REGRESION LINEAL SIMPLE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "REGRESION LINEAL SIMPLE"

Transcripción

1 REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente entre las dos varables X e Y. Es posble representar estas observacones medante un gráfco de dspersón, como el sguente Tambén se puede expresar el grado de asocacón medante algunos ndcadores, que se verán a contnuacón. MEDIDA DE AOCIACION DE VARIABLE Covaranza entre las varables X e Y. Es una medda de la varacón conjunta. e defne como 1 1 cov( X, Y ) = ( x x)( y y) = n n xy 1

2 Puede tomar valores postvos o negatvos. Postvo, sgnfca que ambas varables tenden a varar de la msma forma, hay una asocacón postva. Negatvo, sgnfca que s una aumenta, la otra tende a dsmnur, y vce versa. Covaranza cercana a cero ndca que no hay asocacón entre las varables. Ejemplo 1 DATO DEL CLUB DE ALUD Datos correspondentes a 0 empleados del club de salud de una empresa X Y pulsasones or mnuto en reposo tempo en correr 1 mlla ( reg) Fuente:. Chatterjee - A. Had: " entvty Analyss n Lnear Regresson" obs X Y Promedos: 64,3 38,8

3 Calcularemos de la covaranza entre estas dos varables. Covaranza Valores centrados y productos: obs X-64,3 Y-38,8 prod 1,7 98, 65,14-1,3-90,8 1116,84 3-8,3-5,8 14,14 4 1,7 13,,44 5 0,7-37,8-6, ,7 86, 1353,34 7 1,7 4, 535,94 8 0,7 10, 7,14 9 3,7-36,8-136, ,7 18, 30, ,7-115,8-660,06 1-5,3-14,8 78, ,3-87,8 553, ,3 8, -100, ,3 104, -31,6 16 7,7 98, 756, ,3-8,8 64,4 18-5,3-15,8 83, ,7 86, 491,34 0-1,3-130,8 170,04 Promedo : 39,41 La covaranza entre las varables X e Y es gual a 39,41 Coefcente de correlacón lneal. La covaraza tene el nconvenente de que su valor no es acotado, por lo que, a partr de él es dfcl juzgar s es grande o pequeña. e defne la correlacón, que es una medda de asocacón lneal ndependente de las undades de medda. Es gual a la covaranza dvdda por las desvacones standard: cov( X, Y ) ( x x)( y y) corr ( X, Y ) = = = dsx * dsy ( x x) ( y y) xx xy yy 3

4 El valor de la correlacón entre cualquer par de varables es un número entre -1 y 1. n valor alto de correlacón no ndca que exste alguna relacón de causa-efecto entre las varables. Ejemplo (contnuacón) Coefcente de Correlacón e deben calcular las desvacones standard. Para ello se deben elevar al cuadrado las observacones centradas y promedar, obtenéndose las varanzas. Las desvacones standard son las raíces cuadradas de éstas. cuadrados de obs X-64,3 Y-38,8 1 7,3 9643, 151,3 844,6 3 68,9 665,6 4,9 174, 5 0,5 148,8 6 46,5 7430, ,3 1780,8 8 0,5 104,0 9 13,7 1354, 10,9 331, 11 3, ,6 1 8,1 19, ,7 7708, ,3 67, 15 0, , ,3 9643, 17 53,3 77,4 18 8,1 49,6 19 3,5 7430,4 0 1, ,6 Promedos : 54, ,46 (varanzas) Las desvacones standard son dsx = 7,36 ds Y = 69,97 Para obtener las correlacones se debe dvdr la covaranza por las desvacones standard: corr(x,y) = / ( 7.36 * ) = 0,465 4

5 El sguente es un gráfco de dspersón que muestra estos datos. Club de alud Tempo en recorrer 1 mlla Pulsacones por mnuto La nterpretacón del coefcente de correlacón puede lustrarse medante los sguentes gráfcos. 5

6 REGREION LINEAL IMPLE Ahora asumremos que s hay una relacón de causaldad de la varable X (causa) haca la varable Y (efecto). Además, se sabe que esa relacón es de tpo lneal, dentro del rango de los datos. Estableceremos un modelo para explcar la ca usa (Y) en térmnos del efecto (X), del tpo sguente: Y = a + bx + e para = 1,,..., n en que a y b son dos cantdades fjas (parámetros del modelo) y los e son cantdades aleatoras que representan las dferencas entre lo que postula el modelo a + bx y lo que realmente se observa, y. Por esa razón a los e los llamaremos "errores" o "errores aleatoros". e asume que tenen valor esperado 0 y desvacón standard común σ. Ejemplo Venta de automóvles e pensa que s aumentan el porcentaje de comsón pagada al vendedor de automóvles, aumenta la venta. Estudo sobre 15 concesonaros smlares X Comsones pagadas a vendedores de autos en un mes (%) Y Ganancas netas por ventas, en el msmo mes (Mllones de $) obs X Y

7 Representacón de los datos en un gráfco de dspersón: Ganancas netas versus comsones Ganancas (MM$) comsón (%) e puede aprecar la relacón lneal exstente entre ambas varables observadas. Nuestro problema es estmar los parámetros a, b y σ para poder dentfcar el modelo. Para estmar a y b se utlza el método de Mínmos cuadrados, que consste en encontrar aquellos valores de a y de b que hagan mínma la suma de los cuadrados de las desvacones de las observacones respecto de la recta que representa el modelo, en el sentdo vertcal. 7

8 En la fgura, son los cuadrados de los segmentos vertcales cuya suma de cuadrados se debe mnmzar, para determnar a y b. Estos segmentos representan los errores e del modelo. b se llama pendente de la recta que representa los datos y a se llama ntercepto sobre el eje vertcal. La solucón está dada por las sguentes fórmulas: ( x x)( y y) b = = ( x x) a = y b x xy xx Ejemplo (contnuacón) Calculamos los promedos de ambas varables y se las restamos a los valores. Promedo de la X : 5.4 Promedo de la Y :

9 Desvacones respecto de las medas, sus cuadrados y productos: obs X-5.4 Y-16.1 cuadrados prod sumas xx yy xy Entonces utlzando las fórmulas de arrba, b = 3.18 a = El modelo, para estos datos, es Y = , 18X + e para =1,,.. 15 Representa una recta, cuyo ntercepto con el eje vertcal es -0.96, y su pendente es 3.18, o sea, s el porcentaje de comsón X aumenta en 1%, la gananca neta Y aumenta en 3.18 Mllones de pesos. Ganancas netas versus comsones Ganancas (MM$) comsón (%) 9

10 Valores ajustados al modelo. El modelo de regresón lneal se puede utlzar para obtener valores de Y ajustados al modelo, Los valores puntuales se obtenen medante la fórmula Y = a + bx en que a y b son los valores estmados por el procedmento ndcado anterormente, y X toma los valores de la muestra. Los puntos que representan estos valores en el gráfco de dspersón, yacen sobre la recta. Ejempol (contnuacón) La tabla sguente contene los valores de Y ajustados, para cada valor de X, además de los valores de Y observados, a modo de comparacón. Los ajustados se obtenen por la fórmula Y = X obs X Y Yajust. df promedo

11 e puede observar que el promedo de los valores ajustados es gual al promedo de los valores observados, y que el promedo de las dferencas es cero. La raíz cuadrada del promedo de los cuadrados de las dferencas entre los valores observados y ajustados, es una estmacón de la varanza del error, σ. En el ejemplo, la suma de las dferencas al cuadrado es 19.8, luego la estmacón de la desvacón standard del error es gual a 1 σ = 19.8 = 1.3 = 1.15 Mllones de pesos 15 Coefcente de determnacón Es una medda de bondad de ajuste del modelos de regresón lneal a los datos. Es deseable que los valores de Y ajustados al modelo, sean lo más parecdos posble a los valores observados. Una medda de lo parecdo que son, es el coefcente de correlacón. e defne el coefcente de determnacón, R, como el cuadrado del coefcente de correlacón entre los valores de Y observados y los valores de Y ajustados. n embargo se puede demostrar que es gual a la sguente expresón: R [ ( x x)( y y) ] [ ( x x) ][ ( y y) ] xy = = xx yy 11

12 El rango de R es entre 0, cero ajuste, hasta 1, ajuste perfecto (cuando los puntos aparecen en un línea recta). Ejemplo (contnuacón) Más arrba se calcularos las sumas de cuadrados y de productos, y deron los sguentes valores: xx = 39.6, yy = 488.3, xy = 16.1 Entonces el coefcente de determnacón es R = (16.1) 39.6* = 0.8 que señala que el ajuste del modelo a los datos es bueno. Ejemplo 3 Los datos sguentes corresponde al Indce de Produccón Físca de la Industra Manufacturera, por agrupacón, de los meses de mayo de 00 y mayo de 003, entregado por el Insttuto Naconal de Estadístcas. Es un índce cuya base 100 es el promedo de produccón de cada agrupacón, en el año

13 Agrupacones Mayo 0 Mayo 03 Fabrcac. de productos almentcos Industras de bebdas Industra del tabaco Fabrcac. de textles Fabrcac. prendas de vestr, excepto calzado Industra del cuero; produc. de cuero y sucedáneos Fabrcac. de calzado, exc. de caucho o plástco Industra de madera y sus productos exc. muebles Fabrcac. de muebles y accesoros, exc. metálcos Fabrcac. de papel y productos de papel Imprentas, edtorales e ndustras conexas Fabrcac. de sustancas químcas ndustrales Fabrcac. de otros productos químcos Refnerías de petróleo Fabrcac. prod. dervados de petróleo y carbón Fabrcac. de productos de caucho Fabrcac. de productos plástcos Fabrcac. de objetos de loza y porcelana Fabrcac. de vdro y productos de vdro Fabrcac. otros productos mnerales no metálcos Industras báscas de herro y acero Industras báscas de metales no ferrosos Fabrcac. prod. metálcos exc. maqunara y equpo Construccón de maqunara, exc. la eléctrca Construccón máq., aparatos y acces. eléctrcos Construccón de materal de transporte Fabrcac. equpo profesonal y artículos oftálmcos Otras ndustras manufactureras El gráfco de dspersón es el sguente: Prod. Físca Industra Manufacturera 600 Indce mayo Indce mayo 00 13

14 Cálculos parcales, en que X es el índce mayo 00, Y el índce mayo 003: n = 8 x = y = xx yy xy = ( x x) = ( y y) = = 134, ,813.7 = ( x x)( y y) = 154,350.8 Estmacón de los parámetros del modelo: b = xy xx = 154, ,913.6 = 1.14 a = y bx = Bondad de ajuste: R = xx xy yy = (154,350.8) (134,913.6) *(187,350.8) = que ndca un muy buen ajuste. El sguente gráfco muestra de recta de regresón estmada: Prod. Físca Industra Manufacturera 600 Indce mayo Indce mayo 00 14

15 Predccón por bandas de confanza. e pueden hacer predccones de valores Y para valores X que no están en el conjunto de observacones, dentro o fuera de su rango, utlzando la fórmula de la regresón lneal, con los parámetros a y b estmados. Tamben se pueden hacer predccones por ntervalos de confanza vertcales, que tenen la ventaja de proporconar una cuantfcacón del error de predccón. Los ntervalos tenen la propedad de ser de dferente ancho, según el valor de X, sendo más angostos cuando X es gual al promedo, ensanchándose a medda que nos alejamos del promedo. Cuando se sale del rango de los datos, se ensanchan más fuertemente. Esto sgnfca que mentras más nos alejamos del centro de los valores de la varable X, más mprecsas serán nuestras estmacones del valor de la varable Y, lo que parece razonable. unmos los extremos superores (o los nferores) de todos los ntervalos de confanza, se obtenen dos curvas con forma de hpérbola, como se muestra en la fgura: 15

16 El gráfco sguente muestra las bandas de confanza de coefcente 95%, para el ejemplo de la produccón físca manufacturera. Mentras mayor es el coefcente de determnacón R, más angostas son las bandas de confanza; lo msmo mentras mayor es la desvacón standard de las X, y lo msmo s el tamaño muestral aumenta. Y a medda que nos alejamos del promedo de las X, se ensanchan las bandas. 16

CORRELACION Y REGRESION

CORRELACION Y REGRESION CORRELACION Y REGREION Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

Regresión Binomial Negativa

Regresión Binomial Negativa Regresón Bnomal Negatva Resumen El procedmento Regresón Bnomal Negatva está dseñado para ajustar un modelo de regresón en el cual la varable dependente Y consste de conteos. El modelo de regresón ajustado

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general). 3. En el modelo lneal general Y = X b + e, explcar la forma

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

T. 9 El modelo de regresión lineal

T. 9 El modelo de regresión lineal 1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

Pronósticos. Humberto R. Álvarez A., Ph. D.

Pronósticos. Humberto R. Álvarez A., Ph. D. Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingenería Químca Undad I. Introduccón a los cálculos de Ingenería Químca

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

Regresión y correlación simple 113

Regresión y correlación simple 113 Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS

CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS El conocmento de las meddas de centralzacón no es sufcente para caracterzar completamente a una dstrbucón por ejemplo: s las edades medas de

Más detalles

TEMA 10: ESTADÍSTICA

TEMA 10: ESTADÍSTICA TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

Hidrología superficial

Hidrología superficial Laboratoro de Hdráulca Ing. Davd Hernández Huéramo Manual de práctcas Hdrología superfcal 7o semestre Autores: Héctor Rvas Hernández Juan Pablo Molna Agular Rukmn Espnosa Díaz alatel Castllo Contreras

Más detalles

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos: MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Práctica 2 Caracterización de un dinamómetro

Práctica 2 Caracterización de un dinamómetro Págna 1/9 Práctca Caracterzacón de un dnamómetro Págna 1 Págna /9 1. Segurdad en la ejecucón Pelgro o fuente de energía 1 Peso de las masas patrón Resgo asocado Al manpular las masas nadecuadamente se

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles

La adopción y uso de las TICs en las Microempresas Chilenas

La adopción y uso de las TICs en las Microempresas Chilenas Subdreccón Técnca Depto. Investgacón y Desarrollo Estadístco Subdreccón de Operacones Depto. Comerco y Servcos INFORME METODOLÓGICO DISEÑO MUESTRAL La adopcón y uso de las TICs en las Mcroempresas Clenas

Más detalles

Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1

Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1 Reconocmento de Locutor basado en Procesamento de Voz ProDVoz Reconocmento de Locutor Introduccón Reconocmento de locutor: Proceso de extraccón automátca de nformacón relatva a la dentdad de la persona

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios Teoría de Modelos y Smulacón Enrque Eduardo Tarfa Facultad de Ingenería - Unversdad Naconal de Jujuy Generacón de Números Aleatoros Introduccón Este capítulo trata sobre la generacón de números aleatoros.

Más detalles

Análisis de ruido en detectores ópticos.

Análisis de ruido en detectores ópticos. Análss de rudo en detectores óptcos. La corrente real generada en un fotododo es de carácter aleatoro, cuyo valor fluctúa entre el valor promedo defndo por la foto-corrente: p = RP Dchas fluctuacones se

Más detalles

Materiales Industriales, Ingeniería Técnica Industrial Mecánica Profesor: Dr. María Jesús Ariza, Departamento de Física Aplicada, CITE II-A, 2.

Materiales Industriales, Ingeniería Técnica Industrial Mecánica Profesor: Dr. María Jesús Ariza, Departamento de Física Aplicada, CITE II-A, 2. Materales Industrales, Ingenería Técnca Industral Mecánca Profesor: Dr. María Jesús Arza, Departamento de Físca Aplcada, CITE II-A,. Teoría de meddas. Meddas magntudes: La teoría de meddas Las varables

Más detalles

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA

Oferta de Trabajo Parte 2. Economía Laboral Julio J. Elías LIE - UCEMA Oferta de Trabajo Parte 2 Economía Laboral Julo J. Elías LIE - UCEMA Curva de oferta de trabajo ndvdual Consumo Salaro por hora ($) G w=$20 F w=$25 25 Curva de Oferta de Trabajo Indvdual w=$14 20 14 w

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

TEORÍA DE MEDIDAS INTRODUCCIÓN

TEORÍA DE MEDIDAS INTRODUCCIÓN Teoría de Meddas TEORÍA DE MEDIDAS ITRODUCCIÓ Las cencas epermentales operan con valores numércos que se obtenen como resultado de efectuar meddas de varables, por ejemplo una temperatura, una longtud

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

Introducción a los Modelos de Pronósticos

Introducción a los Modelos de Pronósticos Introduccón a los Modelos de Pronóstcos Dra. Fernanda Vllarreal Unversdad Naconal del Sur- Departamento de Matemátca Septembre 2016 - fvllarreal@uns.edu.ar Introduccón Planeacón del futuro, un aspecto

Más detalles

Estimación del consumo del consumo diario de gas a partir de lecturas periódicas de medidores

Estimación del consumo del consumo diario de gas a partir de lecturas periódicas de medidores Estmacón del consumo del consumo daro de gas a partr de lecturas peródcas de meddores S.Gl, 1, A. Fazzn, 3 y R. Preto 1 1 Gerenca de Dstrbucón del ENARGAS, Supacha 636- (18) CABA- Argentna Escuela de Cenca

Más detalles

UNA APROXIMACIÓN A LA ESPECIALIZACIÓN Y COMPETITIVIDAD DEL COMERCIO EXTERIOR EN CASTILLA-LA MANCHA.

UNA APROXIMACIÓN A LA ESPECIALIZACIÓN Y COMPETITIVIDAD DEL COMERCIO EXTERIOR EN CASTILLA-LA MANCHA. UNA APROIMACIÓN A LA ESPECIALIZACIÓN Y COMPETITIVIDAD DEL COMERCIO ETERIOR EN CASTILLA-LA MANCHA. Irene Robóo Lestón Departamento de Economía y Empresa Unversdad de Castlla-La Mancha e-mal: roboo@uclm.es

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES OBJETIVOS ESPECÍFICOS 1) Identfcar y manejar el materal básco de laboratoro. ) Preparar

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

Estimación de la Demanda: Pronósticos

Estimación de la Demanda: Pronósticos UNIVERSIDAD SIMON BOLIVAR Estmacón de la Demanda: Pronóstcos PS-4161 Gestón de la Produccón I 1 Bblografía Recomendada Título: Dreccón de la Produccón: Decsones Estratégcas. Capítulo 4: Prevsón Autores:

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

Tratamiento de datos experimentales. Teoría de errores

Tratamiento de datos experimentales. Teoría de errores Tratamento de datos expermentales. Teoría de errores. Apéndce II Tratamento de datos expermentales. Teoría de errores (Fuente: Práctcas de Laboratoro: Físca, Hernández et al., 005) El objetvo de la expermentacón

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

Glosario básico. de términos estadísticos

Glosario básico. de términos estadísticos Glosaro básco de térmnos estadístcos Lma, mayo de 2006 CREDITOS Dreccón y Supervsón Lupe Berrocal de Montestruque Drectora Técnca del Centro de Investgacón y Desarrollo Responsable del documento Hermna

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles