposición. Sen V, V y V espcios vectoriles sobre de dimensiones finits, B, B y B bses de V, V y V respectivmente y f, g: V V y h: V V plicciones lineles, entonces se tiene: 1. M B,B (f + g) = M B,B (f) + M B,B (g).. M B,B (λf) = λm B,B (f), pr todo λ. 3. M B,B (h ë f) = M B,B (h) M B,B (f). Ejemplo. Clculr ls mtrices socids f, g y h respecto de ls bses cnónics y comprobr l proposición nterior, siendo: f: 3 3 dd por f(x, y, z) = (x + y, 3x + y z, y + 5z). g: 3 3 dd por g(x, y, z) = (x, y + z, x + y). h: 3 4 dd por h(x, y, z) = (x, x + y, 3x + y z, y + z)

7 PRÁCTICAS DE ÁGEBRA INEA DE ÁGEBRA II f[{x_,y_,z_}]:={x+y, 3x+y-z, y+5z} g[{x_,y_,z_}]:={x, y+z, x+y} h[{x_,y_,z_}]:={x-z, x+y, 3x+y-z, y+z} s[{x_,y_,z_}] = f[{x,y,z}] + g[{x,y,z}]; p[{x_,y_,z_}] = 3*f[{x,y,z}]; c[{x_,y_,z_}] = h[f[{x,y,z}]]; B= IdentityMtrix[3]; Af = Trnspose[Tble [f[b[[i]]],{i,1,3}]]; Ag = Trnspose[Tble [g[b[[i]]],{i,1,3}]]; Ah = Trnspose[Tble [h[b[[i]]],{i,1,3}]]; As = Trnspose[Tble [s[b[[i]]],{i,1,3}]]; Ap = Trnspose[Tble [p[b[[i]]],{i,1,3}]]; Ac = Trnspose[Tble [c[b[[i]]],{i,1,3}]]; Af + Ag ==As 3*Af ==Ap Ah.Af ==Ac - 7 -

Dados V y V dos espacios vectoriales sobre un cuerpo, una aplicación f: V V se dice que es una aplicación lineal si verifica:

Dados V y V dos espacios vectoriales sobre un cuerpo, una aplicación f: V V se dice que es una aplicación lineal si verifica: FACUTAD DE CIENCIAS SOCIAES Universidd de Jén Deprtmento de Mtemátics (Are de Álgebr) PRÁCTICA Nº 7 Aplicciones lineles. Con est práctic se pretende revisr l definición de plicción linel sí como el cálculo

Más detalles

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal. Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Aplicaciones Lineales Entre Espacios Vectoriales

Aplicaciones Lineales Entre Espacios Vectoriales Aplicciones lineles Bloque 2 Lección 2.2.- Aplicciones Lineles Entre Espcios Vectoriles Progrm: 0.- Concepto de Homomorfismo. Propieddes. Homomorfimos de grupos, nillos y cuerpos. 1- Concepto de plicción

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES.

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES. MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Mtrices 11 Definición Se K un cuerpo y n, m N Un mtriz n m sobre K es un plicción: A : {1,,n} {1,,m} K Si (i, j) {1,,n} {1,,m} denotremos ij

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

BLOQUE II: ÁLGEBRA =... son números reales, el primer índice indica la fila y el segundo la columna en la que se encuentra el elemento.

BLOQUE II: ÁLGEBRA =... son números reales, el primer índice indica la fila y el segundo la columna en la que se encuentra el elemento. BLOQUE II: ÁLGEBR Deprtmento de Mtemátics 2º Bchillerto - DEFINICIONES: Un mtriz viene dd por 2 = m 2 22 m2 3 23 m3 n 2n mn donde son números reles, el primer índice indic l fil y el segundo l column en

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

DETERMINANTES. Se denomina determinante de una matriz cuadrada, A, de orden, 3, y se denota,, A al número

DETERMINANTES. Se denomina determinante de una matriz cuadrada, A, de orden, 3, y se denota,, A al número DETERMINNTES CPR. JORGE JUN Xuvi-Nrón Se mtriz cudrd de orden, n. Formdos todos los productos posibles de, n elementos, tomdos entre los, n 2 elementos, de l mtriz,, de modo que en cd producto hy un fctor

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla:

Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla: UNIDD 8: Determinntes. DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) = = = Definición: Pr un mtriz cudrd de orden, not por det( ) ó, l siguiente

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

UNIDAD 8.- Determinantes (tema 2 del libro)

UNIDAD 8.- Determinantes (tema 2 del libro) UNIDD 8.- Determinntes (tem del libro). DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) Definición: Pr un mtriz cudrd de orden, not por det( ) ó,

Más detalles

En este tema supondremos al lector familiarizado con las técnicas más elementales de formas bilineales y cuadráticas sobre un espacio vectorial.

En este tema supondremos al lector familiarizado con las técnicas más elementales de formas bilineales y cuadráticas sobre un espacio vectorial. Cpítulo 4 El espcio euclídeo 4.1 Introducción En este tem supondremos l lector fmilirizdo con ls técnics más elementles de forms bilineles y cudrátics sobre un espcio vectoril. Definición 4.1.1. Un espcio

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero Vectores en el espcio º Bchillerto An Mª Zptero El conjunto R Es un conjunto de terns ordends de números reles R { ( x, y, z ) / x R, y R, z R } Primer componente Segund componente Tercer componente Iguldd

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Determinntes ACTIVIDADES INICIALES I. Enumer ls inversiones que precen en ls siguientes permutciones y clcul su pridd, comprándols con l permutción principl 34. ) 34 b) 34 c) 43 d) 34 e)43 f) 34 ) 3,4,

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MTRICES Y DETERMINNTES. Definición de mtriz.. Tipos de mtrices.. Sum de mtrices.. Producto de un número rel por un mtriz.. Producto de mtrices.. Ejercicios. Determinnte de un mtriz. 8. Menor complementrio

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

CBC EXACTAS INGENIERÍA PRÁCTICA 5

CBC EXACTAS INGENIERÍA PRÁCTICA 5 Ing. José Luis Unmuno & Asoc. Tel.: 455-544 CBC EXACTAS INGENIERÍA PRÁCTICA 5 TRANSFORMACIONES LINEALES (EN ESTE APUNTE TRANSCRIBIREMOS LA INTRODUCCIÓN TEÓRICA Y LOS TEXTOS DE LOS EJERCICIOS TOMADOS DEL

Más detalles

TEMA 3. MATRICES Y DETERMINANTES

TEMA 3. MATRICES Y DETERMINANTES TEMA. MATRICES Y DETERMINANTES. DEFINICIÓN Un mtriz es un tbl de números ordendos en fils y columns de l siguiente form: n A m mn que es un mtriz de m fils y n columns, donde el elemento ij es el número

Más detalles

MATEMÁTICAS II Tema 4 Vectores en el espacio

MATEMÁTICAS II Tema 4 Vectores en el espacio Geometrí del espcio: Vectores; producto esclr, vectoril y mixto Aplicciones MATEMÁTICAS II Tem 4 Vectores en el espcio Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Tema 4: Aplicaciones lineales Definición, primeras propiedades y ejemplos Definición. Sean V y W dos espacios vectoriales sobre un cuerpo K. Una función f : V W se dice que es una aplicación lineal si

Más detalles

Examen de Admisión a la Maestría 1 de Julio de 2015

Examen de Admisión a la Maestría 1 de Julio de 2015 Exmen de Admisión l Mestrí 1 de Julio de 215 Nombre: Instrucciones: En cd rectivo seleccione l respuest correct encerrndo en un círculo l letr correspondiente. Puede hcer cálculos en ls hojs que se le

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

Pauta Certamen N 3. Universidad Técnica Federico Santa María Departamento de Matemática. Matemática II (MAT-022) 1 dx es: (a + x)(b x)

Pauta Certamen N 3. Universidad Técnica Federico Santa María Departamento de Matemática. Matemática II (MAT-022) 1 dx es: (a + x)(b x) Universidd Técnic Federico Snt Mrí Deprtmento de Mtemátic Put Certmen N Mtemátic II (MAT-22) P) Si, b R +, l ntiderivd d es: ( + )(b ) A) + ln + b b + c B) ln ( + )(b ) + c + b C) + b ln b + + c D) ( +

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

Tema VII: Plano afín y espacio afín

Tema VII: Plano afín y espacio afín Tem VII: Plno fín y espcio fín Hst hor el contexto en el que hemos trbjdo h sido fundmentlmente el de los espcios IR n, y de estos espcios nos h interesdo su estructur vectoril, es decir, por decirlo con

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Leccion 6. Espacio tangente. Espacio cotangente.

Leccion 6. Espacio tangente. Espacio cotangente. Leccion 6. Espcio tngente. Espcio cotngente. Estudir: 1 14,20 25. 6.1. Introduccion 1. El objetivo de est leccion es probr que los vectores tngentes X en hcen justici su nombre, ie., que el conjunto T

Más detalles

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3 º BACHILLERATO A TEMA. DETERMINANTES..Clcul los determinntes de ests mtrices:. Determin el vlor de x 4 x 3 3 = b x 5 = 3. Clcul los siguientes determinntes: A = ( 3 5 5 4 B = ( 3 4 b 3 9 3 c 4 3 d 3 3

Más detalles

Formas bilineales y cuadráticas.

Formas bilineales y cuadráticas. Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

DETERMINANTES. Determinantes

DETERMINANTES. Determinantes Determinntes DETERMINANTES Autores: Jun Alberto Rodríguez Velázquez (jrodriguezvel@uoc.edu), Cristin Steegmnn Pscul (csteegmnn@uoc.edu), Ángel Alejndro Jun Pérez (junp@uoc.edu). ESQUEMA DE CONTENIDOS Definición

Más detalles

Práctica de Aplicaciones Lineales

Práctica de Aplicaciones Lineales practica5.nb 1 Práctica de Aplicaciones Lineales Aplicaciones lineales y matrices Las matrices también desempeñan un papel muy destacado en el estudio de las aplicaciones lineales entre espacios vectoriales

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

re p r e s e n tac i ó n Mat r i c i a l d e

re p r e s e n tac i ó n Mat r i c i a l d e Unidd 8 re p r e s e n tc i ó n Mt r i c i l d e Un trnsformción linel Ojetivos: Al inlizr l unidd, el lumno: Asocirá cd trnsformción linel un mtriz. Relcionrá los conceptos de núcleo, imgen, rngo nulidd

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

MATRICES Y DETERMINANTES CCNN

MATRICES Y DETERMINANTES CCNN NOCIONES BÁSICAS Ls mtrices precen como consecuenci de ordenr los números en form de fils y columns. Ls línes horizontles se llmn fils, mientrs que ls línes verticles se llmn columns. - fil - column Pr

Más detalles

Unidad nº2. MATRICES Y DETERMINANTES. Esp.Liliana Eva Mata Algebra Lineal y Geometría 1

Unidad nº2. MATRICES Y DETERMINANTES. Esp.Liliana Eva Mata Algebra Lineal y Geometría 1 Unidd nº2. MATRICES Y DETERMINANTES. Esp.Lilin Ev Mt Algebr Linel y Geometrí 1 Contenidos Mtriz. Espcio Vectoril de mtrices de orden (m x n). Operciones. Anillo de mtrices cudrds. Mtrices Especiles. Operciones

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología Mtemátic I Lic. en Geologí Lic. en Pleontologí DETERMINNTES En un mtriz cudrd hy vrios spectos que el determnte yud esclrecer: Existirá un mtriz B tl que.b = I? Es decir, tendrá mtriz vers? De ls columns

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

4 Aplicaciones lineales

4 Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 4 Aplicaciones lineales 4. Aplicación lineal Sean V y W dos espacios vectoriales sobre el mismo cuerpo K (en general, R o C. Una aplicación

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Vectores. Dr. Rogerio Enríquez

Vectores. Dr. Rogerio Enríquez Vectores Dr. Rogerio Enríquez Objetivo Eductivo Reflexión sobre lo que y se sbe Dominr los conceptos como mestros Unir l geometrí con el álgebr Deducir lógicmente el álgebr Explorr el dominio mtemático

Más detalles

SELECTIVIDAD DETERMINANTES

SELECTIVIDAD DETERMINANTES SELECTIVIDAD DETERMINANTES Junio 8: Dds ls mtrices A = 5, B = y M = b, clcúlese y b pr que se verifiquen MA =, M + B =, donde se está usndo l notción hbitul (con brrs verticles) pr denotr l determinnte

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices

Más detalles

Álgebra Selectividad

Álgebra Selectividad Álgebr Selectividd 4-11 1 Cundo el ño 18 Beethoven escribe su primer Sinfoní, su edd es diez veces mor que l del jovencito Frnz Schubert. Ps el tiempo es Schubert quien compone su célebre Sinfoní Incomplet.

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden

Más detalles

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn TEMA ÁLGEBRA DE MATRICES Mtemátics II º Bchillerto TEMA ÁLGEBRA DE MATRICES. NOMENCLATURA Y DEINICIONES.. - DEINICIÓN Ls mtrices son tbls numérics rectngulres ª column ª fil n n n.......... m m m mn (

Más detalles

, que, como está triangularizado, se observa que es

, que, como está triangularizado, se observa que es MTEMÁTICS PLICDS LS CIENCIS SOCILES II PRUEB ESCRIT. BLOQUE: ÁLGEBR ECH: DE ENERO DE Prte I. Sistems de ecuciones lineles. Mtrices. Ejercicio. Resuelv el siguiente sistem de ecuciones, utilindo, si es

Más detalles

CONSIDERACIONES SOBRE LAS COMPUERTAS

CONSIDERACIONES SOBRE LAS COMPUERTAS Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios Sonia L. Rueda ETS Arquitectura. UPM Curso 2007-2008. 1 MATEMÁTICAS I TEMA 1: Espacios Vectoriales 1 Definición de espacio vectorial. Subespacios Dados dos conjuntos V y K se llama ley de composición externa

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l

Más detalles

Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales.

Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales. Problemas y Ejercicios Resueltos. Tema : Espacios vectoriales. Ejercicios 1.- Determinar el valor de x para que el vector (1, x, 5) R 3 pertenezca al subespacio < (1,, 3), (1, 1, 1) >. Solución. (1, x,

Más detalles

4.1 El espacio dual de un espacio vectorial

4.1 El espacio dual de un espacio vectorial Capítulo 4 Espacio dual Una de las situaciones en donde se aplica la teoría de espacios vectoriales es cuando se trabaja con espacios de funciones, como vimos al final del capítulo anterior. En este capítulo

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,

Más detalles

Teorema de la Función Inversa

Teorema de la Función Inversa Teorem de l Función Invers Pr el cso de un funcion F : U R R se tiene Nuestro problem es, dds ls funciones x f(u, v) y y g(u, v) que describen x, y como funciones de u, v, cundo es posible estblecer funciones

Más detalles

Aproximación e interpolación mediante polinomios

Aproximación e interpolación mediante polinomios LA GACETA DE LA RSME, Vol. 5.3 (2002), Págs. 621 627 621 Aproximción e interpolción medinte polinomios por Miguel Mrno y Mrt Mrcolini En este trbjo se muestr un relción entre los conceptos de interpolción

Más detalles