Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental"

Transcripción

1 Enust sor l uso Intrnt pr úsqus inormión sor Slu Mntl Inormión gnrl 1. E: 2. Génro: Msulino (Pon un ruz n lo qu pro) Fmnino 3. Cuál s tu ár stuio? Art, Ltrs, Estuios Soils Cini, Ingnirí, Ténios Emprsrils, Drho Miin, Slu 4. Dón vivs tulmnt? Vivo on mis prs/ mili Vivo n un s lquilr on otrs prsons (no l mili) Vivo solo Vivo n un rsini Otros 5. Dón stá situ tu vivin? Ciu, grn iu Ciu tmño mio Pquñ iu, pulos, n l mpo 6. Tins tulmnt trjo rmunro? (Sñl un úni rspust) No tngo trjo. Trjo timpo pril ( 1-30 hors smnls) Trjo timpo omplto (más 30 hors por smn) 1

2 7. Cuál s tu sto slu? (Sñl un úni rspust) Muy uno Buno Bstnt uno Mlo Muy mlo 8. Cuáls son ls oniions su sto Slu Mntl? (Sñl un úni rspust) Muy un Bun No msio un Ml Muy ml 9. En los últimos 12 mss, hs visito lguno los siguints prosionls l slu? (Sñl toos los qu hys visito) Méio Ginólogo Psiólogo/ Psiquitr o onsjro Otro spilist méio Enrmr l sul Otro prosionl l slu 2

3 Uso gnrl Intrnt 10. Con qué runi uss Intrnt? (Sñl un úni rspust) Vris vs l í Un vz l í Vris vs por smn Un vz por smn Mnos un vz por smn 11. Sñl los ispositivos los qu ispons pr r Intrnt. Ornor Portátil Smrtphon Tlt Otro, uál? 12. Dón s Intrnt? (Sñl tos ls opions qu s n n tu so) En s En l ult En l trjo En s milirs/migos En lugrs púlios (yré, iliot, t.) En ulquir lugr qu tng onxión Intrnt s mi smrtphon 3

4 13. Con qué propósito utilizs Intrnt? (Sñl tos ls opions qu s n n tu so) Vris vs l í Un vz l í Vris vs l smn Envir orros Enontrr inormión pr l univrsi Conor nuvs notiis Otnr inormión sor plíuls, músi o tlvisión Busr inormión sor slu Dsrgr músi g Jugr h Comprr lgo i Prtiipr n hts l Prtiipr n ts o tlons mnsjs (oros) m Rs soils (Fook, Twittr, t.) n Vr vios (YouTu, Vimo, t.) 4 Un vz l smn Un vz l ms Con mnos runi Nun

5 Uso Intrnt pr l Slu y l Slu Mntl 14. Algun vz hs uso inormión sor slu n Intrnt? (Pon un ruz n lo qu pro) Sí No 15. Algun vz hs uso inormión sor Slu Mntl n Intrnt? (Pon un ruz n lo qu pro) Sí No 16. En los últimos 12 mss, hs utilizo Intrnt pr usr inormión y onsjo sor sptos rlionos on (Sñl tos ls opions qu s n n tu so) Contigo mismo Un mimro tu mili o ntorno Ni n prtiulr 17. En los últimos 12 mss, on qué runi hs uso inormión sor los siguints tms? Un vz l smn o más Un o más vs l ms Binstr (port, nutriión, suño ) Slu n gnrl (nrms, lrgis, trtmintos) Slu sxul (sxo n métoos ntionptivos) Trstornos l omportminto limntrio (Anorxi, ulimi, umnto pso ) Dprsión, tqus pánio, nsi Aiions (lohol, to, nnis ) 5 Vris vs l ño Un o más vs l ño Nun

6 18. En los últimos 12 mss, hs uso inormión n Intrnt sor los siguints sptos? (Sñl tos ls opions qu s n n tu so) g h i l m n o p Inormión gnrl sor prolms slu y nrms Dprsión Trstorno ipolr Prolms nsi Trstorno ossivo ompulsivo Atqus pánio Trstornos l omportminto limntrio Suiiio y utolsions Esquizorni Estrés (tmién post-trumátio) Dmni Trstornos prsonls Aiions Dprsión post-prto 19. Pr ti, uáls son ls trs vntjs prinipls qu port l uso Intrnt pr l úsqu inormión sor Slu Mntl? (Sñl trs opions) g h i Anónimo, privo y oninil Disponiili un grn nti inormión útil. Fáilmnt sil ls 24 hors l í Fáil pr usr y nontrr inormión Es rápio y horr timpo Brto Auo Es áil omunirs on otrs prsons qu stén n nustr mism situión Bun lugr pr mpzr y surir ón ir pr un sistni más prsonliz l Mnos vrgonzoso qu hlr on un prosionl m Mnos vrgonzoso qu hlr on un migo o mimro l mili n Sr quién provin l inormión o Exprinis rls otrs prsons 6

7 20. Qué trs prinipls svntjs vs n l uso Intrnt pr l úsqu inormión y soport Slu Mntl? (Sñl trs opions) g h i l m n o Dmsio nónimo Inormión poo il No s áil nontrr inormión Hrrmint inu y omplj Dsonoiminto l inti l prson qu rmit ih inormión Inormión imprsonl sin justrs tu propi xprini Inormión lrmnt Dsoninz l inormión on rspto l onsjo méio Diiult pr r un onxión Intrnt Compli l rlión on l méio No xistn iltros n oros o hts Es mnos oninz qu hlr on l mili y/o los migos Risgo sr lolizo 21. En los últimos 12 mss, hs uso lguno los siguints soports Intrnt pr un prolm rliono on l Slu Mntl? (Sñl tos ls opions qu s n n tu so) Trpi onlin Chts Foros isusión 22. Cuno uss inormión sor Slu Mntl n Intrnt, ómo lo hs? (Sñl tos ls opions qu s n n tu so) Muhs vs Pons plrs lvs n l usor Intrnt, omo Googl o Yhoo Dirtmnt, uss un págin o portl sor slu qu y onos T ijs n l h puliión l inormión T ijs n l prson y/o instituión qu puli ih inormión 7 A mnuo Rr vz Nun No lo sé

8 23. Cuno rviss inormión sor Slu Mntl n Intrnt, lo hs (Sñl un úni rspust por prto) Muhs vs A mnuo Rr vz Nun No lo sé n lugr ir l méio nts ir l méio spués un onsult méi inpnintmnt ulquir onsult méi 24. Pinss n gnrl qu l inormión sor Slu Mntl Intrnt s il? (Sñl un úni rspust) Sí, ompltmnt Bstnt No msio En soluto 25. Ss qué págins slu stán rtiis? (Pon un ruz n lo qu pro) Sí No 8

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

DEPARTAMENTO P.M.C ORGANIZACIÓN ADMINISTRATIVA DIRECTOR. Misión. Dr. Juan Jóse Jáuregui Lomelí DEPARTAMENTO ACADÉMICO Y DE SALUD PÚBLICA

DEPARTAMENTO P.M.C ORGANIZACIÓN ADMINISTRATIVA DIRECTOR. Misión. Dr. Juan Jóse Jáuregui Lomelí DEPARTAMENTO ACADÉMICO Y DE SALUD PÚBLICA DEPARTAMENTO P.M.C Misión Apoyr n l formión lumnos n l quisiión omptnis y hilis línis DIRECTOR ORGANIZACIÓN ADMINISTRATIVA Dr. Jun Jós Jáurgui Lomlí DEPARTAMENTO ACADÉMICO Y DE SALUD PÚBLICA Dr. Frniso

Más detalles

Enigmas 1: Productos envasados que se venden en los comercios

Enigmas 1: Productos envasados que se venden en los comercios Trr Cilo Primri Enigms 1: Proutos nvsos qu s vnn n los omrios Es un mtril vntjoso pr lrgr proutos qu s tinn qu protgr los ryos solrs Es un mtril qu onsrv muy in los limntos y s fáil oloión y lmnminto por

Más detalles

REPUBLICA DOMINICANA Secretariado Técnico de la Presidencia OFICINA NACIONAL DE ESTADISTICA DEPARTAMENTO DE ENCUESTAS

REPUBLICA DOMINICANA Secretariado Técnico de la Presidencia OFICINA NACIONAL DE ESTADISTICA DEPARTAMENTO DE ENCUESTAS REPUBLIC DOMINICN Srtrio Ténio l Prsini OFICIN NCIONL DE ESTDISTIC DEPRTMENTO DE ENCUESTS ENCUEST NCIONL DE HOGRES DE PROPOSITOS MULTIPLES (ENHOGR 2005) CONFIDENCIL: To inormión rogi srá mntni on rátr

Más detalles

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro.

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro. CAMINOS Y CIRCUITOS En un grfo s pu rorrr l informión ifrnts mnrs pr llgr un punto otro. Cmino Ciruito (Cilo) Ciruito simpl longitu n Cmino simpl longitu n ulquir suni noos n l qu pr son ynts. Es un mino

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

Matemáticas II Bloque VI Carlos Tiznado Torres

Matemáticas II Bloque VI Carlos Tiznado Torres Mtmátis II loqu VI rlos Tizno Torrs IRUNFERENI El írulo y l irunfrni son os ojtos gométrios qu hn llmo l tnión y hn sio l ojto stuio un grn númro mtmátios s timpos ntiguos, sino más grn utili práti pr

Más detalles

Bullying: Más cerca de lo que pensamos?

Bullying: Más cerca de lo que pensamos? Bullying: Más r d lo qu pnsmos? CURSO_GRUPO_NÚMERO - Enust rlizd por los lumnos d primro d hillrto y v dirigid pr los ursos d primro, sgundo, trro y urto d l ESO. - A trvés d los rsultdos d stos ustionrios

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

Pertinencia Social y Participación Popular

Pertinencia Social y Participación Popular MOULO I-INTROUTORIO 10 HORS I FH HOR TIVI LUGR GRUPO VIOONFRNI/ 8:00-11:30 a.m. ONVRSTORIO/TRNSFORMIÓN TOOS UNIVRSITRI SL POSTGRO 2:00-3:30 p.m. INÁMI SOILIZ SL RUNIONS ONLUSIONS INIVIULS Y 4:00-5:20 p.m.

Más detalles

ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA G D A ALELUYA, ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA, G D A D ALELUYA, ALELUUUYA SANTO

ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA G D A ALELUYA, ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA, G D A D ALELUYA, ALELUUUYA SANTO NTR UNTS VS --0 1---3-3-3 1---5-5 1 3 0 --1---3---5-5-5---3---6-6---3---5---1 UNTS VS SINO NIÑO T R ON MIS VRSOS T I QU T MB //POO POO ON L TIMPO mi OLVINOM TI mi POR MINOS QU S LJN M PRI// HOY H VULTO

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR RPÚLI DL UDOR JRIIO: MIDUVI DIRION INORM D RUT RÍTI DL UR D GSTOS PGIN: 1 D : 01/07/ OR: 11:0:1 IV rrado laboracion del Traslado NTIDD 550-000-0000 MINISTRIO D DSRROLLO URNO Y VIVIND 000 MIDUVI DIRION

Más detalles

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8). ÓNIS º BHILLERTO ) Hll L uión lugr gométrio los untos lno u istni P(,) s ol qu su istni Q(-,). ( R, P) ( R, Q) ( ) ( ) ( ) ( ) ( ) ) Enuntr l irunfrni irunsrit l triángulo vértis (-,); B(-,); (-,). lul

Más detalles

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA El srrll mptnis prv un mbi psitiv rimint nstnt trnsfrmins qu mprn ls prsns, ls lírs, ls rgnizins y ls sis. Ls intgrnts

Más detalles

A puede expresarse como producto de matrices elementales

A puede expresarse como producto de matrices elementales TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los

Más detalles

MARQUE CON UNA X CADA RESPUESTA. Una lengua amazónica (asháninka, shipibo, awajún, etc.). b. Una lengua extranjera (inglés, francés, etc.).

MARQUE CON UNA X CADA RESPUESTA. Una lengua amazónica (asháninka, shipibo, awajún, etc.). b. Una lengua extranjera (inglés, francés, etc.). DÍA 1 1 Evluión Mustrl 2013 Sxto gro primri Custionrio l Dirtor Estimo() Dirtor(): El Ministrio Euión stá llvno o un vluión irigi los stuints sxto gro primri pr onor l nivl prnizj qu stos hn srrollo. Pr

Más detalles

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6 TRILCE Cpítulo CONTEO DE FIGURAS INTRODUCCIÓN El srrollo l tnologí n los últimos ños, h sio rlmnt vrtiginoso, ls pizs, y omponnts los prtos mornos s hn ruio notlmnt su tmño y quirio un sin fin forms, puino

Más detalles

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila.

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila. 1 Cs s oorns por tpos nt orón yuxtpust: oputvs syuntvs vrstvs onsutvs xptvs N m vn os otos n vo os prorms orzón. T vns y o sprs tu rmn? Sí qu rs vtrno, sí qu t prpro stán mpno. A mí m ustrí yurt, pro n

Más detalles

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A. º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR RPÚLI DL UDOR JRIIO: 15 MIDUVI DIRION INORM D RUT RÍTI DL UR D GSTOS PGIN: 1 D 7 : /8/15 OR: 15:16:55 rrado laboracion D=- del Traslado NTIDD 55-- MINISTRIO D DSRROLLO URNO Y VIVIND MIDUVI DIRION 361 [P:6

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1 Ruión stos quivlnts Mrio Min. mriomin@u.l Ruión stos quivlnts Proso isño ntrior no sgur l númro mínimo stos Ruión númro stos Ru l númro lip-lops Ru l lógi ominionl Asignión vrils sto tmién pu ruir lógi

Más detalles

COMO UNA GRAN FAMILIA / wayño-sikuri (1)

COMO UNA GRAN FAMILIA / wayño-sikuri (1) OMO UN RN FMILI / wayño-sikuri (1) a //omo una gran familia Señor Hoy venimos a Tí a scucha el grito de tu pueblo a Oye su voz. // todo x 2 a a //NOS TU PN Y TU PLBR a a URNOS SIMPR N L MOR. // todo x

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

Ie Io. Medidas absolutas y medidas relativas

Ie Io. Medidas absolutas y medidas relativas Mdids soluts y mdids rltivs Cómo otnr un mdi socición? Comprndo dos mdids d frcunci Mdids soluts (Difrnci) Mdids rltivs (Rzón) Supongmos qu un invrsión inicil d Euros s convirt n 2 Euros l co d un ño.

Más detalles

Aquauno Video 2 Plus

Aquauno Video 2 Plus Cont l progrmor l grifo. Aquuno Vio 2 Plus Pág. 1 Guí uso 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 Cli! Pr Aquuno Vio 2 (ó.): 8454-8428 Pr Aquuno Vio 2 Plus (ó.): 8412 Ar l móulo progrmión, prsionno

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERIIOS PROPUESTOS 0. Do l onjunto: = {4; 3; {6}; 8} y ls proposiions: * { 3} * { 4} * { 6} * { 6} * 8 * * * { 3 ; 8} Iniqu l númro proposiions vrrs: ) 7 ) 6 ) 5 ) 4 ) 3 0. Dos los onjuntos iguls: 3 ;

Más detalles

MULTIDISCIPLINARIO *

MULTIDISCIPLINARIO * Comptncias Esncials: Rol dl Par (Pr): Equipo Multidisciplinario TRABAJANDO COMO TRABAJANDO UN EQUIPO COMO MULTIDISCIPLINARIO UN EQUIPO MULTIDISCIPLINARIO * SOBRE ESTA ACTIVIDAD Timpo: 60 minutos Ojtivos:

Más detalles

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo.

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo. 1 2 En ests pregunts tienes que unir on un líne ls plrs o ls oriones on su diujo. Ejemplo: INDICACIONES Une on un líne l plr on su diujo... gllo. Une on un líne l orión on su diujo.. Julio orre... 3 AHORA

Más detalles

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA SÓLO PARA USO OFICIAL 1. Complto l Comité Dirión Tléono 3. 2. Orgnizión Ptroinor (si s pli) l Cnito y Pusto qu Soliit

Más detalles

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces :

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces : TRILCE Cpítulo 2 JUEGOS DE INGENIO. TRNSMISIONES : orrio ; : ntihorrio Como s más grn qu, Entons : mnos vults qu mos rorrn l mism nti ints Ls rus uis n un mismo j girn l mism vloi y n l mismo sntio Ejmplo

Más detalles

SEGURIDAD INFORMÁTICA. Ma. Katherine Cancelado

SEGURIDAD INFORMÁTICA. Ma. Katherine Cancelado SEGURIDAD INFORMÁTICA M. Kthrin Cncldo Agnd: Introducción l curso Prsntcions Informción dl curso Rgls dl jugo Mnos l obr! ---> Introducción l sguridd informátic INTRODUCCIÓN AL CURSO Acrc d ustds... Acrc

Más detalles

La guía de inteligencia operativa de Splunk

La guía de inteligencia operativa de Splunk L uí intlini oprtiv Splunk Utili Splunk y los tos ls máquins pr orr nuvos nivls visiili y onoiminto pr TI y l mprs Qué s Splunk Entrpris TM? Splunk s l motor pr los tos ls mquins. Colt, inx y provh los

Más detalles

Programación II. Presentación Curso , grupo 216. Programación II. Programación II. Programación II. Iván Cantador

Programación II. Presentación Curso , grupo 216. Programación II. Programación II. Programación II. Iván Cantador Prsntión Curso 0-07, grupo Iván Cntor Dspho: B.8 E-mil: ivn.ntor@um.s Págin w: http://www.ps.um.s/~ntor - trnsprnis ls Mool: https://mool.um.s/ours/viw.php?i=8 - guí ont, punts, jriios y prolms, prátis

Más detalles

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes.

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes. TEM : MONOMIOS Y OLINOMIOS MONOMIOS Es l prouto un númro por un o vris ltrs. Too monomio onst vris prts. El ro un monomio s l númro ltrs qu tin s lul sumno los ponnts ls ltrs. El ro l monomio ntrior srá.

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

3,2. 2) Determina la ecuación ordinaria y el resto de los elementos de las elipses con las siguientes ecuaciones generales:

3,2. 2) Determina la ecuación ordinaria y el resto de los elementos de las elipses con las siguientes ecuaciones generales: REPASO EXAMEN SEMESTRAL MATEMATICAS GRUPO 0 TEMA: ELIPSE ) Dtrmin l uión orinri, uión gnrl y l rsto los lmntos ls lipss on los siguints lmntos: *Horizontl C, 7 V ', B, ) Dtrmin l uión orinri y l rsto los

Más detalles

NOMBRE... EXAMEN RESIDENTES. XIX JORNADAS AMU 2015

NOMBRE... EXAMEN RESIDENTES. XIX JORNADAS AMU 2015 NOMBRE... EXAMEN RESIDENTES. XIX JORNADAS AMU 2015 1. Prgunt: S hl ánr próstt fmilir uno hy: Dos o más fmilirs on ánr próstt. Dos fmilirs ignostios nts los 60 ños. Dos fmilirs primr gro on ánr próstt.

Más detalles

14Soluciones a los ejercicios y problemas PÁGINA 270

14Soluciones a los ejercicios y problemas PÁGINA 270 Soluciones a los ejercicios y problemas PÁGIN 70 Pág. R PRSNTIÓN PUNTOS Representa los siguientes puntos: a) (, ), (, ), (0, ), (, ), (, 0). b) (, ), (0, 6), (, ), (, ), (, ). c) (; 0,), (;,), (,; ), (0;,),

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio?

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio? FÍSICA GENERAL I Ls d Nwton Cuáls d los siguints objtos stán n quilibrio? Un globo d hlio qu s ntin n l ir sin sndr ni dsndr b Un bol lnzd hi rrib undo s nuntr n su punto ás lto Un j qu s dsliz sin friión

Más detalles

LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS

LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS LETRA DE CATEGORÍA: F VAGÓN DESCUBIERTO DE BORDES ALTOS Vagón d rrnia Ltras índi a on bogis part suprior ( a ) part inrior ( a ) on 3 unidads on 4 ó más unidads (xlusivamnt a través dl túnl) (xlusivamnt

Más detalles

SOLUCIONES DIGITALES PARA ANUNCIANTES MIEMBRO DE

SOLUCIONES DIGITALES PARA ANUNCIANTES MIEMBRO DE SOLUIONES IGITALES PARA ANUNIANTES MIEMBRO E El Intertive Avertising Bureu (IAB), funo nivel internionl en 996, es el prinipl orgnismo representtivo e l inustri puliitri online en el muno. omo soiión internionl

Más detalles

Guía de referencia para el instalador y el usuario final

Guía de referencia para el instalador y el usuario final Guí rfrni pr l instlor y l usurio finl Uni ir oniiono VRV IV RYYQ8T7Y1B RYYQ10T7Y1B RYYQ12T7Y1B RYYQ14T7Y1B RYYQ16T7Y1B RYYQ18T7Y1B RYYQ20T7Y1B RYMQ8T7Y1B RYMQ10T7Y1B RYMQ12T7Y1B RYMQ14T7Y1B RYMQ16T7Y1B

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

del equipo y comprobación de los componentes

del equipo y comprobación de los componentes Guí onfigurión rápi Iniio MFC-J6510DW MFC-J6710DW L l follto Avisos sor sguri y lgls nts onfigurr l quipo. A ontinuión, l st Guí onfigurión rápi pr rlizr l onfigurión instlión orrtmnt. ADVERTENCIA AVISO

Más detalles

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:

Más detalles

Minimización por el método de QUINE-McCLUSKEY

Minimización por el método de QUINE-McCLUSKEY Minimizión por l métoo QUINE-MCLUSKEY S tinn os forms srrollr l métoo Quin-MClusky: on un ominión inri y un ominión iml. Ams forms s srrollrán mint os jmplos, rsptivmnt. Cominión BINARIA. S l funión: F(A,

Más detalles

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013.

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. lón él Bcas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. BASES El Instituto Ciun-UL Tcnologías CAC y Dsarrollo Trritorial convoca cuatro bcas para ralización, n Institucions

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR INORM D RUT RÍTI DL UR D GSTOS PGIN: 1 D 8 : 01/02/ OR: 17:20:22 laboracion del Traslado I=- NTIDD 191-0000-0000 0000 1 PGO MPRS MUNIIPL D GU POTL SRVIIO D LIQUIDO VITL N NTRO INTGRDO D DIUSION ULTURL

Más detalles

MI AMIGO AMADO. E G#m A B ERES PAZ, MI REFUGIO Y MI ESCONDEDERO E G#m A B C#m MI AMIGO, AMADO EN QUIEN YO ESPERO EL DÍA

MI AMIGO AMADO. E G#m A B ERES PAZ, MI REFUGIO Y MI ESCONDEDERO E G#m A B C#m MI AMIGO, AMADO EN QUIEN YO ESPERO EL DÍA MI MIO MDO #m ON MI LM SÑOR, Y TODO LO QU SOY T DORRÉ, T DORRÉ #m ON MI O SÑOR, Y TODO L ORZÓN T DORRÉ, T DORRÉ RS RND Y TODO PODROSO RS VID Y ÚN MUHO MÁS #m RS PZ, MI RFUIO Y MI SONDDRO #m MI MIO, MDO

Más detalles

ENCUESTA MUNDIAL DE SALUD ESCOLAR (GSHS) MÓDULOS DEL CUESTIONARIO BÁSICO

ENCUESTA MUNDIAL DE SALUD ESCOLAR (GSHS) MÓDULOS DEL CUESTIONARIO BÁSICO NUST MUNIL SLU SOLR (SS) MÓULOS L USTIONRIO ÁSIO Módulo para información demográfica sobre los entrevistados con el cuestionario básico de la SS. Qué edad tiene usted? o menos años años años años 5 años

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

34 EJERCICIOS de LOGARITMOS

34 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Cuestionario Proyecto Europeo de investigación Able to Include -Profesionales -

Cuestionario Proyecto Europeo de investigación Able to Include -Profesionales - Custionario Proycto Europo d invstigación Abl to Includ -Profsionals - Estamos llvando a cabo un proycto uropo, cuyo objtivo s hacr qu la tcnología sa más accsibl a las prsonas con discapacidad intlctual,

Más detalles

Ejemplo para transformar un DFA en una Expresión Regular

Ejemplo para transformar un DFA en una Expresión Regular Ejemplo pr trnsformr un DFA en un Expresión Regulr En este texto vmos ver uno e los métoos que se usn pr trnsformr utómts finitos eterminists en expresiones regulres, el métoo e eliminión e estos. Cuno

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR RPÚLI DL UDOR JRIIO: MIDUVI DIRION PROVINIL D INORM D RUT RÍTI DL UR D GSTOS PÁGIN: de H: 5 HOR: :8:3 RUédula rrado laboracion del Traslado ntregado G=- NTIDD 55-3- MINISTRIO D DSRROLLO URNO Y VIVIND 3

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

Cuestionario alumnado

Cuestionario alumnado VLUIÓN IGNÓSTIO 2009-2010 2n SO uestionario alumnado Govern de les Illes alears onselleria d ducació i ultura Institut d valuació i Qualitat del Sistema ducatiu de les Illes alears VLUIÓN IGNÓSTIO 2009-2010

Más detalles

El don anónimo o la paradoja de Berta

El don anónimo o la paradoja de Berta El don anónimo o la paradoja de Berta A lo mejor opino malamente, pero lo que pasa que... si yo busco una mujer... y además si la busco de aquí medio, a lo mejor no se enteran en mi pueblo... Pero si yo

Más detalles

DEPARTAMENTO DE INFORMATICA UDES

DEPARTAMENTO DE INFORMATICA UDES PRTMNTO INFORMTI US URSOS SIOS INFORMTI SMSTR - 2016 IRIIO SMSTR OIO NOMR L URSO RQUISITOS RUPOS HORRIOS ISPONILS STUINTS TOS LS LS FULTS PRIMR SMSTR PRIMR SMSTR (INII L 9 SMN LS) 8221 INFORMTI SI * WINOWS

Más detalles

Trabajador por cuenta ajena y autónomo a la vez. Es posible?

Trabajador por cuenta ajena y autónomo a la vez. Es posible? Trabajador por cunta ajna y autónomo a la vz. Es posibl? ES POSIBLE SER TRABAJADOR POR CUENTA AJENA Y AUTÓNOMO A LA VEZ? MERECE LA PENA ESPERAR A ENERO 2018? QUÉ OPCIONES TENGO? PUEDO ACOGERME A LA TARIFA

Más detalles

II.- Lee cuidadosamente, POR FAVOR responde todo lo que se pide. Recuerda que no hay respuestas buenas ni malas y que tu honestidad es necesaria.

II.- Lee cuidadosamente, POR FAVOR responde todo lo que se pide. Recuerda que no hay respuestas buenas ni malas y que tu honestidad es necesaria. Apéndice A. Encuesta I.- Este cuestionario corresponde a un trabajo de tesis de Economía. La encuesta aquí presentada tiene la finalidad de obtener la mayor información necesaria para esta investigación

Más detalles

www.medigraphic.org.mx

www.medigraphic.org.mx Vol. V, no. 3 sptimr-iimr 2013 pp. 139-145 Rhilitión stomtológi jo nstsi gnrl n pints on sínrom Down. Prsntión utro sos Itzl Monsrrt Lópz Hurto,* Mrí Angéli Cárns Mnoz** Rsumn Los sos on sínrom Down stán

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

ANEXO 10 - Ejercicio de Planificación

ANEXO 10 - Ejercicio de Planificación ANEXO 10 - Ejrcicio Plnificción En l Mr Mium s sá rlizno un jrcicio plnificción con l fin sgurr un mnjo susnbl los rcursos y l consrvción los srvicios cológicos involucros. Pr llo s h runio l mjor informción

Más detalles

L S295 DÍA1 CUIDAR EL PLANETA

L S295 DÍA1 CUIDAR EL PLANETA L S295 Í1 La Tierra está enferma. Por culpa de la acción irresponsable de los seres humanos, el equilibrio ecológico del planeta está en serio peligro. e acuerdo con un informe del Programa de la Naciones

Más detalles

Herramientas Gratis para Acelerar tus. Para Emprendedores y Directivos

Herramientas Gratis para Acelerar tus. Para Emprendedores y Directivos Herrmients Grtis pr Acelerr tus Pr Emprendedores y Directivos El emil es un herrmient de prospección crucil en l ctulidd. Yeswre es un plicción increíble de Gestión de Emil pr Vents que puede disprr tu

Más detalles

31 EJERCICIOS de LOGARITMOS

31 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Instrucciones de Windows para las impresoras conectadas localmente

Instrucciones de Windows para las impresoras conectadas localmente Página 1 7 Guía ontivia Instruions Winows para las imprsoras ontaas loalmnt Nota: Al instalar una imprsora ontaa loalmnt, si l CD Sotwar y oumntaión no amit l sistma oprativo, s utilizar l Asistnt para

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR RPÚLI DL UDOR JRIIO: SRVIIO PULIO PR PGO D IDNTS D TRNSITO - PLNT NTRL INORM D RUT RÍTI DL UR D GSTOS PÁGIN: de H: 5 HOR: 8:57: RPORT: R858.rdlc RUédula rrado laboración probado Traslado G=- NTIDD -- SRVIIO

Más detalles

REPÚBLICA DEL ECUADOR INFORME DE RUTA CRÍTICA DEL CUR DE GASTOS

REPÚBLICA DEL ECUADOR INFORME DE RUTA CRÍTICA DEL CUR DE GASTOS RPÚLI DL UDOR JRIIO: 4 S D L ULTUR UTORIN NULO D OLR INORM D RUT RÍTI DL UR D GSTOS PGIN : D 8 : 4//4 OR : :5.59 rrado laboración del Traslado NTIDD 9-- S D L ULTUR UTORIN NULO D OLR S D L ULTUR UTORIN

Más detalles

Obesidad y Siniestralidad Laboral. Gustavo Matsuoka Sato, Eva Pacho Jiménez, Alberto Ordoñez Pérez.

Obesidad y Siniestralidad Laboral. Gustavo Matsuoka Sato, Eva Pacho Jiménez, Alberto Ordoñez Pérez. Obesi y Siestrli Lborl Gustvo Mtsuok Sto, Ev Pcho Jiménez, Alberto Oroñez Pérez. Introucción Es eviente que l obesi constituye un e ls pls el silo XXI. Objetivos Comprr l incienci e ccientes y bjs lborles

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

Dos Arbolitos # # œ œ œ œ œ œ. œ œ œ œ œ. j œ. œ œ n œ œ œ œ # 4. œ. œ. œ. œ. œ. œ. j œ - œ. œ. œ #. œ. œ - œ. œ. œ. œ - n œ œ.. œ. œ. œ.

Dos Arbolitos # # œ œ œ œ œ œ. œ œ œ œ œ. j œ. œ œ n œ œ œ œ # 4. œ. œ. œ. œ. œ. œ. j œ - œ. œ. œ #. œ. œ - œ. œ. œ. œ - n œ œ.. œ. œ. œ. for Southwestern ollee Mariachis Level hucho Martinez il arr Jeff Nevin Vln 1 Huapano q»ª Vln n n Tpt 1 - n - n Tpt - - Arm Bao? 7 Jeff Nevin, 001 Vln 1 8 A Vln Tpt 1 - - - - - - - - Tpt Arm Bao? - - -

Más detalles

Docente de Comunicación

Docente de Comunicación DÍA 1 1 Estimo() Dont: El Ministrio Euión stá llvno o un vluión irigi los stuints sxto gro primri pr onor l nivl prnizj qu stos hn srrollo, mint l pliión prus y ustionrios qu yun omprnr sus nivls prnizj

Más detalles

UNIVERSIDAD LATINOAMERICANA PREPARATORIA Clave de Incorporación UNAM 1183 Ciclo GUÍA PARA EXAMEN EXTRAORDINARIO MATEMÁTICAS IV Clave 1400

UNIVERSIDAD LATINOAMERICANA PREPARATORIA Clave de Incorporación UNAM 1183 Ciclo GUÍA PARA EXAMEN EXTRAORDINARIO MATEMÁTICAS IV Clave 1400 UNIVERSIDAD LATINOAMERICANA PREPARATORIA Clv Incorporción UNAM 118 Ciclo 01 01 GUÍA PARA EXAMEN EXTRAORDINARIO MATEMÁTICAS IV Clv 100 Eloró: Joclyn Villsñor Murillo y Enriqu Lgun Roríguz OBJETIVO DE LA

Más detalles

Universidad de Puebla

Universidad de Puebla Univrsi Pul Mnul Imgn Instituionl Introuión Como prt l rnovión qu stá tnino lugr n l Univrsi Pul, s h rlizo un risño su imgn instituionl, on l fin unifirl y trnsformrl n un mio omuniión sólio y ftivo,

Más detalles

Para consultas llamar al: 800-4722

Para consultas llamar al: 800-4722 I. Documntos ncsrios pr solicitr un préstmo hipotcrio ASALARIADOS Crt d trbjo originl Copi d cédul d idntidd prsonl Copi d l fich d Sguro Socil Copi d los dos últimos tlonrios d chqu Solicitud complt firmd

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

SUBPARTE C - LICENCIA DE PILOTO PRIVADO (AVIÓN) - PPL(A) JAR-FCL 1.100 Edad mínima. doble mando en avión se puede reducir a no menos de 20 horas.

SUBPARTE C - LICENCIA DE PILOTO PRIVADO (AVIÓN) - PPL(A) JAR-FCL 1.100 Edad mínima. doble mando en avión se puede reducir a no menos de 20 horas. SUBPARTE C - LICENCIA DE PILOTO PRIVADO (AVIÓN) - PPL(A) JAR-FCL 1.100 E mínim El spirnt un PPL(A) tnrá, omo mínimo, 17 ños. JAR-FCL 1.105 Aptitu ísi El spirnt un PPL(A) rá sr titulr un rtiio méio ls 1

Más detalles

Expo Diseño 2009 Páginas 2 a 5

Expo Diseño 2009 Páginas 2 a 5 Año 3. Númro 4. Novimr 2009. Ejmplr grtuito. Boltín l Esul Disño Crrtr Cholul, 200 mts. spués l Prifério. Méri, Yután, Méxio. Tl. (999) 930-19-00. Ext. 2401, Fx (999) 930-19-18 www.unimolo.u.mx/isno/ En

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Guix Mtátis II UNIDD DETERMINNTES.. DETERMINNTE DE ORDEN UNO. D un triz ur orn uno sri o in, oo l núro rl:. DETERMINNTE DE ORDEN DOS. D un triz ur orn os oo l núro rl: Ejplos:, s in l rinnt,

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

LICEO MARTA DONOSO ESPEJO EJERCICIOS DE POTENCIAS APLICANDO DEFINICION

LICEO MARTA DONOSO ESPEJO EJERCICIOS DE POTENCIAS APLICANDO DEFINICION LIO MT ONOSO SJO JIIOS OTNIS LINO FINIION MULTILIIÓN Y IVISIÓN 1. Simplific: ) 5 5 e) 4 6 4 7 i) 6 7 : 6 b) 6 6 4 f) 9 8 9 6 j) 4 6 c) 5 7 g) 5 7 : 5 d) 5 7 h) 5 4 : 5. Simplific: ) 9 6 9 e) 5 0 i) 5 5

Más detalles

CINÉTICA DE DOSIS MÚLTIPLE. Tema 12

CINÉTICA DE DOSIS MÚLTIPLE. Tema 12 INÉTIA E OSIS MÚLTIPLE Tm 2 Ínic contnios 2 Introucción Aministrción novnos Prfusión intrmitnt Aministrción xtrvsl Timpo pr lcnzr l sto stcionrio oncntrción mi n l sto stcionrio osis choqu Fctors qu moificn

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

CRISTO ALTISIMO SEÑOR

CRISTO ALTISIMO SEÑOR RISTO LTISIMO SÑOR Bm7 QUÍ STOY N TU SNTO LUR, /D D VIN QUÍ PR DORRT. Bm7 MI ORTLZ D TÍ LUIRÁ /D D Y MI DLII S ONTMPLRT. m Bm7 HRÉ MI MORD JUNTO TU PRSNI. QUIRO VR TU ROSTRO /D D B7/D# Y XLTRT TÍ SÑOR.

Más detalles

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales Prctic Sistms lctrónics Prctic : Apliccions linls d los mplificdors oprcionls Autor: Profsor rsponsbl: Profsor cuidnd: né Wrnr Ibld Slvdor Brcho dl Pino osrio Csnuv Arpid Objtivo d l práctic: El objtivo

Más detalles

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO 1. INTRODUCCIÓN No importa l tamaño d la mprsa n la qu dsarrollmos nustra labor profsional. No importa l númro d prsonas qu compongan l dpartamnto al qu nos

Más detalles

LUNES MARTES MIÉRCOLES JUEVES VIERNES SÁBADO DOMINGO SALMOREJO POLLO GUISADO CON VERDURITAS NATILLAS CREMA DE CALABAZA

LUNES MARTES MIÉRCOLES JUEVES VIERNES SÁBADO DOMINGO SALMOREJO POLLO GUISADO CON VERDURITAS NATILLAS CREMA DE CALABAZA Semana del 27/6 al 3/07 LUS RTS ÉRLS JUVS VRS SÁB G LTJS VRURS PS FRT SL FL ZUL FS PRS FLT L LJ PTJ LGS Y GRBZS PTS SS SLRJ PLL GUS VRURTS TLLS PTTS H RLLTS L HR SLS GZPH PLL XT USS SL VRURS R L JRR PTT

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles