Ejercicios resueltos Introducción a la teoría de los grupos. J. Armando Velazco

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios resueltos Introducción a la teoría de los grupos. J. Armando Velazco"

Transcripción

1 Ejercicios resueltos Introducción a la teoría de los grupos J. Armando Velazco 1 de mayo de 2015

2 Ejercicio 1: Pruebe que si G es un grupo finito con identidad e y con un número par de elementos, entonces existe un elemento a G, con a e, tal que a 2 = e Solución. Dado que ord(g) = 2k, entonces hay 2k 1 elementos en G tales que x e. Por ser G un grupo, para cada x G existe x 1 G, su elemento inverso, así, debido a que tenemos un número impar de elementos distintos de la unidad e entonces existe un elemento a G, tal que a e y además a = a 1, es decir a 2 = e. Ejercicio 2: Pruebe que todo grupo G con identidad e y tal que a 2 = e para todo a G, es abeliano. Solución. Como a 2 = e para toda a G, entonces (a b) 2 = e = (a b)(a b) Entonces, operando con b por la derecha, es decir Obtenemos que (a b)(a b) = e (a b)(a b)b = e b = b (a b)a = b Y ahora, operando nuevamente por la derecha, pero con el elemento a tenemos que ab = ba Cómo a, b G son elementos arbitrarios, entonces G es abeliano. Ejercicio 3: Sea G un grupo finito y sea x un elemento de G cuyo orden es n, donde n es impar. Pruebe que existe k N tal que x = (x 2 ) k. Solución. Por hipótesis x n = x 2m+1 = e, pues n es impar, entonces x 2m+1 x = x 2m+2 = e x = x Así, sea k = m + 1 N, claramente tal k satisface (x 2 ) k = x Por las leyes de los exponentes en un grupo. Ejercicio 4: Pruebe que si H y K son subgrupos de un grupo abeliano G, entonces HK = {hk h H, k K} en un subgrupo de G. 1

3 Solución. H y K son no vacíos, por ser subgrupos, por lo tanto HK pues al menos el elemento identidad se halla en HK. Ahora bien, sean h 1 k 1, h 2 k 2 HK; por estar h 2 k 2 G entonces (h 2 k 2 ) 1 = k2 1 h2 1 y además, por ser G abeliano tenemos que k2 1 h 1 2 = h 1 2 k2 1 Entonces, por la conmutatividad de la operación en G: (h 1 k 1 )(h 2 k 2 ) 1 = (h 1 k 1 )(k 1 2 h 1 2 ) = (h 1 h 1 2 )(k 1 k 1 2 ) HK Y así, HK es un subgrupo de G. Ejercicio 5: Pruebe que un grupo cíclico con únicamente un generador puede tener a lo más dos elementos. Solución. Suponga que G es generado por un elemento a e, donde e es la identidad. G es finito, pues, en el conjunto < a >= {e, a, a 2,..., a k 1 } Existe a 1 = a k 1 para algún k N. Por definición se tiene que a k = a k 1 a = e Y por lo tanto ord(g) = k <. Por otro lado, se tiene también que (a 1 ) k 1 = (a k 1 ) 1 = a Como por hipótesis el generador en G es único, se tiene entonces que (a 1 ) k 1 = a k 1 = 1 k = 2 Lo que implica que el ord(g) = 2, por supuesto, tomando en cuenta que a e. En el caso en que a = e entonces ord(g) = 1. Ejercicio 6: Pruebe que si G es un grupo abeliano con identidad e, entonces todos los elementos x G tales que x 2 = e forman un subgrupo de G. Generalize el caso donde n 1 es un entero fijo y H = {x G x n = e}. Solución. Se hará la demostración cuando n 1 quedando el caso n = 2 como un caso particular: H Pues al menos x = e H. Por otro lado, sean x, y H entonces x n = e y y n = e. Es claro que, en particular, si y H entonces y 1 H pues (y n ) 1 = (y 1 ) n = e Así, dado x, y H se tiene que, por la conmutatividad de la operación en G, (xy 1 ) n = x n (y 1 ) n = (e)(e) = e es decir, xy 1 H. 2

4 Ejercicio 7: Demuestre que todo subgrupo de un grupo cíclico es cíclico. Solución. Sea G = a un grupo multiplicativo generado por el elemento a. Sea H G y sea m el menor entero para el cuál a m H. De la definición de subgrupo tenemos que todo elemento b H b = a j G donde j Z, por el algoritmo de la división se tiene que j = mq + r, 0 r < m y así b = a j = a mq+r = a mq a r = (a m ) q a r Aplicando ahora las propiedades de grupo (cancelación por la izquierda) se tiene que a r = (a m ) q a j Dado que (a m ), a j H entonces el producto se halla en H y por lo tanto a r H pero 0 r < m entonces r = 0 y por lo tanto b = a j = (a m ) q es decir H = a m Ejercicio 8: Cuál es el orden de un grupo G generado por los elementos x y y sujeto a las relaciones x 3 = y 2 = (xy) 2 = e, donde e es el elemento identidad del grupo? Solución. Consideremos las relaciones Entonces de las anteriores tenemos que x 3 = e, y 2 = e, (xy) 2 = e x 2 = x 1, y = y 1, xy = y 1 x 1 = yx 2 y además yx = x 2 y es decir, G tiene 6 elementos, por lo que ord(g) = 6. Otro argumento lo podemos presentar con combinatoria, tomando en cuenta sólo los productos de la forma x i y j (pues yx = x 2 y) con i = 0, 1, 2 y j = 0, 1 que nos da como resultado, por el principio del producto un total de 6 posibles resultados. Los subgrupos los determinaremos a partir de que 6 = 2 3 Por ello esperamos que de haber subgrupos, como una aplicación directa del teorema de Lagrange, estos deben tener orden 2 o 3 (más aún, por el primer teorema de Sylow sabemos que hallaremos subgrupos de orden 2 y 3), tales subgrupos son: {1, x, x 2 }, {1, y}, {1, xy}, {1, yx} 3

5 Ejercicio 9: Si G es un grupo tal que (ab) j = a j b j para tres enteros consecutivos j y para todos los a, b G. Muestre que G es un grupo abeliano. Solución. Como parte de las hipótesis tenemos que (ab) j = a j b j (ab) j+1 = a j+1 b j+1 (ab) j+2 = a j+2 b j+2 De aquí podemos tomar que (ab) j+1 = (ab)(ab) j = a j+1 b j+1 luego entonces, utilizando de manera adecuada la ley de cancelación por la izquierda y por la derecha, válidas en cualquier grupo, en conjunto con la ley asociativa y las hipótesis obtenemos lo siguiente b(ab) j 1 a = a j b j (ba) j = a j b j = (ab) j Así, de la misma forma se tiene también que Pero entonces (ab) j+2 = a j+2 b j+2 (ba) j+1 = (ab) j+1 (ba)(ba) j = (ab)(ab) j = (ab)(ba) j Utilizando una vez más la ley de cancelación en G tenemos que ab = ba a, b G Luego, G es abeliano. Ejercicio 10: Sea G un grupo y sean H, K G tales que [G : H] < y [G : K] <. Entonces el subgrupo H K tiene índice finito en G, es decir [G : H K] <. Solución. Sea g G entonces de (H K)g Hg y (H K)g Kg se tiene que (H K)g Hg Kg. Por otro lado, observése también que si x Hg Kg entonces Así x = hg = kg h = k H K x (H K)g (H K)g = Hg Kg Por último, como [G : H] < y [G : K] < entonces tenemos un número finito de posibilidades para Hg Kg y por lo tanto se tiene el resultado deseado. Observación 1. El ejercicio anterior tiene un nombre especial: Es conocido como el Lema de Poincaré. 4

6 Ejercicio 11: Sea G = UV un grupo, donde U, V G. Entonces, todo subgrupo H de G que satisface U H G puede ser factorizado como H = U(V H). Solución. Sea h H entonces, dado que H G, h = uv, u U, v V. Ahora, una clase lateral derecha de U en G siempre contiene a un elemento de V, pues G = UV, y por lo tanto una clase lateral de U en H siempre tiene un elemento de V : Como las clases laterales forman una partición de H tenemos entonces que H = U(V H). Observación 2. Este ejercicio es conocido también como Identidad de Dedekind. Ejercicio 12: Pruebe que si un grupo G no tiene subgrupos propios entonces G es cíclico. Solución. Sea g G, g e (e es la identidad de G) y sea H = {g j : j Z} entonces H G pero como G no tiene subgrupos propios entonces H = G por lo tanto G es cíclico. Ejercicio 13: Si un grupo G no tiene subgrupos propios, muestre que G es cíclico de orden primo. Solución. Por el problema anterior sabemos que G =< g > donde g e supongamos ahora que ord(g) = p y que, sin pérdida de generalidad p = mq, m, q Z >1 m < p y q < p. Entonces M = {g j 1 : j = 0, 1, 2,..., m 1; g 1 G} = G pues G no tiene subgrupos propios y entonces ord(g) = m < p que es una contradicción, análogamente se llegaría a una conclusión similar para q, así m = 1 ó q = 1 y por lo tanto p es primo.. Ejercicio 14: Si H y K son subgrupos de un grupo abeliano G, de órdenes respectivos m y n, muestre que si (m, n) = 1, es decir, son primos relativos, entonces AB es un subgrupo de orden mn. Solución. Basta con observar que A B A y A B B por lo tanto, por el teorema de Lagrange se tiene que ord(a B) ord(a) y ord(a B) ord(b) luego entonces ord(a B) = 1 A B = {e} y por lo tanto ord(ab) = ord(a)ord(b) ord(a B) = mn Ejercicio 15: Si p es un número primo, muestre que las únicas soluciones de son x 1 (mod p) ó x 1 (mod p) x 2 1 (mod p) 5

7 Solución. Esta es una aplicación directa de la teoría de grupos a la teoría de los números: x 2 1 (mod p) x (mod p) (x+1)(x 1) 0 (mod p) que implican el resultado deseado. Ejercicio 16: Muestre por medio de un ejemplo que es posible que la ecuación x 2 = e puede tener más de 2 soluciones en algún grupo con identidad e. Solución. Basta con considerar el 4-grupo de Klein, cada elemento es solución de la ecuación, como puede constatar a partir de la siguiente tabla de grupo: e a b c e e a b c a a e c b b b c e a c c b a e Ejercicio 17: Sea G un grupo y sea G n = {g n : g G}. Bajo qué hipótesis sobre G podríamos mostrar que G n G? Solución. Un subgrupo en particular debe satisfacer la cerradura bajo la operación de grupo, por lo que para a, b G tales que a n, b n G n se tiene que a n b n = (ab) n ab = ba es decir, necesitamos la hipótesis de conmutatividad de la operación, dicho de otra manera, necesitamos que G sea abeliano. Ejercicio 18: Sean a, b G donde G es un grupo, entonces si ab tiene orden finito n muestre que ba también tiene orden n. Solución. Por hipotesis (ab) n = e entonces b(ab) n a = bea = (ba)e y así (ba)(ba) n = (ba)e (ba) n = e Si orden de (ba) fuera menor que n aplicando un argumento completamente análogo llegaríamos a la conclusión de que el orden de (ab) sería menor o igual a n contrario a lo que se había supuesto en un principio. Ejercicio 19: Si A y B son subgrupos de índice finito de un grupo G, es decir, [G : A] < y [G : B] < y además ([G : A], [G : B]) = 1 (tales índices son primos relativos), entonces G = AB. 6

8 Solución. Dado que A G y B G entonces A B G y se tiene entonces que y [G : A B] = [G : A][A : A B] [G : A B] = [G : B][B : A B] Lo que implica, pues ([G : A], [G : B]) = 1, que [G : A][G : B] [G : A B] [G : A B] [G : A][G : B]. Por otro lado, dado que [G : B] < entonces [A : A B] < y [A : A B] [G : B]. Como se tiene también que [G : A] < entonces [G : A B] [G : A][G : B]. Así [G : A B] = [G : A][G : B] Lo que implica que G = AB. Observación 3. Los resultados utilizados para resolver este problema los podemos hallar en el libro Teoría de los Grupos de Marshall Hall jr. en la sección 1.5 7

Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G

Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G Capítulo 1 Grupos y Subgrupos 001. El concepto de grupo Sea G un conjunto no vacío y sea G G G una operación interna en G para la cual denotaremos a la imagen de un par (x, y) mediante xy. Supongamos que

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Criterios de divisibilidad y Congruencias

Criterios de divisibilidad y Congruencias Criterios de divisibilidad y Congruencias Rafael F. Isaacs G. * Fecha: 9 de marzo de 2007 Cuando tenemos un número muy grande escrito en base 10 y deseamos saber si es múltiplo por ejemplo de 9 no necesitamos

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

Tema 2: El grupo de las permutaciones

Tema 2: El grupo de las permutaciones Tema 2: El grupo de las permutaciones Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Octubre de 2014 Olalla (Universidad de Sevilla) Tema 2: El grupo de las

Más detalles

Números reales Conceptos básicos Algunas propiedades

Números reales Conceptos básicos Algunas propiedades Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

Clase 1: Primalidad. Matemática Discreta - CC3101 Profesor: Pablo Barceló. P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32

Clase 1: Primalidad. Matemática Discreta - CC3101 Profesor: Pablo Barceló. P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32 Capítulo 5: Teoría de Números Clase 1: Primalidad Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32 Teoría de números En esta parte

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Banco de reactivos de Álgebra I

Banco de reactivos de Álgebra I Banco de reactivos de Álgebra I Compilación: Ochoa Cruz Rita Julio de 006 Temario. Unidad I: El campo de los números reales. Conjunto y conjuntos de números. Orden y distancia. Valor absoluto 4. Operaciones

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo.

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo. Capítulo 5 Campos finitos 5.1. Introducción Presentaremos algunos conceptos básicos de la teoría de los campos finitos. Para mayor información, consultar el texto de McEliece [61] o el de Lidl y Niederreiter

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano.

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano. Teoría de Grupos Definiciones Básicas Definición 5 (Grupo) Sea una estructura algebraica con una ley de composición interna. Decimos que es un grupo si: 1. es asociativa. 2. tiene neutro. 3. toda tiene

Más detalles

Conjuntos, Relaciones y Grupos. Problemas de examen.

Conjuntos, Relaciones y Grupos. Problemas de examen. Conjuntos, Relaciones y Grupos. Problemas de examen. Mayo 2006 1. La función f es definida por (a) Halle el recorrido exacto, A, de f. f : R R donde f(x) = e senx 1. (b) (i) Explique por qué f no es inyectiva.

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar. UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.

Más detalles

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R.

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R. Capítulo 7 Anillos 7.1 Definiciones Básicas El concepto de Anillo se obtiene como una generalización de los números enteros, en donde están definidas un par de operaciones, la suma y el producto, relacionadas

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

Ejercicios del Tema 2: Estructuras algebraicas básicas

Ejercicios del Tema 2: Estructuras algebraicas básicas Ejercicios del Tema 2: Estructuras algebraicas básicas En los ejercicios 1, 2, 8 y 9 se utilizará que si G = {g 1,...,g n } es un conjunto finito y * una operación interna definida en G, podemos utilizar

Más detalles

Funciones y Cardinalidad

Funciones y Cardinalidad Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA NOMENCLATURA ALGEBRAICA Definición (Término). Es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Por ejemplo a, 3b, xy, son términos.

Más detalles

Ecuaciones, inecuaciones y sistemas

Ecuaciones, inecuaciones y sistemas Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Estructuras algebraicas

Estructuras algebraicas Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : III 1 / 8 Ejercicios sugeridos para : los temas de las clases del 5 y 7 de mayo de 2009. Temas : Matriz transpuesta. Matriz simétrica. Determinantes; propiedades de los determinantes. Matriz adjunta de

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Una topología de los números naturales*

Una topología de los números naturales* Una topología de los números naturales* Divulgación Gabriel Ruiz Hernández Instituto de Matemáticas, UNAM 1 de septimebre de 1997 resumen En este trabajo vamos a describir un espacio topológico X con las

Más detalles

POLINOMIOS. FACTORIZACIÓN

POLINOMIOS. FACTORIZACIÓN POLINOMIOS FACTORIZACIÓN JUSTIFICACIÓN Es muy fácil realizar multiplicaciones de números naturales Más dificultad entraña el problema inverso: la factorización Así, realizar la multiplicación 7 es trivial,

Más detalles

GUIA DE CATEDRA Matemática Empresarial Guía N.3 F. Elaboración 09 abril /11 F. 1 Revisión 09/04/11 Pagina 1 de 8

GUIA DE CATEDRA Matemática Empresarial Guía N.3 F. Elaboración 09 abril /11 F. 1 Revisión 09/04/11 Pagina 1 de 8 Plan de Estudios: Semestre 1 Área: Matemática 1 Nº Créditos: Intensidad horaria semanal: 3 Hrs T Hrs P Total horas: 6 Tema: Desigualdades 1. OBJETIVO Apropiar los conceptos de desigualdades y establecer

Más detalles

MA1001: Introducción al Cálculo

MA1001: Introducción al Cálculo Semestre otoño 2008 Que estudia el cálculo? Estudia funcionesfunciones realesreales de variable real.variable real. Debemos comenzar por estudiar la base de todo, es decir los números reales Que son los

Más detalles

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

Demostraciones con números primos (ejercicios)

Demostraciones con números primos (ejercicios) Demostraciones con números primos (ejercicios) Objetivos. Acostumbrarse a la definición de número primo, aprender a usarla en demostraciones simples. Requisitos. Propiedades de divisibilidad, máximo común

Más detalles

Un Estudio Elemental de los Grupos cuyo Orden es Producto de dos Primos

Un Estudio Elemental de los Grupos cuyo Orden es Producto de dos Primos Divulgaciones Matemáticas Vol. 11 No. 1(2003), pp. 61 70 Un Estudio Elemental de los Grupos cuyo Orden es Producto de dos Primos An Elemental Study of Groups whose Order is a Product of two Primes Alfonso

Más detalles

Tema 3: Multiplicación y división.

Tema 3: Multiplicación y división. Tema 3: Multiplicación y división. SELECCIÓN DE EJERCICIOS RESUELTOS 2. Determina el menor número natural que multiplicado por 7 nos da un número natural que se escribe usando únicamente la cifra 1. Y

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro

Más detalles

Soluciones - Tercer Nivel Infantil

Soluciones - Tercer Nivel Infantil SOCIEDAD ECUATORIANA DE MATEMÁTICA ETAPA CLASIFICATORIA "VII EDICIÓN DE LAS OLIMPIADAS DE LA SOCIEDAD ECUATORIANA DE MATEMÁTICA" Soluciones - Tercer Nivel Infantil 01 de abril de 2010 1. En un reloj de

Más detalles

1 Conjuntos y propiedades de los números naturales

1 Conjuntos y propiedades de los números naturales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #1: martes, 31 de mayo de 2016. 1 Conjuntos y propiedades de los números

Más detalles

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos.

Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos. Álgebra Lineal II: Grupos y campos, prueba de los axiomas del campo de los números complejos, forma polar de números complejos. José María Rico Martínez Departamento de Ingeniería Mecánica División de

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

DETERMINANTES UNIDAD 3. Página 76

DETERMINANTES UNIDAD 3. Página 76 UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y

Más detalles

Cálculo Diferencial: Enero 2016

Cálculo Diferencial: Enero 2016 Cálculo Diferencial: Enero 2016 Selim Gómez Ávila División de Ciencias e Ingenierías Universidad de Guanajuato 9 de febrero de 2016 / Conjuntos y espacios 1 / 21 Conjuntos, espacios y sistemas numéricos

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CSI/ITESM 20 de agosto de 2008 Índice 121 Introducción 1 122 Transpuesta 1 123 Propiedades de la transpuesta 2 124 Matrices

Más detalles

El conjunto de las operaciones de simetría que se pueden aplicar a una molécula tienen las propiedades de un grupo matemático.

El conjunto de las operaciones de simetría que se pueden aplicar a una molécula tienen las propiedades de un grupo matemático. TEORIA DE GRUPOS El conjunto de las operaciones de simetría que se pueden aplicar a una molécula tienen las propiedades de un grupo matemático. Propiedades de un grupo Existe un operador identidad (E)

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones

Más detalles

Grupos y Anillos - 3006993 Escuela de Matemáticas Universidad Nacional de Colombia, Sede Medellín. Problemas # 1

Grupos y Anillos - 3006993 Escuela de Matemáticas Universidad Nacional de Colombia, Sede Medellín. Problemas # 1 Grupos y Anillos - 3006993 Escuela de Matemáticas Universidad Nacional de Colombia, Sede Medellín Problemas # 1 1. Dé dos razones por las cuales el conjunto de los enteros impares no es un grupo con la

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,

Más detalles

Matrices 1 (Problemas). c

Matrices 1 (Problemas). c º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Más detalles

Funciones Inversas. Derivada de funciones inversas

Funciones Inversas. Derivada de funciones inversas Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS TEOREMA DE EXTENSIÓN DE KRONECKER. Los polinomios irreducibles sobre un cuerpo no tienen raíces sobre ese cuerpo, salvo que sean de grado uno. Ya hemos visto que Ejemplo 1. x

Más detalles

4.1. Determinante de una matriz cuadrada de orden 2. , entonces el determinante de A es a 21 a 22 a 11 a 12 = a 11a 22 a 12 a 21

4.1. Determinante de una matriz cuadrada de orden 2. , entonces el determinante de A es a 21 a 22 a 11 a 12 = a 11a 22 a 12 a 21 Capítulo 4 Determinante Los determinantes se calculan para matrices cuadradas. Se usan para saber cuando una matriz tiene inversa, en el cálculo de autovalores y también para resolver sistemas de ecuaciones

Más detalles

Análisis Matemático I: Numeros Reales y Complejos

Análisis Matemático I: Numeros Reales y Complejos Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.

Más detalles

EL CUERPO ORDENADO REALES

EL CUERPO ORDENADO REALES CAPÍTULO I. EL CUERPO ORDENADO DE LOS NÚMEROS REALES SECCIONES A. Elementos notables en R. B. Congruencias. Conjuntos numerables. C. Método de inducción completa. D. Desigualdades y valor absoluto. E.

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

Aritmética de Enteros

Aritmética de Enteros Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión

Más detalles

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO El estudio de los conjuntos infinitos se inicia con Las Paradojas del Infinito, la última obra del matemático checo Bernard Bolzano, publicada

Más detalles

MATEMÁTICAS ÁLGEBRA (TIC)

MATEMÁTICAS ÁLGEBRA (TIC) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Definición 1. Dado un conjunto C una aplicación definida por : C C C

Definición 1. Dado un conjunto C una aplicación definida por : C C C ESTRUCTURAS ALGEBRAICAS. En matemáticas aparecen distintos conjuntos cuyos elementos podemos operar de alguna manera. Los conjuntos de números usuales: N, Z, Q, y R son unos ejemplos claros. Otros ejemplos

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

MATERIALES DIDÁCTICOS

MATERIALES DIDÁCTICOS MATERIALES DIDÁCTICOS LUIS QUINTANAR MEDINA* Ejercitaremos el despeje en ecuaciones de primer grado y lo haremos a tres niveles: El primero en que solo se consideran expresiones directas, la habilidad

Más detalles

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1 TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1. INTRODUCCIÓN Los números naturales aparecen debido a la necesidad que tiene el hombre para contar. Para poder construir este conjunto N, podemos seguir

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

NOTACIÓN Y REPRESENTACIÓN

NOTACIÓN Y REPRESENTACIÓN TEORÍA NÚMEROS COMPLEJOS DEFINICIÓN: Los números complejos son el conjunto de todos los números reales e imaginarios. Surgen de la necesidad de expresar la raíz par de un número negativo. APLICACIÓN: Los

Más detalles

1 0 4/ 5 13/

1 0 4/ 5 13/ 1 1 1 7 1 0 4/ 5 13/ 5 R1 R 1+1/5R3 0 0 0 2 R2 R3 0 5 9 22 0 5 9 22 0 0 0 2 Como la matriz tiene un renglón (0, 0, 0, 2) indica que el sistema no tiene solución ya que no existe un número que sea 2 y al

Más detalles

Notas para un curso de Álgebra Abstracta I

Notas para un curso de Álgebra Abstracta I Notas para un curso de Álgebra Abstracta I Camilo Sanabria y Mario Valencia-Pabon Universidad de los Andes Departamento de Matemáticas Bogotá - Colombia. II Índice general 1. Grupos 1 1.1. Grupos................................

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

3.3. Número de condición de una matriz.

3.3. Número de condición de una matriz. 96 33 Número de condición de una matriz Consideremos el sistema Ax = b, de solución u Queremos controlar qué cambios se producen en la solución cuando hacemos pequeños cambios en las componentes de b o

Más detalles

Números reales Suma y producto de números reales. Tema 1

Números reales Suma y producto de números reales. Tema 1 Tema 1 Números reales Comprender el conjunto de los números reales, su estructura y sus principales propiedades, es el primer paso imprescindible en el estudio del Análisis Matemático. Presentaremos dicho

Más detalles

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Seminario de problemas-bachillerato. Curso Hoja 8

Seminario de problemas-bachillerato. Curso Hoja 8 Seminario de problemas-bachillerato. Curso 202-. Hoja 8 40. Se puede dibujar un triángulo equilátero que tenga los tres vértices sobre puntos de una malla cuadrada? Qué polígonos regulares se pueden dibujar

Más detalles