JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces :

Tamaño: px
Comenzar la demostración a partir de la página:

Download "JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces :"

Transcripción

1 TRILCE Cpítulo 2 JUEGOS DE INGENIO. TRNSMISIONES : orrio ; : ntihorrio Como s más grn qu, Entons : mnos vults qu mos rorrn l mism nti ints Ls rus uis n un mismo j girn l mism vloi y n l mismo sntio Ejmplo : Si l ru 4 vults. Cuánts vults rá l ru? 40 ints 20 ints # ints : n # ints : n # vults : V # vults : V n V n V 4 40 V 20 V 8 vults Ejmplo : Cuánts rus girn n sntio ontrrio l ru? D C E F G Rsoluión : D G E Contrri l ru "" son :, D, E y G. Rspust : 4 rus 23

2 Rz. Mtmátio. CERILLS Ejmplo : L figur stá form por 12 plitos fósforo. Cuántos hy qu movr omo mínimo pr otnr 3 uros l mismo tmño?. (No jr o sulto) Rsoluión : Rspust : 3 plitos Ejmplo : Cuántos plitos hy qu movr omo mínimo pr otnr un vrr igul? Rsoluión : Rspust : 1 plito C. PRENTESCO Ejmplo : Quién s l únio isnito l ulo l pr José? Rsoluión : Su isulo Su ulo Su pr José ulo l Pr José Únio isnito st sñor s José Rspust : José Ejmplo : Sntos l ms stán 2 prs, 2 hijos y un nito. Cuánts prsons omo mínimo stán runis? Rsoluión : Pr qu xist l mínimo númro prsons, 1 prson rá umplir 1, 2 o más rols ntro un fmili, sí ntons un hijo pu sr pr l vz. ulo Pr Pr C Rspust : 3 prsons 24

3 TRILCE D. RELCIÓN DE TIEMPO Ejmplo : Si l mñn l pso mñn s Luns. Qué í srá l ntyr l mñn l pso mñn h 2 ís? Rsoluión : Consirno : : yr (-1) : ntyr (-2) M : Mñn (1) PM : Pso Mñn (2) : oy (0) Lugo : M PM MPM Entons uno imos l mñn (1) l pso mñn (2) s Luns, nos rfrimos qu: = 3 s Luns. oy Vi S Do Lu Nos prguntn : El ntyr (-2), l mñn (1), l pso mñn (2), h 2 ís (-2), nos rfrimos qu : = - 1 s... oy Juvs Virns Rspust : Juvs E. CONSTRUCCIONES Coloqu los númros l 1 l 9, uno por írulo, mnr qu ls sums los númros lo s igul 17. Dr omo rspust l sum los númros qu vn n los vértis. Rsoluión : Primr Métoo x Sguno Métoo y f 17 z Dl gráfio tnmos : x y z y z x f x+y+z+x+y+z++++++f=51... (1) Pro f + x + y + z s l sum : = 45 Entons l rmplzr n (1) tnmos : x + y + z + 45 = 51 x + y + z = 6 L sum rl s : L sum supust : = 51 Esto quir ir qu hy un xso = 6 y s qu los númros oloos n los vértis s rpitn (furon ontos n 2 oportunis). Por lo tnto x + y + z =

4 Rz. Mtmátio EJERCICIOS PROPUESTOS 01. Cuánts rus girn n sntio ntihorrio? ) 1 ) 2 ) 3 ) 4 ) Cuántos plitos hy qu quitr omo mínimo pr otnr sólo 3 uros l mismo tmño qu los originls? (No jr o sulto) ) 2 ) 4 ) 3 ) 5 ) Cuánts rus girn n sntio opusto l ru? ) 4 ) 3 ) 6 ) 2 ) Cuántos plitos hy qu movr omo mínimo pr qu l figur ps l posiión I l posiión II? (I) (II) ) 4 ) 5 ) 3 ) 2 ) L figur mustr los ngrnjs :,, C,..., Z 8; 12; 16 ;... ; 64 ints rsptivmnt; si "" 72 vults por minuto. Cuánts vults rá Z n mi hor? ) 1 ) 2 ) 3 ) 4 ) Cuántos plitos hy qu movr omo mínimo pr qu l igul inorrt qu s ontinuión, s onvirt n un igul vrr? C Z ) 9 ) 45 ) 270 ) 10 ) Si l ru "" 48 vults. Cuánts vults más qu "D" "C"? D C 40 ints 30 ints 60 ints ) 16 ) 8 ) 12 ) 10 ) 7 80 ints ) 5 ) 4 ) 3 ) 2 ) L hrmn l hijo l hrmn l hijo l hrmno mi pr s mi : ) Tí ) ij ) rmn ) Sorin ) Mr 10. Con sit mons s form l ruz mostr. Cuánts mons hy qu mir posiión pr otnr un ruz on l mismo númro mons n rzo? (Dr l mínimo vlor) 05. Cuánts rills hy qu movr omo mínimo pr otnr un vrr igul? 26

5 TRILCE ) 3 ) 2 ) 1 ) 4 ) El otro í n los jrins l prqu suhé os prsons l siguint onvrsión : "Tn n unt qu mi mr s l sugr tu pr". Qué prntso un ls 2 prsons? ) Pr - hijo. ) Tío - sorino. ) rmnos. ) ulo - nito. ) Prino - hijo. 12. En un runión s nuntrn prsnts un ulo, un ul, 2 prs, 2 mrs, 2 sposos, 2 sposs, un tí, 1 nur, 1 nito, un nit, un uño y un uñ. Cuánts prsons omo mínimo s nuntrn prsnts n l runión? ) 6 ) 7 ) 8 ) 9 ) Si ntro trs ís ourrirá qu l mñn l nts yr l yr l pso mñn yr srá juvs. Qué í fu l pso mñn l mñn l yr h 3 ís? ) 17 ) 15 ) 9 ) 11 ) Por lo mnos uántos númros n sr mios posiión pr qu ls sums los númros unios por un lín rt sn iguls y más sn l máxim sum posil? ) 6 ) 3 ) 5 ) 4 ) Coloqu ls ifrs l 1 l 8 n los írulos los os uros pr qu los trs vértis los triángulos pquños sumn lo mismo. Cuál s s sum, si s l mnor posil? 12 ) Mrts ) Juvs ) Miérols ) Domingo ) Luns 14. Sino qu l mñn l ntyr l mñn pso mñn srá juvs. Qué í fu l ntyr l yr l mñn h 2 ís? ) Virns ) Luns ) Domingo ) Juvs ) Mrts ís s umplí qu l ntyr l yr mñn r mrts. Qué í l smn srá, uno prtir hoy trnsurrn tntos ís omo los ís qu psn s l yr ntyr hst l í hoy? ) Luns ) Mrts ) Juvs ) Sáo ) Domingo 16. Coloqu los númros l 1 l 9, uno por írulo, mnr qu ls sums los númros lo l triángulo s igul 20. Dr omo rspust l sum los númros qu vn n los vértis ) 10 ) 14 ) 12 ) 11 ) Si l ru "" 20 vults. Cuánts vults l ru "E"? C D E ) 25 ) 30 ) 28 ) 40 ) Si l mñn l pso mñn l yr mñn h 3 ís s miérols. Qué í srá l yr l pso mñn l mñn pso mñn? ) Luns ) Miérols ) Sáo ) Domingo ) Mrts 21. Cuántos plitos mos rtirr omo mínimo pr jr 6 n l figur? 27

6 Rz. Mtmátio ) 4 ) 5 ) 6 ) 7 ) Si l mñn l mñn l yr l pso mñn l mñn l yr srá juvs. Qué í srá ntro 4 ís? ) Luns ) Domingo ) Sáo ) Virns ) Juvs 23. Si "" gir n sntio ntihorrio, n qué sntio girn "" y "C" rsptivmnt? 27. El pso mñn l yr l mñn s Luns. Qué í srá l ntyr h 2 ís? ) Miérols ) Luns ) Mrts ) Sáo ) Virns 28. Cuántos plitos hy qu quitr omo mínimo pr otnr 2 uros ifrnt tmño? (No jr o sulto). ) 1 ) 2 ) 3 ) 4 ) 5 C ) orrio - ntihorrio. ) orrio - orrio. ) ntihorrio - orrio. ) ntihorrio - ntihorrio. ) No s muvn. 24. En qué sntio s movrán los ngrnjs 30; 52; 71? (orrio : ; ntihorrio : ) ),, ),, ),, ),, ),, 25. En l siguint oprión : 29. En l figur istriuir los númros l 1 l 12 moo qu l sum los númros qu s hlln n lo l uro s 22. Dr omo rspust l sum los númros qu vn n los vértis, ( ) ) 12 ) 22 ) 10 ) 16 ) Cuántos plitos fósforo s tnrán qu movr omo mínimo pr qu l siguint igul rsult vrr? Cuántos plitos s n movr omo mínimo pr otnr 132? ) 1 ) 2 ) 3 ) 4 ) En l figur mostr hy 22 plitos l mismo tmño y form. Si mimos posiión 2 plitos. Cuál s l máximo númro uros qu rsultn n l figur? ) 3 ) 2 ) 1 ) 5 ) Pr qu l sistm ngrnjs s muv qué ru(s) s (n) rtirr? ) 4 y 10 ) 5 y 10 ) 13 y 1 ) 11 y 6 ) 5 y 11 ) 9 ) 10 ) 11 ) 12 ) 13 28

7 TRILCE 32. Si l mñn l pso mñn, l yr l ntyr h 2 ís fu miérols. Qué í srá l mñn ntro 3 ís? ) Luns ) Mrts ) Miérols ) Juvs ) Sáo ) orrio - orrio. ) orrio - ntihorrio. ) ntihorrio - orrio. 38. En l siguint sistm ngrnjs, uántos girn n sntio horrio? 33. Mi Tí Juli s l hrmn mi mr. Mrth s l hrmn mi tí, pro no s mi tí. Qué prntso xist ntr mi hrmno Euro y Mrth? ) Sorino - Tí. ) ijo - Mr. ) Primo - Prim. ) rmno - hrmn. ) No s s. 34. S s qu l siguint oprión s inorrt. Cuántos plitos omo mínimo n mir posiión pr qu l oprión s orrt? ) 3 ) 4 ) 2 ) 5 ) Si l ntyr mñn pso mñn srá virns. Qué í fu yr? ) Miérols ) Luns ) Sáo ) Juvs ) Mrts 40. Cuántos plitos hy qu rtirr omo mínimo pr qu no qu ningún triángulo? ) 2 ) 3 ) 1 ) 4 ) El sñor Lzo tin os hijos únimnt, éstos su vz son prs Jun y Mro, rsptivmnt. Quién s l únio sorino l pr l primo hrmno l hijo l pr Mro? ) Jun ) El Sr. Lzo ) Mrio ) Mro ) Iván 36. Qué s rspto mí l ulo mtrno l mllizo Lonl, si l mr Lonl s l hrmn mi hrmno gmlo? ) 1 ) 2 ) 3 ) 4 ) En l siguint figur s rliz lgunos movimintos los plitos pr formr os figurs iéntis l originl pro más pquñs. llr l mnor númro plitos qu s movr pr logrr iho ojtivo. ) ulo ) ijo ) Tío ) Pr ) Yrno 37. Si l ngrnj V s muv n sntio ntihorrio hi on girn los ngrnjs XVI y XXIII rsptivmnt. I II III IV ) 6 ) 7 ) 8 ) 9 ) En l figur, uántos isos girn n sntio horrio? Os : n N (4n) isos (2n+1) isos (6n) isos ) No gir too l sistm. ) ntihorrio - orrio. ) 7n + 2 ) 6n + 3 ) 7n + 1 ) 9n ) 9n

8 Rz. Mtmátio 43. Jorg s l únio ompr l prino l únio hijo l mr Riro. Si Jorg tmién s hijo únio. Qué prntso tin l isnito l pr Jorg, on Riro? ) Nito ) rmno ) Pr ) ijo ) Tío 44. Ui los númros : 2 ; 3 ; 4 ; 5 ;... ; 9 n ls sills, sin rptir, mnr qu n sp l molino l sum s l mism. Entons l sum mínim srá : 48. Si l í yr fus omo hoy, fltrín 3 ís pr sr luns. Qué í srá l yr l pso mñn mñn hoy? ) Domingo ) Sáo ) Miérols ) Luns ) Mrts 49. Coloqu los númros l 1 l 12 n los írulos pquños moo qu ro sum lo mismo. y 4 ros, uno ngrz 6 írulos. Cuál s st sum? ) 13 ) 15 ) 16 ) 12 ) M prguntron : Cuántos hrmnos tngo y rsponí: Tngo 8, pro onmigo no somos 9; porqu somos 6 y somos 4 y más porqu soy l último y l primro. D uánts prsons s hl? (Sin ontrm mí) ) 7 ) 8 ) 9 ) 10 ) Cuánts rus s muvn n sntio horrio? (2n-1) rus ) (n - 5) ) (n + 3) ) (n + 2) ) (n - 2) ) (n + 1) 47. Cuál s l mnor númro plitos fósforo qu s n movr pr mir l irión l nv? ) 44 ) 40 ) 39 ) 38 ) Gilr st mirno un rtrto y lguin l prguntó : " D quién s s fotogrfí?", lo qu él ontstó: "Si soy hijo únio; pro l pr ést homr s l hijo mi pr". D quién r l fotogrfí qu st mirno Gilr? ) D él mismo ) D su tío ) D su pr ) D su primo ) D su hijo 51. Color n los 12 sillros los númros l 1 l 12; sin rptiión, moo qu l sum los númros ls os fils s l mism sum y l sum los númros ls 6 olumns s l mism sum, istint l ntrior. Dr omo rspust l mnor prouto 3 númros uios n un mism fil. ) 3 ) 5 ) 6 ) 8 ) 10 ) 12 ) 14 ) 16 ) 20 ) 21 30

9 TRILCE 52. Cuántos plitos s n mir posiión omo mínimo l siguint figur, pr otnr 4 triángulos quilátros ongrunts? 57. Esri n uro los númros l 1 l 8, on l oniión qu l ifrni ntr os númros vinos no s nun mnor qu 4. llr l sum los xtrmos. ) 8 ) 7 ) 9 ) 6 ) 10 ) 5 ) 1 ) 2 ) 3 ) Cuánts rus girn n sntio horrio? 53. En l siguint sistm hy 90 ngrnjs, uál s l ifrni ntr l númro ngrnjs qu girn n sntio horrio on los qu girn n sntio ntihorrio? ) 2 ) 3 ) 1 ) 4 ) En un irto ms xistn 5 virns, 5 sáos y 5 omingos. Qué í srá l 8 l siguint ms? ) 1 ) 2 ) 3 ) 4 ) Si l í mñn fus omo pso mñn, ntons fltrín 2 ís prtir hoy pr sr omingo. Qué í l smn srá l mñn l yr hoy? ) Luns ) Mrts ) Miérols ) Domingo ) Sáo 60. Osrv U. l siguint figur : ) Sáo ) Virns ) Domingo ) Juvs ) Miérols 55. En un runión stán prsnts un isulo, 3 hijos, 3 prs, 2 nitos y un isnito. C uno lnzó os os otnino ntr toos 17 puntos. Si toos xpto l isulo otuviron l mismo vlor uno y l nti prsons runis s l mínim. Cuál s l máximo vlor otnio por l isulo? ) 9 ) 7 ) 11 ) 5 ) 10 Cuántos plitos fósforo hrá qu rtirr omo mínimo pr qu solmnt qun nuv uros, sin ltrr su j simtrí? ) 4 ) 5 ) 6 ) 7 ) Cuántos plitos s n rtirr omo mínimo, pr otnr un figur form por sólo 5 uros iguls? ) 3 ) 4 ) 5 ) 6 ) 8 31

10 Rz. Mtmátio 32 Clvs Clvs

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

Minimización por el método de QUINE-McCLUSKEY

Minimización por el método de QUINE-McCLUSKEY Minimizión por l métoo QUINE-MCLUSKEY S tinn os forms srrollr l métoo Quin-MClusky: on un ominión inri y un ominión iml. Ams forms s srrollrán mint os jmplos, rsptivmnt. Cominión BINARIA. S l funión: F(A,

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes.

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes. TEM : MONOMIOS Y OLINOMIOS MONOMIOS Es l prouto un númro por un o vris ltrs. Too monomio onst vris prts. El ro un monomio s l númro ltrs qu tin s lul sumno los ponnts ls ltrs. El ro l monomio ntrior srá.

Más detalles

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A. º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno

Más detalles

Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental

Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental Enust sor l uso Intrnt pr úsqus inormión sor Slu Mntl Inormión gnrl 1. E: 2. Génro: Msulino (Pon un ruz n lo qu pro) Fmnino 3. Cuál s tu ár stuio? Art, Ltrs, Estuios Soils Cini, Ingnirí, Ténios Emprsrils,

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

Enigmas 1: Productos envasados que se venden en los comercios

Enigmas 1: Productos envasados que se venden en los comercios Trr Cilo Primri Enigms 1: Proutos nvsos qu s vnn n los omrios Es un mtril vntjoso pr lrgr proutos qu s tinn qu protgr los ryos solrs Es un mtril qu onsrv muy in los limntos y s fáil oloión y lmnminto por

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA SÓLO PARA USO OFICIAL 1. Complto l Comité Dirión Tléono 3. 2. Orgnizión Ptroinor (si s pli) l Cnito y Pusto qu Soliit

Más detalles

Pertinencia Social y Participación Popular

Pertinencia Social y Participación Popular MOULO I-INTROUTORIO 10 HORS I FH HOR TIVI LUGR GRUPO VIOONFRNI/ 8:00-11:30 a.m. ONVRSTORIO/TRNSFORMIÓN TOOS UNIVRSITRI SL POSTGRO 2:00-3:30 p.m. INÁMI SOILIZ SL RUNIONS ONLUSIONS INIVIULS Y 4:00-5:20 p.m.

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015 Primr Pril Introuión l Invstigión Oprions Fh: 5 myo 2015 INDICACIONES Durión l pril: 3 hrs. Esriir ls hojs un solo lo. No s prmit l uso mtril ni lulor. Numrr ls hojs. Ponr nomr y númro éul n l ángulo suprior

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2.

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2. Algunos prolems. L olorión en ls mtemátis L olorión en ls mtemátis no es más que provehr lguns iferenis que estleemos entre los entes empleos en un prolem prtiulr, similr l utili e ls nemotenis en l progrmión,

Más detalles

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA El srrll mptnis prv un mbi psitiv rimint nstnt trnsfrmins qu mprn ls prsns, ls lírs, ls rgnizins y ls sis. Ls intgrnts

Más detalles

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila.

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila. 1 Cs s oorns por tpos nt orón yuxtpust: oputvs syuntvs vrstvs onsutvs xptvs N m vn os otos n vo os prorms orzón. T vns y o sprs tu rmn? Sí qu rs vtrno, sí qu t prpro stán mpno. A mí m ustrí yurt, pro n

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio?

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio? FÍSICA GENERAL I Ls d Nwton Cuáls d los siguints objtos stán n quilibrio? Un globo d hlio qu s ntin n l ir sin sndr ni dsndr b Un bol lnzd hi rrib undo s nuntr n su punto ás lto Un j qu s dsliz sin friión

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012 Carrra: Tcnicatura Suprir n Análisis y Prgramación d Sistmas Asignatura: Arquitctura d cmputadras Prfsr: Ing. Gabril Duprut Trabaj práctic Nr. : Sistmas d numración y códigs A l larg d st práctic cnstruirá

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Soluions los jriios prolms ustions Uni. El onjunto los númros rls Mtmátis plis ls inis Soils I NÚMEROS RIONLES E IRRIONLES. Hll l númro iml qu orrspon un ls siguints rions. omnt l rsulto: 0 00 0 0000 00

Más detalles

Nudo Es todo punto de la red en que concurren tres o más conductores.

Nudo Es todo punto de la red en que concurren tres o más conductores. ltos 1 4.12-1 Rgls Kirhho Un iruito, n gnrl, stá ormo por un onjunto rsistnis y gnrors..m. ontos un orm ritrri, mnr qu no simpr s posil sustituir los onjuntos rsistnis por sus quivlnts, y qu no suln str

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 Mtemátics Determntes Resumen DETERMINANTES (Resumen) Defición El determnte de un mtriz cudrd n x n es un número. Se otiene sumndo todos los posiles productos que se pueden formr tomndo n elementos de l

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

perspectiva cónica & proyección de sombras

perspectiva cónica & proyección de sombras expresión grái rojs mioletti primer ño este ossier es sólo un poyo el ontenio pso en lses, pensno en reorzr oneptos que pueen ser un tnto omplejos e explir... y más, e entener. l prouni on l que se ps

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

REPARTO PROPORCIONAL. Capít ulo INTRODUCCIÓN. En general repartir N DP a los índices a ; a ;... ; a

REPARTO PROPORCIONAL. Capít ulo INTRODUCCIÓN. En general repartir N DP a los índices a ; a ;... ; a Cpít ulo REPARTO PROPORCIONAL INTRODUCCIÓN * El Junio furon ps Pro, Jun y Plo. Consiguiron 8, y 0 psos, rsptivmnt, qu omprtiron n prts iguls on Jsús, l ul muy onoso, ntrgó pns pr qu s rprtn ntr llos. Cuántos

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

34 EJERCICIOS de LOGARITMOS

34 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo.

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo. 1 2 En ests pregunts tienes que unir on un líne ls plrs o ls oriones on su diujo. Ejemplo: INDICACIONES Une on un líne l plr on su diujo... gllo. Une on un líne l orión on su diujo.. Julio orre... 3 AHORA

Más detalles

Negocio desde la Visión del Cliente

Negocio desde la Visión del Cliente El MAPACnstruynd DE EMPATIA Nustr Mdl d En la antrir prsntación hablábams d mpatía y afirmábams u un prfund CONOCIMIENTO DEL CLIENTE rprsnta una vntaja cmptitiva difrncial n las rganizacins. Asimism, prsntábams

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

DEPARTAMENTO DE INFORMATICA UDES

DEPARTAMENTO DE INFORMATICA UDES PRTMNTO INFORMTI US URSOS SIOS INFORMTI SMSTR - 2016 IRIIO SMSTR OIO NOMR L URSO RQUISITOS RUPOS HORRIOS ISPONILS STUINTS TOS LS LS FULTS PRIMR SMSTR PRIMR SMSTR (INII L 9 SMN LS) 8221 INFORMTI SI * WINOWS

Más detalles

Matemáticas Discretas Grafos

Matemáticas Discretas Grafos Coorinión Cinis Computionls - INAOE Mtmátis Disrts Grfos Cursos Propéutios 200 Cinis Computionls INAOE Grfos Dfiniions básis Cminos y ilos Grfos ulrinos y hmiltoninos Isomorfismo Árbols Dr. Luis Villsñor

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior. Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

31 EJERCICIOS de LOGARITMOS

31 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado:

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado: EL ÁLGER GEÉTRI EL ESPI Y TIEP 87 6. GEETRÍ EL TETRER Volmn l ttrro El volmn n ttrro s l st prt l volmn l prllpípo q lo ontin (vés igr 5.6). El volmn l prllpípo s igl l proto trior trs rists lsqir no prlls.

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Índice alfabético. página: 565 a b c d e f g h i j k l m n o p q r s t u v w x y z. búsqueda contenido imprimir última pantalla atrás siguiente

Índice alfabético. página: 565 a b c d e f g h i j k l m n o p q r s t u v w x y z. búsqueda contenido imprimir última pantalla atrás siguiente Í é á: 565 á é ú ú á í é á: 566 A A é, 376 A, 378 379 Aé, 309 310 Aé ( ), 311 Aé, 305 308 Aé, 305 A, 463 A á B, 470 A á, 384 385 A,, Bç, 338 340 A é, 337 A, 333 334 A, 410 419 A K, 466 A, 123 A í, 205

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

Facultad de Ingeniería Física 1 Curso 5

Facultad de Ingeniería Física 1 Curso 5 Facultad d Ingniía Física Cuso 5 Índic Funt n moviminto con spcto al ai 3 Rsumn5 Ejcicio 5 Ejcicio 28 El obsvado stá n moviminto spcto a la unt n poso8 Rsumn Funt y obsvado n moviminto Ejcicio 3 Númo d

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

Capítulo 1. Definición : Es la figura geométrica determinada por la reunión de dos rayos no alineados que tienen el mismo origen.

Capítulo 1. Definición : Es la figura geométrica determinada por la reunión de dos rayos no alineados que tienen el mismo origen. pítulo 1 ÁNGULS finiión : Es l figur gométri trmin por l runión os ryos no linos qu tinn l mismo orign. Elmntos 1. Vérti :. Los : y Notión : * Ángulo : ), Ô * i l ángulo : m ) =. gión Intrior un ángulo

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

UNIDAD. Polígonos. Se dedica este tema al conocimiento de los polígonos y al estudio de sus construcciones, y se inicia haciendo tres consideraciones:

UNIDAD. Polígonos. Se dedica este tema al conocimiento de los polígonos y al estudio de sus construcciones, y se inicia haciendo tres consideraciones: UNI Polígonos ÍNIE E ONTENIOS 1. ONEPTOS ÁSIOS SORE TRIÁNGULOS.......................................... 58 2. ONSTRUIONES ELEMENTLES E TRIÁNGULOS................................... 59 2.1. ritrios igul

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR RPÚLI DL UDOR JRIIO: MIDUVI DIRION INORM D RUT RÍTI DL UR D GSTOS PGIN: 1 D : 01/07/ OR: 11:0:1 IV rrado laboracion del Traslado NTIDD 550-000-0000 MINISTRIO D DSRROLLO URNO Y VIVIND 000 MIDUVI DIRION

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Rack & Building Systems

Rack & Building Systems Rack & Building Systms La Emprsa RBS a nacido por la sinrgia y complmnto qu xist ntr sus productos y por l afán constant d nustra mprsa por difrnciars d la comptncia. En l ára d almacnaj industrial RBS

Más detalles

MÁQUINAS DE CORRIENTE ALTERNA A COLECTOR

MÁQUINAS DE CORRIENTE ALTERNA A COLECTOR MÁQUNAS D CORRNT ALTRNA A COLCTOR Norbrto A. Lmozy 1 RSÑA HSTÓRCA n l cominzo ls pliccions l nrgí léctric, inl l siglo XX, y bio l grn inlunci Thoms Alb ison (1847-1931), rinb l corrint continu, s l mplb

Más detalles

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios. Programa COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.cl Programa XVI Conferencia Internacional de Bibliotecología Buenas

Más detalles

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 1 Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Curto Grdo de Eduión Primri-2014 Diretiv N 18-2014-DGP-DRSET/GOB.REG.TACNA

Más detalles

Bullying: Más cerca de lo que pensamos?

Bullying: Más cerca de lo que pensamos? Bullying: Más r d lo qu pnsmos? CURSO_GRUPO_NÚMERO - Enust rlizd por los lumnos d primro d hillrto y v dirigid pr los ursos d primro, sgundo, trro y urto d l ESO. - A trvés d los rsultdos d stos ustionrios

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE., y 2. ) x 1.. Comprueba que es de equivalencia y calcula el conjunto cociente.

RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE., y 2. ) x 1.. Comprueba que es de equivalencia y calcula el conjunto cociente. Dprmno Mmái Apli. Ful Inormái. UPM. Rlions quivlni RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE ) En l onjuno N N s in l rlión (, ) R (, ). =.. Avrigu si s quivlni y si lo s lul l ls l lmno [(4, 8)]. 2) En l

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %

Más detalles

1 TEODORO AGUSTíN LÓPEZ y LÓPEZ

1 TEODORO AGUSTíN LÓPEZ y LÓPEZ -----------.------------ CALENDARIOS Y FESTIVIDADES 1 TEODORO AGUSTíN LÓPEZ y LÓPEZ Ants d qu l concpto «timpo» fus objto d studio n la historia dl pnsaminto grigo, surgn sistmas difrnts d mdir l timpo

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía Enfrntando Comportamintos Difícils Usando l Sistma d Guía R s o u r c & R f r r a l H a n d o u t Agrsión Obsrvación - Prguntas Trata la niña d hacr contacto d una manra inapropiada? Está tratando d sr

Más detalles

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras.

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras. POIROS - PRISMS POIRO I. POIRO: es el sólido limitdo por cutro o más regiones poligonles llmdos crs. RIST TR TUR RIST SI PRISM VRTI S R 1. PRISM: l prism es un poliedro cuys crs lterles son tres o más

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles