Modelo cinemático de la interface háptica PHANToM Premium 1.5/6DOF. Adolfo Rodríguez Tsouroukdissian, Luis Basañez Villaluenga

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Modelo cinemático de la interface háptica PHANToM Premium 1.5/6DOF. Adolfo Rodríguez Tsouroukdissian, Luis Basañez Villaluenga"

Transcripción

1 Moeo nemáto e a ntefae hápta PHANToM Pemum./DOF Aofo Roíguez Tououkan, Lu Baañez Vauenga IOC-DT-P-- Febe

2 Moeo nemáto e a ntefae hápta PHANToM TM Pemum./DOF Aofo Roíguez Tououkan Lu Baañez Vauenga Inttuto e Oganzaón y Conto Unea Poténa e Catauña e febeo e. RESUMEN En e peente epote e ea a nemáta eta e nea, aí omo e aobano e a ntefae hápta PHANToM TM Pemum./DOF.. CINEMÁTICA La onfguaón na e manpuao y a nomenatua utzaa e muetan en a fgua. Dao que o eje e otaón e a te útma atuaone e nteeptan en un mmo punto, e manpuao e e tpo wt-pattone. Eto e, a te pmea atuaone e enagan e poonamento e eemento temna, y a te útma e u oentaón. E pobema nemáto e ete tpo e manpuao e puee eompone en o pobema nepenente, o e obtene e mapa eto e neo ente: - Lo ánguo,, y a poón e eemento temna, mea on epeto a tema bae. - Lo ánguo,, y a oentaón e eemento temna, mea on epeto a tema bae. La tanfomaone e uepo ígo y áuo nemáto guen a notaón e []. Fgua. Confguaón na e manpuao y nomenatua utzaa

3 z y y x z x y z x y x z y z x z y x y z x Fgua. Stema e ooenaa en a onfguaón na.. Cnemáta Deta Lo tema e ooenaa aoao a aa atuaón y e tema bae e muetan en a fgua. La tanfomaone homogénea ente e tema,.., on {} y e tema {-}, paa { } ( o( n T ( o( n( o( n( T ( n( o( o( n( n o T ( o( n( T ( n( o( ( o( n T ( o( n( n( o( T o( n( ( La tanfomaón homogénea ente e tema {} y e tema {} e obtene a pat e a ompoón T T T T T T T T. (7 px p y pz R (8 Po azone e mpa y beea, e aoptaá n en o que eta e oumento a notaón ( y ( atuaone y n ( α α y ( α α o, paa a poone e a emá ánguo. o paa o

4 (9 ( ( ( ( ( p x ( p y ( ( ( (7 (8 (9 ( ( p z ( Poón La poón e eemento temna en ooenaa e tema bae p, p, p ene aa x etamente po o paámeto e eto (euaone (8, (9 y ( epetamente. Oentaón La oentaón e eemento temna etá expeaa en témno e o ánguo e Eue YXZ. Eto oeponen a a guente otaone uea: - Rotaón γ aeeo e eje z - Rotaón β aeeo e eje x - Rotaón α aeeo e eje y La matz e otaón aoaa a eto ánguo e y z αβγ αγ αβγ αγ αβ R E βγ βγ β ( αβγ αγ αβγ αγ αβ Lo ánguo α, β, γ e obtenen guaano ( y a matz e otaón ontena en (8 β e aua a pat e R E R. ( β an(. ( En e nteao ( π, π foma S β { π, π } En β { π, π } a ouón e ( tene a β atan,. ( Eauano ( en β π α atan, β β ( γ atan,. β β (, ( y ( no etán efna. αγ αγ R E (7 αγ αγ α γ atan. (8 Dao que (8 tene nfnta ouone paa α y γ, e mpone a etón aona γ y e obtene, ( α atan. (9, Anáogamente, eauano ( en β π αγ αγ R E ( αγ αγ α γ atan (, Imponeno a etón aona γ ( α atan (,.. Cnemáta Inea Poón La metooogía eta en ete apatao gue e equema popueto po []. A pat e a ta upeo e manpuao motaa en a fgua e obtene ( p p. ( atan x, z

5 p y p z p x Fgua : Vta atea y upeo e manpuao en una poón genéa Paa aua y fgua y ( p z p x ( p R ( p y, R e tene, egún a R ( y ( ζ atan. ( A pat e teoema e oeno e tánguo upeo e a fgua e obtenen o ánguo φ y ψ Oentaón Paa que e eemento temna eté oentao egún o ánguo e Eue YXZ e ebe atfae ( R R E ( R R R E ( R R R E ( R R T R E ( φ ao (7 ψ ao. (8 Dao que o ánguo φ y ψ on empe poto en e epao e tabajo e manpuao, y e pueen expea omo ζ ψ φ R p y - ψ ζ (9 φ. ( π Fgua : Dagama utzao en e áuo e a nemáta nea

6 one R ( a a a T R RE a a a ( a a a ( α β γ α γ ( α β γ α γ a α β γ α γ β γ a α β γ α γ β γ (7 (8 a αβ αβ β (9 ( α β γ α γ ( α β γ α γ a α β γ α γ β γ a α β γ α γ β γ ( ( a αβ αβ β ( a ( α βγ αγ ( α βγ αγ ( a ( α βγ α γ ( α βγ α γ ( a αβ αβ ( e aua omo En e nteao ( π, π tene a foma an a. ( a ouón e ( atan a, a (7 e obtene ( a a ( atan, Paa que extan y úno paa un ao, e ombna ( on una etone aonae que an pefeena a momento e a atuaón on epeto a e a atuaón : S S S mn σ max ( σ ( σ < mn σ ( mn ( mn σ > max σ ( max (7 max one atan( a a σ., E ao ngua π no eá anazao ya que epeenta una onfguaón mpobe e manpuao. Dao que ( tene o ouone en e nteao [ π, π], e pueen aua o onjunto e ánguo,, que atfagan a oentaón efna po o ánguo e Eue YXZ. E pme onjunto ha o auao paa [, π, y e eguno, amao,, e aua paa ( π, π] egún S, y quean omo π a atan, a atan, a a (8 (9 atan a, a (8 * ( * a tan, (9 ( * a tan, (7 En π (8 y (9 no etán efna ya que exte una nguaa e muñea. Eauano ( en π R (

7 . ACOBIANO E aobano e un manpuao e n atuaone e una matz que eaona a eoae e a atuaone [ ] T n & & & &... on a eoa e eemento temna. E aobano etá ompueto po o ubmate: - que eaona a eoae anguae e a atuaone on a eoa angua e eemento temna. & n (7 - que eaona a eoae anguae e a atuaone on a eoa nea e eemento temna. & n (7 E aobano tene a foma (7 E manpuao en oneaón tene atuaone, po o tanto n. E aobano e eoae anguae etá ompueto po etoe oumna, aa uno oeponente a eto [ ] T k ˆ aoao a tema {}, expeao en ooenaa e tema {} k R ˆ (7 [ ] (7 one (7 (77 (78 (79 (8 E aobano e eoae neae etá ompueto po etoe oumna, aa uno oeponente a pouto etoa (8 [ ] (8 e e eto untao oentao egún e eje e go e tema {}, y e eto ente o oígene e o tema {} y {n}. Ambo etoe etán expeao en ooenaa e tema {}. Lo tnto etoe tenen a foma (8 (8 (8 y fnamente (8 (87 (88 (89

8 . ESPACIO DE TRABAO Lo ato utzao en o áuo nemáto aí omo a ouone obtena eán áo empe y uano petenezan a epao e tabajo e manpuao. Ete epao e tabajo ene efno po a ongtue y, y e ango angua e aa una e a atuaone, on {,..,}. REFERENCIAS [] Çauşoğu, M. C. & Feygn, D. (. Knemat an ynam of PHANToM moe. hapt ntefae (Teh. Rep.. Unety of Cafona at Bekey, Eeton Reeah Laboatoy Memo M/ [] Cag,.. (989. Intouton to obot (Seon e. Aon-Weey. Reang. MA.

Tema 4: Intersecciones. Perpendicularidad y mínimas distancias. Paralelismo.

Tema 4: Intersecciones. Perpendicularidad y mínimas distancias. Paralelismo. Tema 4: nteeccone. ependculadad y mínma dtanca. aalelmo. nteeccone. Una nteeccón e el luga geométco de lo punto que petenecen a la vez a todo lo elemento que ntevenen (fgua ). La nteeccón de do plano e

Más detalles

Autoevaluación. Bloque II. Geometría. BACHILLERATO Matemáticas II. Página 200

Autoevaluación. Bloque II. Geometría. BACHILLERATO Matemáticas II. Página 200 Boque II. Geometía Autoevauación Página Detemina todo o vectoe de móduo que on otogonae a o vectoe u(,, ) y v (,, ). Lo vectoe pependicuae a o do vectoe a a vez on popocionae a poducto vectoia de ambo.

Más detalles

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS ANGENCIAS ENRE RECAS Y CIRCUNFERENCIAS 1 RECA Y CIRCUNFERENCIA ANGENES. Una ecta y una cicunfeencia on tangente cuano tienen un único punto en común, llamao punto e tangencia. Ente una ecta y una cicunfeencia

Más detalles

Problemas tema 3: Campo eléctrico. Problemas de Campo Eléctrico. Boletín 3 Tema 3. Fátima Masot Conde. Ing. Industrial 2007/08

Problemas tema 3: Campo eléctrico. Problemas de Campo Eléctrico. Boletín 3 Tema 3. Fátima Masot Conde. Ing. Industrial 2007/08 /7 Poblemas e Campo léctco Boletín ema Fátma Masot Cone Ing. Inustal 7/8 Poblema Dos patículas cagaas con cagas guales opuestas están sepaaas po una stanca. Sobe la ecta ue las une se coloca una nueva

Más detalles

8. EL CAMPO GRAVITATORIO.

8. EL CAMPO GRAVITATORIO. ísca. 8. El campo avtatoo. 1 Ley e la avtacón unvesal. 8. EL CMPO GVIOIO. Ley e la avtacón unvesal e Newton. Daas os patículas e masas m y m, sepaaas una stanca, la e masa m atae a la e masa m con una

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

PROBLEMAS DE CINEMÁTICA

PROBLEMAS DE CINEMÁTICA E.T.S. INGENIEROS GÓNOOS NDENTOS ÍSIOS DE INGENIERÍ PROES DE INEÁTI Equo oente: ntono J. beo no Henánez Puhe fono e emonte 1 INEÁTI Pobem 1 (1) Dee o to e un toe uy tu e h 1 m e nz h b un e fomno un ánuo

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

3) (1p) Estudia la posición relativa de recta y plano.

3) (1p) Estudia la posición relativa de recta y plano. CURSO 007-008. 16 de mayo de 008. 1) (1p) Si A(x 1,y 1,z 1 ) y B(x,y,z ) son dos puntos del espacio, demuesta que [AB ]=(x -x 1,y -y 1,z -z 1 ). ) (1p) Deduce la ecuación vectoial de la ecta. ) (1p) Estudia

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE 2017

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE 2017 GEOMETRÍA (Selectividad 017) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE 017 1 Andalucía, junio 17 Ejecicio 4B Sean lo vectoe u = (1,

Más detalles

Respuesta en frecuencia

Respuesta en frecuencia Repueta en fecuencia Baado en Feedback Contol of Dynamic Sytem, Fanklin,.F. et al. 4ª edición, Pentice-Hall, 00. Sitema Automático, 003-004 Índice. Intoducción. Repueta en fecuencia 3. Polo y ceo. Diagama

Más detalles

Análisis Geostadístico. de datos funcionales

Análisis Geostadístico. de datos funcionales á í á - á é í : í é : á ó í ( ). é í á ó,,,., í é.,, é ó., í á. í., ó, ó. é ó., á, ó.., ó - ()., é á í. é á., á. ó, ó á. é ó é. í á ó. : ; ; ó ; ; ; ó. ó í............................... á..............................................................

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

GEOMETRÍA ANALÍTICA - SECCIONES CÓNICAS

GEOMETRÍA ANALÍTICA - SECCIONES CÓNICAS GEOMETRÍA ANALÍTICA SECCIONES CÓNICAS PARÁBOLA ELIPSE p + oe + M(0, ) p F(0, p) V P (, p) P(, ) V(, 0) F(, 0) F(, 0) V(, M(0, ) HIPÉRBOLA oe + W(0, ) F(, 0) F(, 0) V(, 0) V(, 0) W(0, ) fe mejo e FORMULAS

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T -1 CAPITULO II.1 INTRODUCCIÓN Fig..1: Diagrama de bloque de donde: A J : Momento de inercia B : Coeficiente de roce T() Torque : Amplificador + motor T J B W G FTLC 1 J ( + ) θ θ o i B J. ( ) ( ) + + Donde

Más detalles

TEMA 13: EL ESPACIO MÉTRICO

TEMA 13: EL ESPACIO MÉTRICO TEMA 3: EL ESACIO MÉTRICO. DISTANCIA ENTRE DOS UNTOS. ÁNGULO ENTRE DOS RECTAS 3. VECTOR NORMAL CARACTERÍSTICO O ASOCIADO AL LANO 4. ANGULO ENTRE DOS LANOS 5. ANGULO ENTRE RECTA Y LANO 6. DISTANCIA DE UN

Más detalles

ELECTRICIDAD Y MAGNETISMO. Electromagnetismo

ELECTRICIDAD Y MAGNETISMO. Electromagnetismo ELECTCDAD Y MAGNETSMO. Eectomgnetimo ) Ccu fue eectomoti inducid en un epi po un p de io peo de gn ongitud, po o que cicu un coiente igu peo con entido contio. b ) En un emiepcio > exite un cmpo mgnético,

Más detalles

Diagramas de Bode de magnitud y fase

Diagramas de Bode de magnitud y fase Diagama de Bode de magnitud y fae Diagama de Bode de magnitud y fae de una contante Dada la función cicuital F(j~) = K, podemo expeala en la foma: j K e F( j~ ) = ) j K e K K > < La magnitud en decibelio

Más detalles

Estructuras de hormigón armado

Estructuras de hormigón armado Etrutura e hormigón armao I. Piare. r r + nom r min γ V γ V r nom + φ + φ γ h ' γ Exentriia meánia: En abeza e piar En bae e oporte Cáuo e a exentriia tota: e e e e + e tota a exentriia itiia e a viene

Más detalles

PROPAGACIÓN DE ONDAS

PROPAGACIÓN DE ONDAS PROPAGACIÓN D ONDAS Tea : PROPAGACIÓN D ONDAS GUIADAS JRCICIOS RSULTOS.- Deteina la ipedania de onda g en téino de u valoe paa odo TM) a paa lo odo T TM. Repeti paa /. a) T jk jk γ Ω 435,3,547 T ) ),547

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Ecuela Univeritaria de Ingeniería Técnica grícola de Ciudad Real En el edificio de oficina de tre planta anexo a una indutria de fabricación de puerta, e pretende calcular la armadura de un oporte B ituado

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

( ) λ λ. λ = λ = 1. + λ y = 1, se pide: S. C. D. (solución única) S. C. I. (infinitas soluciones) A. 3. Estudiaremos cada caso 1-1

( ) λ λ. λ = λ = 1. + λ y = 1, se pide: S. C. D. (solución única) S. C. I. (infinitas soluciones) A. 3. Estudiaremos cada caso 1-1 OPCIÓN A y + z = E.-Dado el itema de ecuacione lineale, x + λ y =, e pide: x + λz = a) Dicuti el itema (exitencia y númeo de olucione) egún lo valoe del paámeto eal λ (,75 punto) b) Reolve el itema paa

Más detalles

TEMA 6: RENTAS VARIABLES. (1+i) A n-1

TEMA 6: RENTAS VARIABLES. (1+i) A n-1 TEMA 6: RENTAS VARIABLES. RENTAS VARIABLES EN GENERAL Son auellas entas en las ue los témnos no son constantes, su valo actual y fnal se calculan a pat del pncpo de euvalenca fnancea, actualzando (valo

Más detalles

lim Campos estacionarios o no estacionarios. Campos homogéneos (uniformes) y no homogéneos. Q i r

lim Campos estacionarios o no estacionarios. Campos homogéneos (uniformes) y no homogéneos. Q i r Tema..-- Campo ellécttco..- Campo eléctco 4π caga() campo caga() caga() qq caga() Lo do punto de vta on equvalente paa la electotátca. Velocdad de popagacón de la petubacone del campo: c 8 m/. Intendad

Más detalles

Divisibilidad de un número real entre otro

Divisibilidad de un número real entre otro Divisibilidad de un número real entre otro Objetivos Definir (o repasar) el concepto de divisibilidad de un número real entre otro Establecer algunas propiedades básicas de esta relación binaria Requisitos

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

TEMA12: ESPACIO MÉTRICO

TEMA12: ESPACIO MÉTRICO TEMA1: ESPACIO MÉTRICO 1. PERPEDICULARIDAD A) RECTA-RECTA: Do ecta on pependiculae i u vectoe diectoe on otogonale: V. W = 0. ota que eta condición no implica que la ecta e coten, pueden tene dieccione

Más detalles

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa SOLUCIONARIO GUÍA Íem Alernaa Deena 1 C En un gráco elocdad / empo, al realzar el cálculo de la pendene y área bajo la cura, obenemo la aceleracón y danca recorrda, repecamene. A Según la expreón para

Más detalles

OSCILADOR ARMÓNICO SIMPLE

OSCILADOR ARMÓNICO SIMPLE OSIDOR RÓNIO SIPE 0409 1 ey e Hooe rterzón e ovmento rmóno Sme (..S.) Veo y eerón en e..s. Ejemo. Reorte en oón horzont y vert Pénuo me Pénuo fo Energ en e movmento rmóno ovmento rmóno mortguo ey e Hooe

Más detalles

FUNDAMENTOS DE MECÁNICA COMPUTACIONAL 2017/2018

FUNDAMENTOS DE MECÁNICA COMPUTACIONAL 2017/2018 FUNDAMENTOS DE MECÁNICA COMPUTACIONAL 7/8 Páctica 7: ANÁLISIS TENSORIAL Y TEORÍA DE CAMPOS Demosta, utiliano cooenaas catesianas otonomales, las siguientes expesiones: a ot ga f b iv ot f c f iv ga f f

Más detalles

TEMA 7: PROPIEDADES MÉTRICAS

TEMA 7: PROPIEDADES MÉTRICAS Depatamento e Matemática º Bachilleato TEMA 7: PROPIEDADES MÉTRICAS 1- HAZ DE PLANOS PARALELOS Too lo plano paalelo a un plano Ax + By + Cz + D tenán el mimo vecto nomal que el e : n A, Po lo tanto, too

Más detalles

UNIDAD Nº 5: GEOMETRÍA ANALÍTICA PLANA

UNIDAD Nº 5: GEOMETRÍA ANALÍTICA PLANA I.E.S. Ciudad de Ajona Depatamento de Matemática. º BAC UNIDAD Nº 5: GEOMETRÍA ANALÍTICA PLANA. VECTORES. DEFINICIÓN Y OPERACIONES Definición: Un ecto fijo AB e un egmento oientado ue tiene u oigen en

Más detalles

Teoría General de Cáscaras

Teoría General de Cáscaras Teoía Geneal e Cáscaas Teoía Geneal e Cáscaas El análisis teóico e las cáscaas, consiste en establece en pime luga las ecuaciones e equilibio e un elemento ifeencial cotao e la misma, bajo la acción e

Más detalles

ANTECEDENTES PARA CÁLCULO DE LOSAS EN PANEL COVINTEC

ANTECEDENTES PARA CÁLCULO DE LOSAS EN PANEL COVINTEC ANTECEDENTES PARA CÁLCULO DE LOSAS EN PANEL COVINTEC Anteedente de Cálulo para Loa en Panele Covinte Loa Geometría: Fig. 1. Nomenlatura : h: altura total de la loa h : altura del hormigón uperior h i :

Más detalles

1. Algunas deniciones y resultados del álgebra lineal

1. Algunas deniciones y resultados del álgebra lineal . Algunas deniciones y resultados del álgebra lineal Denición. (Espacio vectorial o espacio lineal sobre R) Un espacio vectorial o espacio lineal sobre el campo de los números reales, R, es un conjunto

Más detalles

9. Análisis de correspondencias

9. Análisis de correspondencias 9. Análss de oespondenas OBETIVO: Poedmento gáfo paa epesenta asoaones en una tabla de feuenas o onteos. Paa la despón del método nos onentaemos en una tabla de feuenas de dos vaables ategóas o tabla de

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

Estructuras de hormigón armado

Estructuras de hormigón armado Etructura e hormigón armao I. Pilare. r Δr + nom r min N γ N V γ V r nom + φ c + φ γ h ' γ Excentricia mecánica: En cabeza el pilar e N En bae el oporte e N Cálculo e la excentricia total: e e + e total

Más detalles

Olimpiadas. Internacionales

Olimpiadas. Internacionales ble e L Olp Iele De Fí Jé Lu Heáe ée uí L ll 8 Jé Lu Heáe ée, uí L ll, 8 XXX OLIID INERNCIONL DE FÍSIC. CORE DEL SUR. I.-UN CONDENSDOR ING-ONG U e e e pl ule plel ee í, e R el e pl y l ee ell, uplée que

Más detalles

EJEMPLO No 1.- Resolver la estructura mosxtrada en la la Fig. mostrada a continuación. Emplear el Método de la Flexibilidad.

EJEMPLO No 1.- Resolver la estructura mosxtrada en la la Fig. mostrada a continuación. Emplear el Método de la Flexibilidad. EJEMPLO No.- Resolver la estructura mosxtraa en la la Fig. mostraa a continuación. Emplear el Métoo e la Flexibilia.. GRADO DE HIPERESTATICIDAD.- En la iguiente figura se pueen observar las libertaes y

Más detalles

Conducción de la Política Monetaria en México

Conducción de la Política Monetaria en México Conducción de la Política Monetaria en México Junio 1, 2010 Índice 2 I. Convergencia Gradual a un Esquema de Objetivos de Inflación! "# $ % " &'% ( ) 3 * 4 I. Convergencia Gradual a un Esquema de Objetivos

Más detalles

Profesor Francisco R. Villatoro 15 de Noviembre de 1999 SOLUCIONES. Soluciones de los ejercicios de la tercera relación de problemas.

Profesor Francisco R. Villatoro 15 de Noviembre de 1999 SOLUCIONES. Soluciones de los ejercicios de la tercera relación de problemas. Tecea elacón de poblemas Técncas Numécas Pofeso Fancsco R. Vllatoo 5 de Novembe de 999 SOLUCIONES Solucones de los ejeccos de la tecea elacón de poblemas.. Se defne la taza de la matz cuadada A como la

Más detalles

SISTEMAS DE COORDENADAS EN EL ESPACIO

SISTEMAS DE COORDENADAS EN EL ESPACIO Matemática Diseño Inustrial Coorenaas en el espacio Ing. vila Ing. Moll SISTEMS DE CRDENDS EN EL ESPCI De forma similar a la vista para el plano, se pueen efinir istintos sistemas e coorenaas. CRDENDS

Más detalles

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria.

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria. Númeos Complejos Un Defnón Llmemos númeo omplejo un númeo z que se ese e l fom, one y son númeos eles, e vef:. Al númeo se lo enomn pte el e z y l númeo, pte mgn e z. pte } pte } mgn Se esgn on Re ( z)

Más detalles

b. Teniendo en cuenta que el campo gravitatorio es conservativo, se cumple:

b. Teniendo en cuenta que el campo gravitatorio es conservativo, se cumple: UNIVSIDADS ÚBLICAS D LA COMUNIDAD D MADID UBA D ACCSO A STUDIOS UNIVSITAIOS (LOGS) FÍSICA Septembe 0 INSTUCCIONS Y CITIOS GNALS D CALIFICACIÓN Depué e lee atentamente ta la pegunta, el alumn ebeá ecge

Más detalles

Una nueva teoría electromagnetica I. Propiedades del electrón en reposo: masa, carga, spin y estabilidad.

Una nueva teoría electromagnetica I. Propiedades del electrón en reposo: masa, carga, spin y estabilidad. Una nueva teoía electomagnetica I. Popiedades del electón en eposo: masa, caga, spin y estabilidad. Manuel Henández Rosales. 18 de Junio de 215 Abstact En este atículo a pati de nuevas ecuaciones paa el

Más detalles

2x y 2z. Entonces Rang A = 4 > Rang A Sistema incompatible r y s no se cortan y el problema no tiene solución. = =

2x y 2z. Entonces Rang A = 4 > Rang A Sistema incompatible r y s no se cortan y el problema no tiene solución. = = Geometía analítica del epacio. Matemática II Mazo 04 Opción A Ejecicio. (untuación máxima: punto) z Calcula la ecuación de una efea que tiene u cento en la ecta x 3 y, y e tangente al plano x y z 4 0,,.

Más detalles

Soluciones del capítulo 3 Ecuaciones no lineales de primer orden

Soluciones del capítulo 3 Ecuaciones no lineales de primer orden Soluciones del capítulo 3 Ecuaciones no lineales de pime oden Hécto Lomelí y Beatiz Rumbos 9 de mazo de 200 3 32 a xt = t b xt = t c xt = 2 t a yx = sin 2 x 2 + b y log y + 2 = log x + 4 d xt = tan t +

Más detalles

SELECTIVIDAD SEPTIEMBRE 2003 MATEMÁTICAS II

SELECTIVIDAD SEPTIEMBRE 2003 MATEMÁTICAS II Depatament de Matemàtiques Ieslaasuncion.og/matematicas SELECTIVIDAD SEPTIEMBRE 00 MATEMÁTICAS II EJERCICIO A 0 m 0 1 0 PROBLEMA 1. Considea las matices: A = 1 0 1 y B = 1 0 0. 5 1 (m + 1) 0 0 1 a) Paa

Más detalles

Capítulo 5: Variables Aleatorias Distribuciones Estadística Computacional I Semestre Variables Aleatorias

Capítulo 5: Variables Aleatorias Distribuciones Estadística Computacional I Semestre Variables Aleatorias Unvedad Técnca Fedeco Santa Maía Depatamento de Infomátca ILI-80 Capítulo 5: Vaable Aleatoa Dtbucone Etadítca Computaconal I Semete 006 Pofeo : Pofeo : Hécto Allende Calo Valle Funcón que agna a cada punto

Más detalles

1. Objetivos. 2. Idea Principal. 3. Método para obtener la Expresión regular que denota a un AF dado. Teoría de Autómatas y Lenguajes Formales

1. Objetivos. 2. Idea Principal. 3. Método para obtener la Expresión regular que denota a un AF dado. Teoría de Autómatas y Lenguajes Formales Teoía de Autómata y Lenguaje Fomale Boletín de Autoevaluación 4: Cómo e calcula la Expeión Regula aociada a un AFD?.. Objetivo. El objetivo de ete boletín e iluta uno de lo método que pemiten calcula la

Más detalles

I = de orden 2. Hallar la relación entre los parámetros a, b c, a 4 ab 2a ac ab ac + + ac = 0

I = de orden 2. Hallar la relación entre los parámetros a, b c, a 4 ab 2a ac ab ac + + ac = 0 Puebas de Aptitud paa el Acceso a la Univesidad SEPTIEMBRE 9 Matemáticas II ÁLGEBRA a [,5 puntos] Sean las matices A = b c, I = de oden Halla la elación ente los paámetos a, b y c paa que se veifique que

Más detalles

LABORATORIO DE FÍSICA

LABORATORIO DE FÍSICA LABORATORIO DE FÍSICA Ley de Faaday-Lenz. 6.04 1-Suponga que el plano de u hoja contene un ao conducto. Exte una fe () ucda en el ao paa lo guente cao?. Jutfque u epueta. a- El polo Note de un án en baa

Más detalles

0 1 a 1. a a = a + 2a a = 2a = 0 a = a = 2 0 Sistema incompatible a 1 1 a a a 2a 2a. a a.

0 1 a 1. a a = a + 2a a = 2a = 0 a = a = 2 0 Sistema incompatible a 1 1 a a a 2a 2a. a a. Pueba de Acceso a la Univesidad. SEPTIEMBRE 00. Instucciones: Se poponen dos opciones A y B. Hay que elegi una de las dos opciones y contesta a sus cuestiones. La puntuación está detallada en cada una

Más detalles

El siguiente diagrama representa una memoria asociativa y su contenido. Calcule los valores del registro de marcas.

El siguiente diagrama representa una memoria asociativa y su contenido. Calcule los valores del registro de marcas. El iguiente dig epeent un eoi oitiv y u ontenido. Clule lo vloe del egito de. 0 0 0 0 guento 0 0 0 á 0 0? 0 0 0 0? 0 0 0 0 0? 0 0 0 0? 0 0 0 0? ontenido El lgoito genel del funioniento de un eoi oitiv

Más detalles

CAMPOS ELECTROMAGNÉTICOS Temas 4 y 5 Ondas y Polarización

CAMPOS ELECTROMAGNÉTICOS Temas 4 y 5 Ondas y Polarización TS. Ingeneía de Teleomunaón Dpto. Teoía de la Señal Comunaones CAMPOS LCTROMAGNÉTICOS Temas 5 Ondas Polaaón P.- Una onda plana unfome on u se popaga en un medo smple sn péddas (,, ) en la deón. Supone

Más detalles

Mancha que deja el café vertido sobre una hoja de papel, después de secarse.

Mancha que deja el café vertido sobre una hoja de papel, después de secarse. Maha que deja el afé vetido sobe ua hoja de papel después de sease. Membaa esféia tazos blaos oteiedo ua mezla oloidal de esfeas duas gades fluoesetes y pequeñas o se obseva e la image. INTERACCIONES EFECTIVAS

Más detalles

Diseños con dos o más fuentes de variación (III): Otros diseños clásicos de experimentos

Diseños con dos o más fuentes de variación (III): Otros diseños clásicos de experimentos Diseños con dos o más fuentes de variación (III): Otros diseños clásicos de experimentos Tema 4 (III) Estadística 2 Curso 08/09 Tema 4 (III) (Estadística 2) ANOVA multifactorial Curso 08/09 1 / 17 ANOVA

Más detalles

Prof. Nathaly Moreno Salas Ing. Víctor Trejo. Turbomáquinas Térmicas CT-3412

Prof. Nathaly Moreno Salas Ing. Víctor Trejo. Turbomáquinas Térmicas CT-3412 7. OMPRESORES AXIALES Pof. Nathal Moeno Salas Ing. Vícto Tejo Tubomáquinas Témicas T-34 ompesoes Aiales ontenido Pemisas paa el estudio de un compeso aial Etapa de un compeso aial Tiángulo de velocidad

Más detalles

Fuerzas y tensiones en los dientes

Fuerzas y tensiones en los dientes MNTOS MQUINAS Cáuo de egaajes heioidaes uezas y esioes e os diees. Φ XIÓN. se Φ. g Φ / ψ RAIA. ψ. Φ. ψ TANNCIA a. se ψ. Φ.se ψ. g ψ AXIA MNTOS MQUINAS Cáuo de egaajes heioidaes N V V W R R Paa N e HP,

Más detalles

Campo producido por un sistema de cargas puntuales

Campo producido por un sistema de cargas puntuales lectcdad Magnetsmo / lectostátca Defncón os conductoes en electostátca. Campo de una caga puntual. Aplcacones de la e de Gauss Integales de supeposcón. Potencal electostátco. Defncón e Intepetacón. cuacones

Más detalles

2 Modelos de circuito utilizados

2 Modelos de circuito utilizados CAPÍTULO Modelo de cicuito utilizado En ete capítulo e exponen la caacteítica de lo modelo de cicuito utilizado y la ecuacione utilizada paa aboda el poblema de la deteminación de lo paámeto del modelo

Más detalles

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos Hotel Buj Al Aab Dubai Emiato Áabe Unido Pedo ami Bofill-Gaet Poyecto de paametiación Ampliación de Matemática Intoducción Paa ete poyecto e ha ecogido como upeficie el lujoo hotel Buj al Aab de Dubai.

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa calcla la ecación de la ecta debo conoce n pnto A(a, a 2, a 3 ) y n vecto en la diección de la ecta llamado vecto diecto. v=(v,v 2,v 3) OP=OA+AP

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

r' = y 3 =. Hallar el punto de corte de 2

r' = y 3 =. Hallar el punto de corte de 2 x 7 8. Distancia ente ambas ectas con su pepenicula común. x '. Halla el punto e cote e Se calcula º los puntos e cote con la iagonal común. Una ve conocios estos la istancia se calcula como el móulo el

Más detalles

Ondas y Rotaciones. Dinámica de las Rotaciones VI

Ondas y Rotaciones. Dinámica de las Rotaciones VI Hoja de Tabajo 6 Ondas y Rotaones Dnáma de las Rotaones V Jame Felano Henández Unvesdad Autónoma Metopoltana - ztapalapa Méxo, D. F. 5 de agosto de 0 A. ACTVDAD NDVDUAL. En esta Hoja de tabajo veemos el

Más detalles

Intensidad de campo eléctrico Se define como la fuerza que actúa por unidad de carga. Es una magnitud vectorial. F q E k q d se mide en N C

Intensidad de campo eléctrico Se define como la fuerza que actúa por unidad de carga. Es una magnitud vectorial. F q E k q d se mide en N C Campo eléctico Campo eléctico es la pate el espacio en la ue apaecen fuezas e atacción o e epulsión ebio a la pesencia e una caga. Caacteísticas e las cagas: Hay os tipos e cagas: positivas y negativas.

Más detalles

9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO.

9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO. REPASO Y APOYO OBJETIVO 1 9 COMPRENDER LOS CONCEPTOS DE RECTA, SEMIRRECTA Y SEGMENTO. ESTUDIAR LAS POSICIONES RELATIVAS RECTA ecta G A A y B A B A ACTIVIDADES 1 Dibuja un punto P y taza cuato ecta que

Más detalles

EJERCICIO CONSOLIDACIÓN-TRATAMIENTO:

EJERCICIO CONSOLIDACIÓN-TRATAMIENTO: Cimentacione 01 15 EJECICIO CONSOLIDACIÓN-AAMIENO: Conoliación atamiento 1 Cimentacione 01 15 ÍNDICE 1. Conoliación atamiento 1... 3. Conoliación atamiento... 3 3. Conoliación atamiento 3.... Conoliación

Más detalles

LOS ERRORES EN QUÍMICA ANALÍTICA

LOS ERRORES EN QUÍMICA ANALÍTICA LOS ERRORES EN QUÍMICA ANALÍTICA MONOGRAFÍA PARA ALUMNOS DE º DE LA LICENCIATURA EN QUÍMICA 00 DR. JOSÉ MARÍA FERNÁNDEZ ÁLVAREZ Edificio de Invetigación. C/Iunlaea,1. 31080 Pamplona. Epaña Tel. +34 948

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS

IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS Sea el siguiente poblema de un hoga epesentativo en una economía de dos peiodos, en la que los hogaes son gavados con impuestos de suma

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

La mediatriz del segmento AB, que está contenida en el plano π, es una recta perpendicular al segmento y al vector normal. respecto de dicha recta.

La mediatriz del segmento AB, que está contenida en el plano π, es una recta perpendicular al segmento y al vector normal. respecto de dicha recta. Geometía analítica del epacio. Matemática II Febeo 04 Opción A Ejecicio. (untuación máxima: punto),,,, petenecen al plano x y + 3z + 5 = 0. Halla la ecuacione Lo punto A = ( 0 ) y B = ( 5 0 0) de la ecta

Más detalles

q d y se mide en N C

q d y se mide en N C Campo eléctico Campo eléctico es la zona el espacio en la ue apaecen fuezas e atacción o e epulsión ebio a la pesencia e una caga. Caacteísticas e las cagas: Hay os tipos e cagas: positivas y negativas.

Más detalles

3. Campo eléctrico de distribuciones continuas de carga. M.A.Monge / B. Savoini Dpto. Física UC3M

3. Campo eléctrico de distribuciones continuas de carga. M.A.Monge / B. Savoini Dpto. Física UC3M Campo eléctico II: Ley de Gau 1. Intoducción 2. Ditibucione continua de caga. 3. Campo eléctico de ditibucione continua de caga. 4. Flujo del campo eléctico. 5. Ley de Gau. 6. Aplicacione de la ley de

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

1. Cancelación de Perturbaciones 1. CANCELACIÓN DE PERTURBACIONES... 1

1. Cancelación de Perturbaciones 1. CANCELACIÓN DE PERTURBACIONES... 1 . Cancelación de Perturbacione. CANCELACIÓN DE PERTURBACIONES..... REPASO DE IMC..... CONTROLADOR PARA UNA PLANTA DE PRIMER ORDEN LENTA... 4... Método Cláico... 4... Cancelación de Dinámica... 6.3. CONTROLADOR

Más detalles

LECTURA 08 : MEDIDAS DE DISPERSIÓN Y MEDIDAS DE FORMA (PARTE I) MEDIDAS DE DISPERSIÓN TEMA 18: MEDIDAS DE DISPERSION

LECTURA 08 : MEDIDAS DE DISPERSIÓN Y MEDIDAS DE FORMA (PARTE I) MEDIDAS DE DISPERSIÓN TEMA 18: MEDIDAS DE DISPERSION Unverdad Católca Lo Ángele de Chmbote LECTURA 08 : MEDIDAS DE DISPERSIÓN Y MEDIDAS DE FORMA (PARTE I) MEDIDAS DE DISPERSIÓN TEMA 8: MEDIDAS DE DISPERSION. DEFINICION La medda de dperón on aquella que cuantfcan

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

Geometría euclídea MATEMÁTICAS II 1

Geometría euclídea MATEMÁTICAS II 1 Geometía euclídea MATEMÁTICAS II EL ESPACIO EUCLÍDEO TRIDIMENSIONAL En lo do anteioe tema, e han etudiado poblema que e efeían a incidencia, inteección y paalelimo de punto, ecta o plano, peo no poblema

Más detalles

Exámen de Teoría de Números

Exámen de Teoría de Números Exámen de Teoría de Número de enero de 06 Hacer 5 de lo 6 roblema La untuación e obre 0 unto Problema a) 0,5 unto) Hallar d06) y φ06) b) 0,5 unto) Se uede ecribir 06 como uma de do cuadrado erfecto? Y

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

Compensación en atraso-adelanto

Compensación en atraso-adelanto UNIVESIDAD AUÓNOMA DE NUEVO LEÓN FACULAD DE INENIEÍA MECANICA Y ELÉCICA CONOL CLÁSICO M.C. JOSÉ MANUEL OCHA NUÑEZ Compenaión en atrao-elanto Compenor eletrónio en atrao-elanto on amplifiore operaionale

Más detalles

Figura 1. Viscosímetro de Ostwald.

Figura 1. Viscosímetro de Ostwald. FISICA GENEAL II 01 Guía de Tabajo Patio N o Deteminaión de visosidades C.L. Di Pinzio, amia Máximo, Comes aú Intoduión: E visosímeto de Ostwad E visosímeto de Ostwad (Fig.1) es un apaato eativamente simpe

Más detalles

LA PARTÍCULA SOBRE UNA ESFERA

LA PARTÍCULA SOBRE UNA ESFERA Fundaentos de Quíica Teóica LA PARTÍCULA SOBRE UNA ESFERA E odeo de una patícua oviéndose en una configuación de esfea pefecta, es deci, a una distancia fija de un cento dado, peo en tes diensiones, es

Más detalles