Integrales Dobles. Vimos que este problema estaba relacionado con el cálculo de una primitiva de

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integrales Dobles. Vimos que este problema estaba relacionado con el cálculo de una primitiva de"

Transcripción

1 Pro. Erique Mteus Nieves otoro e Euió Mtemáti Itegrles oles Itrouió. E el primer urso e Fumetos se plteó el prolem e hllr el áre omprei etre l grái e u uió positiv y x, el eje OX y ls rets x, x. ih áre se represet omo x x Vimos que este prolem est relioo o el álulo e u primitiv e Brrow os segur que si x. El Teorem e Fx es tl que Fx x etoes A x x F() - F() Nuestro prolem es el álulo el volume e u prism e se retgulr, x, limito superiormete por l grái e u uió z x, y eotremos por x,yx positiv. A este volume lo y iiere el prolem terior e que o se resuelve eotro u primitiv e x, y (No tiee setio), sio por el álulo e volúmees por seioes. El volume verá o por l sum iiit

2 Pro. Erique Mteus Nieves otoro e Euió Mtemáti e ls áres e ls seioes que se Otiee l ortr el uerpo por plos prlelos l plo XZ, o tmié sumo ls áres e ls iiits seioes que se otiee l ortr el uerpo por plos prlelos l plo Y Z. V x, yx Ay Ax x oe Ay x, y x, Ax x, y osiero e so l x o l y ij. El prolem se ovierte e el álulo e u itegrl reiter que y semos resolver. Itegrles oles, iterpretió omo volúmees Itegrl ole sore u retágulo. S j0 k 0 C j k x y lim C k x y x, y j j0 k 0 x

3 eimos hor el oepto e itegrl ole e u uió z x, y sore u retágulo, x, Pro. Erique Mteus Nieves otoro e Euió Mtemáti o eesrimete positiv. iviimos el itervlo [, ] e prtes igules, eligieo pr ello putos x0 x x x sieo xi xi x Elegimos, e orm álog, m putos el itervlo [, ], y y y y 0 o yi yi y. m Así oteemos m retágulos xi, xi x yi, yi e áre A x y * * Se x, y A es el volume el pequeño Prism el iujo juto i j Llmemos m S m i0 siguiete eiiió: j0 x y pr her l eiiió (Itegrl ole) Si existe lim,m S m y o epee e l eleió e los vlores itegrle sore y l vlor e iho límite se le llm itegrl ole e x, y, etoes se ie que es sore. Se ot: m x, y x lim i j,m i0 j0 x y Si x, y es u uió positiv, x, y x retgulr e se y limito superiormete por l grái e. x, y es egtivo, represet u volume egtivo. Si represet el volume el prism Propiees e l itegrl ole.. Lieli. x, y gx, y x x, yx gx, yx

4 Pro. Erique Mteus Nieves otoro e Euió Mtemáti. Mootoí. Si x, y gx, y x, y, etoes: x, yx gx, yx 3. Aitivi. Si es uió e os retágulos isjutos x, y x g x, y x g x, y x 4. Teorem e Fuii: si z x, y es otiu sore, x,, etoes: x, y x x, y x x, y x 5. Vlor meio áre x, y x Teorem el vlor meio pr itegrles oles: supogmos que : es otiu. Etoes pr lgú puto x0, y 0 e, teemos: x, y x x0, y0 A Itegrles oles iters: x, y x x, y x ; x, y x x, y x; Teorem e Fuii sore u retágulo: supogmos que x, y es u uió sore u retágulo. x, y x x, y x x, y x

5 Pro. Erique Mteus Nieves otoro e Euió Mtemáti Itegrl ole sore regioes más geerles. x, y x x x * x oe * x x, y si x, y 0 si x, y - Vmos eiir l itegrl ole e uioes sore los siguietes tipos e regioes: egioes el tipo I x, y I : x, x y x egioes el tipo II x, y I : y, g x x g y egioes el tipo III: So ls que se puee expresr iistitmete omo regioes e tipo I o e tipo II.

6 Pro. Erique Mteus Nieves otoro e Euió Mtemáti eiiió: Se u regió e tipo I, II o, III. Se z x, y u uió otiu. Cosieremos u regió e tipo I. Etoes: x, yx x, y x x x Aálogmete, e u regió e tipo II, se tiee: x, yx x, y g g x x x

7 Pro. Erique Mteus Nieves otoro e Euió Mtemáti Pr ls regioes el tipo III, se puee lulr l itegrl ole e x, y iistitmete omo u regió el tipo I o II. A vees l itegrl se ompli y hy que elegir l orm eu. e hí que: Si es u regió ot e I, etoes el volume el prism e se y ltur es: l uió itegrr es x,y A x Teorem e Fuii pr regioes e itegrió: supogmos que es otiu e x x, y x x, y x x x, y x x, y x x x Cmio e vrile e Itegrles oles U e ls téis más usules e el álulo e itegrles es el mio e vriles, uyo ojetivo es trsormr l itegrl lulr e otr más seill. Est téi y se estuió pr uioes e u vrile, hor lo hremos pr uioes e os vriles. E el álulo e u vrile, uo se teí u itegrl eii t x x, l her u mio e vriles x g, que etos el itegro, el itervlo e itegrió y el x. El uevo itegro serí gt (hy que exigir que Im(g) ()). Pr lulr el uevo itervlo e itegrió eesitmos exigir que g pose uió ivers. - Si x gt t g x luego si x, t g,. Se t 0,t g, el uevo itervlo e itegrió. Pr que g pose uió ivers st exigir que g se otiu e iyetiv. Aemás omo x g t t etoes g ee ser erivle. F F : u,v x, y x u,v, x u,v

8 Pro. Erique Mteus Nieves otoro e Euió Mtemáti x, y x x u,v, y u,v et F u,v u v x u,v, y u,v J u,v u v et F u,v J u,v x, y u,v et x u y u x v y v Ejeriios Evlúe l itegrl y luego evlúe l itegrl iter pr uo e los siguietes ejeriios.. - 3y A oe x, y x / 0 x,,. y se xy A oe, x 0, 3. x se x y A oe 0, x 0 6, 3 y xyx 5. x se y x 6. u v 0 u v 3 7. t 0. 4 x y s s t 8. x 0 y x r se r x xe. x y 0 9. x y 4 x 3. 4x 9x y x 0 x 3. A, oe x, y: 0 x,, 0 y y x y A, oe 0,, 4. x se x y A, oe x, y 5. os : 0 x,, 0 y 6. Euetre el volume el solio S oto por el proloie elíptio x y z 6, los Plos x= y y= y los tres plos ooreos (sugerei tome s : z 6 x y y 0, x 0, )

9 Pro. Erique Mteus Nieves otoro e Euió Mtemáti 7. euetre el volume el solio que ye ejo el plo 3x y z x, y / 0 x, - y 3 y rri el plo 8. etermie el volume el solio oto por l superiie z x se y z 0, x 0, x, y 0, y y los plos eereis: Stewrt, J. (00). Cálulo e Vris Vriles. Trseetes Temprs. Sext eiió. Ems Impresioes S.A. e C. V. Iztplp, Méxio,. F. Leithol, L. (998). El álulo. Truió e l séptim eiió e iglés e: THE CALCULUS 7. ISBN Prite i Mexio. Grupo Mexio MAPASA, S.A. E C.V. eereis e poyo y omplemetris: Apóstol, Tom M. (967). Clulus, Vol. : Oe-Vrile Clulus with Itroutio to Lier Alger ( eiió). Joh Wiley & Sos. ISBN Bourki, Niols (004). Itegrtio I. Spriger. ISBN E prtiulr los pítulos III y IV. Burto, vi M. (005). The History o Mthemtis: A Itroutio (6th eiió). MGrw-Hill. p ISBN Cjori, Flori (99). A History O Mthemtil Nottios Volume II. Ope Court Pulishig. pp ISBN

Integrales múltiples.

Integrales múltiples. Pro. Enrique Mteus Nieves otoro en Euión Mtemáti Integrles múltiples. Introuión. En el primer urso e Funmentos se plnteó el prolem e hllr el áre ompreni entre l grái e un unión positiv y x, el eje OX y

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1

Integrales dobles. divide al rectángulo I ab, cd. , j 1, 2,, m. n m ij i i 1 j j 1 ntegrles oles NTEGRALES OBLES e l mism mner que el onepto e integrl efini pr funiones e un vrile sirve pr resolver e un moo generl, el prolem e l eterminión e áres e figurs plns, el onepto e integrl ole

Más detalles

1.-INTEGRAL DEFINIDA.

1.-INTEGRAL DEFINIDA. INTEGRAL DEFINIDA .-INTEGRAL DEFINIDA. e y ƒ( u fució cotiu e u itervlo [, ]. Not.- Pr simplificr l demostrció se cosider positiv, ƒ( > 0, e todo puto del itervlo. e divide el itervlo [, ] e "" suitervlos

Más detalles

A dicho conjunto se le llamará la integral indefinida de f y se escribirá f ó f ( x) Propiedades de la integral indefinida (Linealidad)

A dicho conjunto se le llamará la integral indefinida de f y se escribirá f ó f ( x) Propiedades de la integral indefinida (Linealidad) IV) LA INTEGRAL. L itegrl ideiid Fuioes primitivs Deiiió. Se u uió, se die que F, uió derivle, es u primitiv de si se verii F Ejemplo. Si ( u primitiv es F(. Otr G( +7 Proposiió.. Si F es u primitiv de

Más detalles

tiene dimensión 3 2. El elemento a 21 = 3.

tiene dimensión 3 2. El elemento a 21 = 3. Tem. MTRICES Defiiió e mtriz U mtriz e imesió m es u ojuto e úmeros ispuestos e fils y m olums. sí:... m... m : : : :... m L mtriz terior tmié se puee eotr por ( ) m El elemeto ij es el que oup l fil i

Más detalles

CRITERIO DE ESTABILIDAD DE ROUTH

CRITERIO DE ESTABILIDAD DE ROUTH CRITERIO DE ESTABIIDAD DE ROUTH INGENIERÍA DE CONTRO.C. EIZABETH GPE. ARA HDZ. INGENIERÍA DE CONTRO.C. EIZABETH GPE. ARA HDZ. Criterio e etili e Routh-Hurwitz El prolem má importte e lo item e otrol liel

Más detalles

1 Áreas de regiones planas.

1 Áreas de regiones planas. Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].

Más detalles

Determine las ecuaciones vectorial, paramétricas y simétricas de la recta que., siendo D(4, 0, -1) y T(2, -3, 1).

Determine las ecuaciones vectorial, paramétricas y simétricas de la recta que., siendo D(4, 0, -1) y T(2, -3, 1). Vetores Cooreos Ilustrió 38 Determie ls euioes vetoril prmétris y simétris e l ret que ps por el puto A- 3 y es prlel l vetor DT sieo D4 0 - y T -3. Soluió Desigemos est ret por L A DT Se Px y z tl que

Más detalles

COSAS DE DIVISORES Y HOTELES

COSAS DE DIVISORES Y HOTELES COSAS DE DIVISORES Y HOTELES E est sesió trtremos de resolver el siguiete rolem: Prolem: El hotel de ls mil hitioes. Cuet ue e ierto ís hí u gr hotel ue teí 000 hitioes y otros ttos emledos. Estos, u dí

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA ejeriiosemees.om MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / /

Más detalles

Unidad didáctica 10: Integración numérica. Fórmulas de Gauss. Fórmulas compuestas. Ejercicios.

Unidad didáctica 10: Integración numérica. Fórmulas de Gauss. Fórmulas compuestas. Ejercicios. Uidd didáti : Itegrió uméri. Fórmuls de Guss. Fórmuls ompuests. Eeriios. Isrel Cñmó Vler Dto. de Mtemáti Aplid y Métodos Iormátios E.T.S.I. Mis. ÍNDICE. Deiiió de ls Fórmuls de udrtur Gussi.. Fórmuls ompuests.

Más detalles

APLICACIONES DE LA DIFERENCIAL

APLICACIONES DE LA DIFERENCIAL DEINICIÓN DE UNCIÓN DIERENCIABLE Se die que u uió es diereible e u puto si su iremeto puede esribirse de l orm g η es tl que g o depede de los iremetos η udo. Ejemplo: Determir si l uió es diereible. Clulemos

Más detalles

Sucesiones. Universidad Diego Portales CALCULO II

Sucesiones. Universidad Diego Portales CALCULO II Suesioes Uiversidd Diego Portles U suesió se puede defiir omo u list de úmeros esritos e orde defiido:,,,...,,... El úmero es el primer térmio;, el segudo térmio y e geerl, es el -ésimo térmio. Cosiderremos

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes

Más detalles

σ c de los conductores metálicos es alta,

σ c de los conductores metálicos es alta, EC3 ORIA DE ONDAS 4.5 GUÍAS DE ONDAS METÁLICAS CON CONDUCTORES REALES 4.5. Eeto e l outivi iit el outor e los s e propgió Tl oo se estleió e l seió 3.6. pr el so e ls líes e trsisió reles el eeto e l outivi

Más detalles

GUÍA DE EJERCICIOS III

GUÍA DE EJERCICIOS III Fult e Igeierí UCV Álger Liel Geometrí líti 5 Cilo Básio GUÍ DE EJECICIOS III rsformioes lieles: Demuestre e so si l trsformió el esio vetoril V e el esio vetoril W es liel e w : B oe B es g u mtri fij

Más detalles

Utilizando la fórmula que nos proporciona el número de divisores se tiene que:

Utilizando la fórmula que nos proporciona el número de divisores se tiene que: Hoj de Prolems º Alger IV /. Hllr u úmero etero A que o teg ms ftores primos que, y 7, siedo demás que ª tiee divisores más que A y que ª tiee divisores ms que A. Clulr tmié l sum de todos los divisores

Más detalles

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes.

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes. Tem 6. Itegró 6. Cálulo e prmtvs. 6. Áre e tegrl ef. 6.3 El Teorem fumetl el álulo 6.4 Áre e u regó etre os urvs. 6.5 Cálulo e volúmees. 6.6 Logtu e ro superfe e revoluó. E.U.Polté e Sevll. Fumetos Mtemátos

Más detalles

Integral de Riemann. Tema Sumas inferiores y superiores Particiones de un intervalo Sumas inferiores y superiores

Integral de Riemann. Tema Sumas inferiores y superiores Particiones de un intervalo Sumas inferiores y superiores 4 Mtemátis I : Cálulo itegrl e IR Tem 3 Itegrl de Riem 3. Sums iferiores y superiores 3.. Prtiioes de u itervlo Defiiió 26.- Se llm prtiió de u itervlo errdo [, ] ulquier ojuto fiito de putos P = {,,...,

Más detalles

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b):

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b): TEMA 6: INTEGRAL DEFINIDA. 6.1 Integrl efini omo límite e sums superiores o inferiores. 6. Propiees e l integrl efini. 6. Regl e Brrow. 6.4 Apliiones e l integrl efini (Áre). 6.1 Integrl efini. Se f un

Más detalles

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES VALORES ABSOLUTOS Defiició: si 0 =, si < 0 = Por lo tto 0 R Teorem 2 = 2 Demostrció: si 0 2 = 2, si < 0 2 = ( ) 2 = 2 PROPIEDADES. =. = + + (desiguldd trigulr) = Teorem x x Demostrció: x x 2 2 x 2 2 x

Más detalles

1) CONCEPTOS 2) MONOMIOS TEMA : EXPRESIONES ALGEBRAICAS

1) CONCEPTOS 2) MONOMIOS TEMA : EXPRESIONES ALGEBRAICAS TEMA EXPRESIONES ALGEBRAICAS CONCEPTOS U EXPRESIÓN ALGEBRAICA es el ojuto e úmeros letrs que se omi o los sigos e ls operioes mtemátis sum, rest, multipliió, ivisió poteiió. Ejemplo El VALOR NUMÉRICO e

Más detalles

PAIEP. Sumas de Riemann

PAIEP. Sumas de Riemann Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,

Más detalles

WhittiLeaks Los apuntes que ellos no quieren que sepas de

WhittiLeaks Los apuntes que ellos no quieren que sepas de Métodos umérios WittiLes Los putes que ellos o quiere que seps de ITBA mo 7 WittiLes Resume Métodos umérios Pso Pr u fuió defiid e u itervlo: f (, ) ( ) el pso se defie por: ; dode es l tidd de divisioes

Más detalles

{ } + S = = S, para S. a converge si su sucesión de sumas parciales converge, es decir,

{ } + S = = S, para S. a converge si su sucesión de sumas parciales converge, es decir, Esuel de Igeierí Cetro de Ciei Bási Cálulo de Vrile Rel Guí teóri Series Series Iiits: Deiiió: Se { } u suesió iiit. L epresió, se deoi serie iiit o serie y se deot por: { } S S S S S S S S - U serie es

Más detalles

Electrónica Básica. Álgebra de Boole. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC

Electrónica Básica. Álgebra de Boole. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC Eletrói Bási Álger de Boole Eletrói Digitl José Rmó Sedr Sedr Dpto. de Igeierí Eletrói y Automáti ULPGC 2 Ciruito de omutió p.e. sistem de otrol idustril sistem teleóio ordedor et. El Álger de Boole sirve

Más detalles

a se denomina serie a es convergente y SERIES = si r <1 S n La suma de los términos de una sucesión infinita { } n n=1 infinita o simplemente serie

a se denomina serie a es convergente y SERIES = si r <1 S n La suma de los términos de una sucesión infinita { } n n=1 infinita o simplemente serie SERIES L sum de los térmios de u suesió ifiit { } = ifiit o simplemete serie se deomi serie Y se represet o el símbolo = Defiiió: = 4 KK Dd l serie = ésim sum pril = 4 K K, se desigrá S su S = = = 4 K

Más detalles

Unidad-4: Radicales (*)

Unidad-4: Radicales (*) Uiversidd de Coepió Fultd de Cieis Veteriri Nivelió de Competeis e Mtemáti (0 Uidd-: Rdiles (* Rdil. Es u epresió de l form: que represet l ríz eésim priipl de. El etero positivo es el ídie u orde del

Más detalles

H Integración Numérica

H Integración Numérica ESCUELA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS H Itegrció Numéric Ojetivo: El lumo hrá de dquirir coocimieto de diversos

Más detalles

Definiciones. Los valores de los términos necesarios para empezar a calcular se llaman condiciones iniciales.

Definiciones. Los valores de los términos necesarios para empezar a calcular se llaman condiciones iniciales. Deprtmeto de Mtemáti plid. ETSIIf. UPM. Vitori Zrzos Rodríguez RELCIONES DE RECURRENCI Defiiioes Relió de reurrei o reursiv pr l suesió { } es u epresió que relio el térmio geerl de l suesió o uo o más

Más detalles

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 1 CONCEPTOS BÁSICOS Y PROBLEMAS RESUELTOS

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 1 CONCEPTOS BÁSICOS Y PROBLEMAS RESUELTOS L Uiversidd er TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 1 CONCEPTOS BÁSICOS Y PROBLEMAS RESUELTOS 1.- POTENCIA EN SISTEMAS DE CORRIENTE ALTERNA E los iruitos de orriete lter, l produto etre tesió e itesidd

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Pr Grdos e Igeierí Cpítulo 4: Itegrció e u vrible Domigo Pest Glvá José Muel Rodríguez Grcí Figurs relizds co Arturo de Pblo Mrtíez 4 Itegrció e u vrible 4. Itegrció

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

, 1], del mismo tamaño, pues x 1 = = 1 4, x 2 = = 1 4, x 3 = = 1 4 y x 4 = 1

, 1], del mismo tamaño, pues x 1 = = 1 4, x 2 = = 1 4, x 3 = = 1 4 y x 4 = 1 Tem Itegrl de Riem.. Sums iferiores y superiores... Prtiioes de u itervlo. Defiiió. U prtiió de u itervlo errdo [, b] es u ojuto fiito de putos P = {x, x,..., x } dode = x < x < < x = b. U prtiió sepr,

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

UNIDAD 5 Series de Fourier

UNIDAD 5 Series de Fourier Series de Fourier 5. Fucioes ortogoles, cojutos ortogoles y cojutos ortoormles Se dice que dos fucioes f ( x ) y f x so ortogoles e el itervlo < x< si cumple co: f x = Est ide se hce extesiv u cojuto de

Más detalles

Operaciones con Fracciones

Operaciones con Fracciones Operioes o Frioes Reuió e frioes Frioes o igul eomior: De os frioes que tiee el mismo eomior es meor l que tiee meor umeror. Frioes o igul umeror: De os frioes que tiee el mismo umeror es meor l que tiee

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águed Mt y Miguel Reyes, Dpto. de Mtemátic Aplicd, FI-UPM. 1 1. CONJUNTOS DE NÚMEROS 1.1. NÚMEROS REALES Culquier úmero rciol tiee u expresió deciml fiit o periódic y vicevers, es decir, culquier expresió

Más detalles

UNIDAD 1.- Números reales (temas 1 del libro)

UNIDAD 1.- Números reales (temas 1 del libro) UNIDAD.- Núeros reles (tes el libro). NUMEROS NATURALES Y ENTEROS Co los úeros turles otos los eleetos e u ojuto (úero ril). O bie expresos l posiió u ore que oup u eleeto e u ojuto (oril). Se represet

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

Guía Semana RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana RESUMEN. Universidad de Chile. Ingeniería Matemática . ESUMEN Igeierí Mtemátic FACULTA E CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVESIA E CHILE Cálculo e Vris Vribles 08- Igeierí Mtemátic Uiversidd de Chile Guí Sem 0 Itegrl y propieddes básics. d f : Ê y u reticuldo

Más detalles

Métodos Numéricos de Integración. Supóngase que se tiene una función continua en el intervalo [a, b]; entonces para lograr un valor aproximado de

Métodos Numéricos de Integración. Supóngase que se tiene una función continua en el intervalo [a, b]; entonces para lograr un valor aproximado de Uiddd Métodos de itegrció y pliccioes.6 Métodos uméricos de itegrció. Métodos Numéricos de Itegrció Supógse que se tiee u ució cotiu e el itervlo [, b]; etoces pr logrr u vlor proximdo de x dx se divide

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

ALGEBRA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR:

ALGEBRA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR: ALGEBRA PROBLEMARIO ELABORADO POR: M. e C. JOSÉ CORREA BUCIO SEMESTRE FEBRERO-JULIO Alger CBTis No. José Corre Buio EJERCICIOS SOBRE NOTACIÓN ALGEBRAICA:.- Esrie l su e,,..- Esrie l su el uro e, el uo

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

1.- Clausura ó cerradura:

1.- Clausura ó cerradura: 8 Sigos: Ddos, lr etoes El Sistem [ ( < de 0 Números 0 < Reles ) (0 < < 0) ] < 0 [ (0 < 0 < ) ( < 0 < 0) ] 0 < 9- Trsitiv:,, lr, < y < se tiee < 0- Mootoí de l sum: < y lr etoes < - Mootoí del produto:,,

Más detalles

Instituto Politécnico Superior General San Martín A U S. Análisis Matemático I. Límite y Continuidad de Funciones. Mgter. Viviana Paula D Agostini

Instituto Politécnico Superior General San Martín A U S. Análisis Matemático I. Límite y Continuidad de Funciones. Mgter. Viviana Paula D Agostini Istituto Politéio Superior Geerl S Mrtí A U S Aálisis Mtemátio I Límite y Cotiuidd de Fuioes Mgter. Vivi Pul D Agostii TEMARIO Límite de u uió. Propieddes. Cálulo de límites medite propieddes. Límites

Más detalles

CALCULO INTEGRAL TEMAS PORQUE ESTUDIAR. Escribir una cita aquí. Teorema fundamental del cálculo. Métodos de integración e integral indefinida.

CALCULO INTEGRAL TEMAS PORQUE ESTUDIAR. Escribir una cita aquí. Teorema fundamental del cálculo. Métodos de integración e integral indefinida. CALCULO INTEGRAL PORQUE ESTUDIAR CALCULO INTEGRAL l itegrl defiid es l herrmiet pr clculr y defiir diverss mgitudes, como áres, volúmees, logitudes de tryectoris curvs, proiliddes, promedios, cosumo de

Más detalles

La integral de Riemann

La integral de Riemann Cpítulo 6 L itegrl de Riem Vmos dr u defiició precis de l itegrl de u fució defiid e u itervlo. Este tiee que ser u itervlo cerrdo y cotdo, es decir [,b] co < b R, y l defiició que dremos de itegrl solo

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno

Más detalles

Aproximación al área bajo una curva.

Aproximación al área bajo una curva. Aproimció l áre jo u curv. Por: Miguel Solís Esquic Profesor de tiempo completo Uiversidd Autóom de Cips Clculr cd u de ls áres de los rectágulos que lle l regió cotd pr lczr el vlor del áre ecesrimete

Más detalles

El dual tiene tantas restricciones como variables tiene el primal.

El dual tiene tantas restricciones como variables tiene el primal. .. EL MODELO DUAL A todo progr liel, lldo prole pril, le correspode otro que se deoi prole dul. Ls relcioes eistetes etre os proles so ls siguietes: El dul tiee tts vriles coo restriccioes eiste e el pril.

Más detalles

5. Longitud de una curva.

5. Longitud de una curva. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 5. Logitud de u curv. Semos lo que sigific l logitud de u segmeto recto. E prticulr, si teemos dos putos del A, B =,, l logitud del segmeto AB es, segú el teorem

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos.

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos. Meáis (hillero e ieis) Soluioes e los proles propuesos Te wwweisjo José Mrí Mríez Meio TEM Mries Proles Resuelos Operioes o ries Ds, y, hll os úeros y pr que se verifique que Soluió Esriieo l euió exei

Más detalles

D E T E R M I N A N T E S M A T R I Z I N V E R S A

D E T E R M I N A N T E S M A T R I Z I N V E R S A º DE BACHILLERATO DETERMINANTES D E T E R M I N A N T E S ----------- M A T R I Z I N V E R S A DETERMINANTES I. Determites. II. Primers pliioes de los determites. I. Determites.. Defiió álulo de u determite.

Más detalles

Tema 6. La ntegral Definida. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 6

Tema 6. La ntegral Definida. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 6 Tem 6 L ntegrl Defini.- Introucción.- Integrl Defini..- Significo Geométrico..- Propiees.- Regl e Brrow.- Áre entre os gráfics 4.- Volumen e un sólio e Revolución 5.- Teorem Funmentl e Cálculo (TFC) 6.-

Más detalles

Métodos Numéricos 06/09/2017

Métodos Numéricos 06/09/2017 Métodos Numérios 6/9/7 SOLUCION DE ECUACIONES NO LINEALES Clsiiió de Métodos METODO DE BISECCION Por ejemlo: = 6 + 5 = 5 6 + = se - e = - / = l 6 - k = Métodos Numérios 7 De itervlo Aiertos Gráio Biseió

Más detalles

Cuaderno de Matemáticas para el Verano

Cuaderno de Matemáticas para el Verano Colegio Alás Msplos ºESO Cuero e Mteátis pr el Vero ºESO Deprteto e Mteátis 0-0 Colegio Alás Msplos ºESO.- Oper los siguietes riles, reoro que uo hy sus o rests etro e u ríz hy que sr ftor oú tes e poer

Más detalles

Cuaderno de Matemáticas para el Verano

Cuaderno de Matemáticas para el Verano Cuero e Mteátis pr el Vero ºESO Deprteto e Mteátis 0-0 .- Oper los siguietes riles, reoro que uo hy sus o rests etro e u ríz hy que sr ftor oú tes e poer etrer. ) ) ) 0 9 0 9 : h) i) j) k) l) ) : ) o)

Más detalles

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x }

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x } IES P Pov (Gui Mtmátis II UNIDD INTEGRL DEFINID.. ÁRE BJO UN CURV. INTEGRL DEFINID. PROPIEDDES., o (,. S otiu [ (Positiv [ Ptiió [, : Cojuto iito putos P {,,, } < < < K < K o, Diámto l ptiió P : Myo los

Más detalles

UNIDAD 2: MATRICES Y DETERMINANTES

UNIDAD 2: MATRICES Y DETERMINANTES E UNIDD : MTRICES Y DETERMINNTES est ui hremos u estuio e los spectos más iispesle e mtrices y etermites Se utiliz otcioes geerlizs Mtrices DEF Se llm MTRIZ e ore mx y se eot co letrs myúsculs,b, u rreglo

Más detalles

NÚMEROS REALES Clasificación. Acerca de las operaciones

NÚMEROS REALES Clasificación. Acerca de las operaciones NÚMEROS REALES Clsifiió Aer de ls oerioes - Prioridd. Prétesis de detro fuer.. Poteis y ríes.. Multiliioes y divisioes de izquierd dereh. Sums y rets, de izquierd dereh o ositivos or u ldo y egtivos or

Más detalles

Unidad 2: NÚMEROS COMPLEJOS

Unidad 2: NÚMEROS COMPLEJOS Resúmees de Mtemátics pr Bchillerto Uidd : NÚMEROS COMPLEJOS.- CONSTRUCCIÓN A los pres de úmeros reles xy, los llmremos úmeros complejos, cudo e estemos cosiderdo ls siguietes opercioes: x, y x', y' xx',

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / / / / / / C. +B B.

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

TP: "POTENCIACIÓN" exponente. "n" veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0 : a

TP: POTENCIACIÓN exponente. n veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0 : a TP: "POTENCIACIÓN" Defiiió Ddo u ierto úmero rel, llmremos "potei eésim de " l produto de por sí mismo u tidd de vees; siedo u úmero turl. E símolos: se expoete........ p POTENCIA ENÉSIMA de Ej:.. 8 ""

Más detalles

Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral.

Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral. TEMA Ojetivos. álulo de rimitivs. L integrl deinid. Funiones integrles. Integrles imrois. Aliiones geométris de l integrl. Plnter y lulr integrles de uniones de un vrile y lirls l resoluión de rolems reltivos

Más detalles

T. P es una partición de T y se P T n sí y sólo sí: una partición medible de T. Se denomina diámetro de un conjunto T i

T. P es una partición de T y se P T n sí y sólo sí: una partición medible de T. Se denomina diámetro de un conjunto T i ANALISIS MAEMÁICO II I.S.F.D. Nº 7 UNIDAD DIDÁCICA Nº: Estuo geerl e ls fuoes e R e R m ese el puto e vst el álulo tegrl erer ño Profesoro e Mtemát INEGRALES DE CAMPOS ESCALARES. Itegrles múltples. Defoes

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

Definición: Es un conjunto ordenado de términos. Se representan mediante una función cuyo dominio es el conjunto de los números naturales.

Definición: Es un conjunto ordenado de términos. Se representan mediante una función cuyo dominio es el conjunto de los números naturales. SUCESIONES Y SERIES Sucesió Es u cojuto ordedo de térmios. Se represet medite u ució cuyo domiio es el cojuto de los úmeros turles. Se expres l ució que geer los térmios de l sucesió como ( ) =. Al térmio

Más detalles

APUNTE: Introducción a las Sucesiones y Series Numéricas

APUNTE: Introducción a las Sucesiones y Series Numéricas APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do

Más detalles

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES.

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES. TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES. º BCH(CN) TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES..-INTRODUCCIÓN. L resoluió de sistems de euioes está ligd l estudio

Más detalles

TP: "POTENCIACIÓN" exponente. "n" veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0: a

TP: POTENCIACIÓN exponente. n veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0: a TP: "POTENCIACIÓN" Defiiió Ddo u ierto úmero rel, llmremos "potei eésim de " l produto de por sí mismo u tidd de vees; siedo u úmero turl. E símolos: se expoete........ p POTENCIA ENÉSIMA de Ej:.. "" vees

Más detalles

Un Resumen Teórico. Matemática I

Un Resumen Teórico. Matemática I U Resume Teório De Mtemáti I WhittiLeks Los putes que ellos o quiere que seps de Oture 26 WhittiLeks Teório Notió: [, ] (, ) Df Im( f ) Y (Ad) O (Or) Es idétio Perteee /Es u elemeto de Por lo tto/por ede

Más detalles

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x }

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x } IES P Pov (Gui Mtmátis II UNIDD : INTEGRL DEFINID.. ÁRE BJO UN CURV. INTEGRL DEFINID. PROPIEDDES., o (,. S otiu [ [ Ptiió [, : Cojuto iito putos P {,,, } < < < K < K o, Diámto l ptiió P : Myo los vlos,,

Más detalles

Clase 12: Integración de funciones de varias variables con valores reales

Clase 12: Integración de funciones de varias variables con valores reales Clse : Integrión de funiones de vris vribles on vlores reles C.J. Vnegs de junio de 8 eordemos.. L integrl f. fx)dx, pr f represent el áre bjo l gráfi de Similrmente si tenemos un funión de dos vribles:

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

Unidad didáctica 3 Las potencias

Unidad didáctica 3 Las potencias Uidd didáctic Ls potecis 1.- Qué es u poteci? U poteci, es u producto de fctores igules que se repite vris veces. veces El fctor que se repite se llm bse,. El úmero de veces que se repite l bse es el expoete,.

Más detalles

. De manera sucesiva, si x se multiplica por si misma n veces, se

. De manera sucesiva, si x se multiplica por si misma n veces, se Fcultd de Cotdurí Adiistrció UNAM Lees de eoetes ritos Autor: Dr José Muel Becerr Esios MATEMÁTICAS BÁSICAS LEYES DE EXPONENTES Y LOGARITMOS LEYES DE EXPONENTES Se u úero rel Si se ultilic or sí iso se

Más detalles

1. Función primitiva. Integral de una función.

1. Función primitiva. Integral de una función. . Función primitiv. Integrl de un función. Considermos l función f() =. Nos preguntmos si eiste otr función F() tl que l derivrl nos de l función f(). F() = verific que F () = f(). Pero tmién nos vldrí

Más detalles

Clase 16. Tema: Racionalización de expresiones. Matemáticas 9. Bimestre: I Número de clase: 16. Tipo 1. Esta clase tiene video.

Clase 16. Tema: Racionalización de expresiones. Matemáticas 9. Bimestre: I Número de clase: 16. Tipo 1. Esta clase tiene video. Bimestre: I Número de lse: 16 Mtemátis Clse 16 Est lse tiee video Tem: Riolizió de expresioes Atividd 46 1 Le l siguiete iformió sore l riolizió. E mtemátis es omú eotrros o expresioes rioles que otiee

Más detalles

Ejemplos 1. Encontrar el área de la región limitada por la curva y = 6 x x 2 y el eje x. Solución

Ejemplos 1. Encontrar el área de la región limitada por la curva y = 6 x x 2 y el eje x. Solución Cálculo de Áres Ejemplos. Ecotrr el áre de l regió limitd por l curv = 6 el eje. (6)(6) / A d 4 8 9 7 A ()( 8) A = 5/6 uiddes cudrds. Ecotrr el áre de l regió etre l curv = e el eje etre = = A = e d e

Más detalles

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l

Más detalles

Tarea 12: Fubini, Particiones de la Unidad, y Cambio de Variable

Tarea 12: Fubini, Particiones de la Unidad, y Cambio de Variable Aálisis I (90ANA0) Segudo Semestre 205 Tre 2 p. Tre 2: Fubii, Prticioes de l Uidd, y Cmbio de Vrible. (Spivk 3-26) Itegrció y áre: Se f : [, b] R itegrble y o-egtiv. Pogmos A f = {(, y) [, b] [0, M] 0

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS PRODUCTOS NOTABLES

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS PRODUCTOS NOTABLES FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO 8 TALLER Nº SEMESTRE II RESEÑA HISTÓRICA PRODUCTOS NOTABLES Psl, Blise (-: filósofo, mtemátio físio frés, osiderdo u de ls metes

Más detalles

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES. PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesió de fucioes cotius (6.1.017) Propiedd: Se {f } u sucesió de fucioes f, defiids e I. Si {f } coverge uiformemete f e I y ls f so cotius e I, etoces f es cotiu e I. Demostrció: Hemos de probr

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 79 Mtemátics : Series umérics Cpítulo Sucesioes y series de úmeros reles. Sucesioes Defiició 330.- Llmremos sucesió de úmeros reles culquier plicció f: N R y l represetremos por {, dode = f(). Por comodidd,

Más detalles

Resuelve. Unidad 4. Resolución de triángulos. BACHILLERATO Matemáticas I. Localización de una emisora clandestina. Página 105

Resuelve. Unidad 4. Resolución de triángulos. BACHILLERATO Matemáticas I. Localización de una emisora clandestina. Página 105 Uidd 4. Resoluió de triágulos HILLERTO Mtemátis I Resuelve Pági 10 Lolizió de u emisor ldesti Vmos plir l téi de l trigulió pr resolver el siguiete prolem: U emisor de rdio ldesti E se sitoiz desde dos

Más detalles

a, b y POSITIVA, se puede hacer una aproximación del área

a, b y POSITIVA, se puede hacer una aproximación del área BLOQUE III: Aálss -ÁREA BAJO UNA CURVA Tem 5: Itegrles defds Dd u fucó (, y POSITIVA, se puede hcer u promcó del áre compredd etre el eje X y l gráfc de l fucó e el tervlo, del sguete modo: ) Se dvde el

Más detalles

Operaciones con Fracciones

Operaciones con Fracciones Frccioes Opercioes co frccioes Opercioes co Frccioes Reducció de frccioes Frccioes co igul deomidor: De dos frccioes que tiee el mismo deomidor es meor l que tiee meor umerdor. < Frccioes co igul umerdor:

Más detalles