Facultad de Ingeniería Física 1 Curso 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Facultad de Ingeniería Física 1 Curso 5"

Transcripción

1 Facultad d Ingniía Física Cuso 5 Índic Funt n moviminto con spcto al ai 3 Rsumn5 Ejcicio 5 Ejcicio 28 El obsvado stá n moviminto spcto a la unt n poso8 Rsumn Funt y obsvado n moviminto Ejcicio 3 Númo d Mach 2 El cto Doppl n la luz 3 Ejcitación 4 Ejcicio 44 Ejcicio 54 Ejcicio 64 Ejcicio 74 Moviminto dl Obsvado, unt y vinto5 Considación d signos5 Compilado po: Ricado Minniti

2 Facultad d Ingniía Física Cuso 5 El tono d la sina d una ambulancia qu s acca s más agudo qu cuando pasa y s alja a dincia d cuncias nt l ada d la policía y l impulso ljado po un vhículo indica la vlocidad d st a luz d una galaxia ljana qu s alja d la tia pac más oja qu la d una galaxia qu no s alja odos stos son jmplos dl cto Doppl Paa l sonido, l cto Doppl dpnd d sí la unt o l obsvado s muvn nt sí uz, oma d adiación lctomagnética n un ango dtminado d cuncias qu pudn s dtctadas po l ojo humano as dints snsacions d colo cospondn a luz qu viba con distintas cuncias, qu van dsd apoximadamnt 4 4 vibacions po sgundo n la luz oja hasta unas 7,5 4 vibacions po sgundo n la luz violta Isaac Nton dscibió la luz como una misión d patículas, y Chistiaan Huygns dsaolló la toía d qu la luz s dsplaza con un moviminto ondulatoio a toía cuántica aima qu s compota n unos casos como una coint d patículas y n otos como una onda En st sgundo caso, la onda viba ppndicula a la dicción d popagación; po so, la luz pud polaizas n dos ondas ppndiculas nt sí a vlocidad d la luz n l vacío s toma como m/s Compilado po: Ricado Minniti 2

3 Facultad d Ingniía Física Cuso 5 Funt n moviminto con spcto al ai Cuando una unt stacionaia mit ondas d cuncia o, cada nt d onda s cnta n lla igua siguint, po cuando la unt s muv, l cnto d cada nt d onda séico stá n la posición d la unt cuando s mitió s nt d onda En la igua siguint la unt s muv con una vlocidad, mno qu la vlocidad d popagación d la onda Cuando t, la unt stá n l oign punto a y mit l nt d onda A Un píodo dspués t/ O, la unt stá n l punto b x b y mit l nt d onda B Dspués d dos píodos, t2, la unt stá n C, l nt d onda A tin l adio A 2v, y l nt d onda B tin l adio B v a unt s muv dictamnt hacia un obsvado situado n O, qu pcib los nts d onda spaados po la longitud d onda Compilado po: Ricado Minniti 3

4 Facultad d Ingniía Física Cuso 5 Compilado po: Ricado Minniti 4 x x x b b a b a 2 Esto pmit obtn la longitud d onda y po nd con la vlocidad d popagación la cuncia con la qu scucha l sonido qu mit la unt l obsvado O cuación Si la unt s stacionaia po lo qu s tin En l caso qu la unt s dsplac a una vlocidad dtminada la cuncia qu scuchaá l obsvado O s: po lo tanto cuación 2

5 Facultad d Ingniía Física Cuso 5 Paa O 2, la unt s alja, quin pcib una mayo longitud d onda y po nd una cuncia mno Como la componnt d la vlocidad d la unt hacia O 2 s -, las cuacions d la longitud d onda obsvada n O 2 s obtinn sólo cambiando l signo d, n las cuacions antios cuación Rsumn ± ± s utiliza cuando la unt s alja dl obsvado y - cuando s acca Ejcicio Encunt las cuacions paa l obsvado O 3 El obsvado s ncunta ubicado a una posición d la tayctoia d la unt, y po l toma dl cosno ab B cos Acos Compilado po: Ricado Minniti 5

6 Facultad d Ingniía Física Cuso 5 Compilado po: Ricado Minniti 6 cos 2 cos ab B cos cos 2 B B cos cos 2 B cos cos 2 cos cos 2 cos cos 2 como ntoncs cos 2cos cos 2cos

7 Facultad d Ingniía Física Cuso 5 2cos cos si l obsvado s ncontaa sob la tayctoia, st sía O 2, y si mplazamos n la última cuación antio l ángulo nos quda la cuación Si intntamos dal a las cuacions y 2 caáct gnéico dbmos tatalas vctoialmnt y podmos dmostalo po inducción matmática dond, s l vso unitaio 2 y Compilado po: Ricado Minniti 7

8 Facultad d Ingniía Física Cuso 5 Ejcicio 2 Una auto d policía s acca a 78 Km/h y hac sona su sina con 5 khz, si stamos paados al costado dl camino Qué cuncia oy cuando a la patulla s apoxima, b l auto stá nt a nosotos y c la patulla s alja? Cuando s acca 5kHz 5,4kHz 78m 36s m 33 s Cuando stá nt Cuando pasó 5kHz 5kHz 4,7kHz 78m 36s m 33 s El obsvado stá n moviminto spcto a la unt n poso Cuando una unt d sonido s muv a tavés dl mdio d tansmisión, la longitud d onda d las ondas qu s mitn cambian paa un obsvado n poso dbido a qu s poduc un cto Doppl 2 Obsva qu s pud intpta como qu la vlocidad con la qu s dsplaza la unt s ncunta poyctada n la dicción qu pasa po l obsvado y po la unt, admás dicha dicción s ppndicula al nt d ondas qu sob l incid n s momnto, qu s dond s qui dtmina la longitud d onda Compilado po: Ricado Minniti 8

9 Facultad d Ingniía Física Cuso 5 Un obsvado n moviminto también cib un cambio n la cuncia obsvada, po una azón ísica algo distinta a longitud d las ondas sonoas no vaía, po la apidz con las qu pasan los nts d onda po l odio dl obsvado dpnd d la vlocidad d st En la igua antio l obsvado s quin s acca con una vlocidad a la unt stacionaia y ncunta nts d onda spaados una longitud n l gáico, qu s accan a una vlocidad lativa, aunqu dsd l punto d vista cinmático spcto dl sistma d ncia dbía habs scito l Po tabaja n una sola dimnsión, la cuncia obsvada s la apidz con la qu stos nts d onda pasan po l obsvado, cuando la tayctoia dl obsvado contin a la unt cuando la tayctoia dl obsvado no contin a la unt sulta s pud pnsa como qu l vcto vlocidad dl obsvado s poycta sob la dicción qu un a st con la unt, po lo tanto n oma vctoial s pud scibi 3 3 omando como positivo la dicción d la poycción dl vcto vlocidad dl obsvado sob la cta qu un a st con la unt, s justiica l signo positivo n l numado dl tc tmino Compilado po: Ricado Minniti 9

10 Facultad d Ingniía Física Cuso 5 Compilado po: Ricado Minniti l Rsumn ± ± s utiliza cuando l obsvado s acca a la unt y - cuando s alja Funt y obsvado n moviminto Cuando s muvn a la vz la unt y l obsvado, ambos ctos s poducn simultánamnt Si sólo s muv la unt las cuacions son ± cuación 2 ± cuación 3 s utiliza cuando la unt s alja dl obsvado y - cuando s acca, po n oma vctoial cuación 4 cuación 5 En l caso qu los dos s muvan obsvado y unt

11 Facultad d Ingniía Física Cuso 5 Compilado po: Ricado Minniti El dnominado sulta la longitud d onda lativa qu tin la unt spcto dl obsvado Ejcicio 3 Cuál s la cuncia obsvada d la bocina d un auto qu s acca a 78 km/h, cuando l vinto sopla con una vlocidad d 32 km/h n la misma dicción y sntido qu l automóvil? Funt, /36 s m s m Obsvado, /36 s m s m

12 Facultad d Ingniía Física Cuso 5 v,27 5kHz,65 El cto dl vinto s aumnta lvmnt la cuncia obsvada po la gnt 5,49kHz Númo d Mach Si la vlocidad a la cual s dsplaza la unt s simila a la vlocidad dl sonido, s poduciá un nt d onda qu avanza con la unt, st nómno poduc vibacions sob la unt qu dsapacn al sobpasa dicha vlocidad dnominada Mach Cuando la vlocidad s supio a la vlocidad dl sonido dicho nt d ondas séico va qudando atás y dsapacn las vibacions sob la unt Compilado po: Ricado Minniti 2

13 Facultad d Ingniía Física Cuso 5 n l gáico antio s pud obsva la taza dl cono tangnt al nt d ondas, dicho cono s dnomina cono d MACH El ángulo qu oma la gnatiz dl cono con la bisctiz dl mismo lo dnominamos ϕ, t pdimos qu hagas como jcicio l análisis qu t pmita llga a la siguint conclusión t snϕ t n MACH unt sonido snϕ El cto Doppl n la luz Sgún la toía d la latividad d Einstin, la vlocidad d la luz s igual paa todos los obsvados, d modo qu l cto d vlocidad qu dscibimos antiomnt no s aplica a la luz El cto Doppl Compilado po: Ricado Minniti 3

14 Facultad d Ingniía Física Cuso 5 dbido a cambios d longitud d onda sí s psnta, y lo hac indpndintmnt d si s muv la unt o también l obsvado Esta dincia d compotaminto s db a qu las ondas luminosas no son vibacions n un mdio, sino qu n alidad son oscilacions autocontnidas n campos lctomagnéticos Sólo la vlocidad lativa nt la unt y l obsvado pud causa l cto Doppl, cuando sta s ccana a la vlocidad d la luz s tin C C Ejcitación Ejcicio 4 Un auto d policía stá quipado con un ada d 245 MHz d cuncia, stá paado El haz s lja dsd un automóvil qu avanza a 4 m/s Cuál s l coiminto d cuncia d la sñal ljada qu cib l patullo? Ejcicio 5 a nbulosa d Andómda s acca a nosotos a 275 Km/s cuál s l coiminto Doppl Δ/, paa sta galaxia? El coiminto s hacia l ojo o hacia l azul? Ejcicio 6 Un topdo avanza a 32 m/s hacia un submaino qu s muv n la misma dicción a 6 m/s Si l topdo mit impulsos sonoos a 2kHz, Cuál s la cuncia d la sñal qu dtcta l topdo, dspués d ljas n l submaino? Ejcicio 7 Un dtcto d moviminto mit una onda sonoa qu no pud scuchas con una cuncia d 3 khz Un móvil s acca al dtcto con una vlocidad d m/s Cuál s la cuncia dtctada po l snso? Solución a cuncia obsvada po l móvil s: po accas l obsvado a la unt la longitud d onda pcibida sá mno y po lo tanto la cuncia mayo po lo qu l signo dnto dl paéntsis db s m / s 3kHz 3, 9kHz 33m / s Compilado po: Ricado Minniti 4

15 Facultad d Ingniía Física Cuso 5 a onda cibida po l móvil bota y st s tansoma n unt cosa qu s db cibi una cuncia d ± S db utiliza l signo mnos dbido a qu la unt móvil ahoa s acca al obsvado snso la longitud d onda sá mno y la cuncia mayo khz 3,9 2 3,8kHz m / s, m / s Moviminto dl Obsvado, unt y vinto a cuación más gnal qu s pud utiliza paa solv un poblma d Doppl s ± mdio ± mdio ± ± Analicmos qu sucd si l obsvado y la unt stán n poso, las vlocidads d stos s co y la vlocidad dl mdio vinto no tin cto sob la cuncia pcibida Considación d signos a unt y l obsvado stán n poso po l mdio s muv d la unt hacia l obsvado, po lo tanto la vlocidad dl mdio db s positiva, y si l mdio s muv dsd l obsvado a la unt, dicha vlocidad db s ngativa Si la unt s quin s muv aljándos dl obsvado l signo d la vlocidad d la unt db s positiva po si s acca l signo db s contaio Finalmnt si l qu s muv s l obsvado la vlocidad d st sá considada positiva si s acca a la unt y ngativa n caso contaio Compilado po: Ricado Minniti 5

16 Facultad d Ingniía Física Cuso 5 a bibliogaía utilizada paa la compilación d st matial s:! Física Auto: Paul ipl 4 impsión Editoial Rvté! Física Auto: Paul ipl Edición 976 Editoial Rvté! Physics Auto Young Editoial: Addison Wsly! Física clásica y modna Auto Gttys Editoial: Mc Ga Hill! Física Auto: Susan M a Editoial: omson Editosl Compilado po: Ricado Minniti 6

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección? CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.

Más detalles

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2006

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2006 I.E.S. Al-Ándalus. Aahal. Svilla. Dpto. Física y Química. Slctividad Andalucía. Física. unio 6 - UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. UNIO 6 OPCIÓN A. San dos conductos ctilínos

Más detalles

TRANSMISIÓN DE CALOR POR CONDUCCIÓN

TRANSMISIÓN DE CALOR POR CONDUCCIÓN ERMODINAMICA ÉCNICA Y RANSMISIÓN DE CAOR RANSMISIÓN DE CAOR POR RANSMISIÓN DE CAOR POR EN ESACIONARIO. Intoducción.. Balanc d ngía n una supfici plana. 3. Balanc d ngía n supficis cilíndicas y sféicas.

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CASTEAR BADAJOZ PRUEBA DE ACCESO (OGSE) UNIVERSIDAD DE A RIOJA JUNIO (GENERA) (RESUETOS po Antonio Mnguiano) MATEMÁTICAS II Timpo máimo: hoas y minutos El alumno contstaá a los jcicios d una d las

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

Guía 0: Repaso de Análisis Matemático

Guía 0: Repaso de Análisis Matemático ÍSICA II A/B Pim Sgundo Cuatimst d 009 Guía 0: Rpaso d Análisis Matmático ). Calcula n coodnadas sféicas la intgal f,, d sindo,, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo f,, ) ) g

Más detalles

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en ÍSICA II A/B/8.0 Sgundo Cuatimst d 06 última vsión: o C.06) Guía 0: Rpaso d Análisis Matmático. Calcula n coodnadas sféicas la intgal f, ),, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo,

Más detalles

OPCION A OPCION B CURSO 2013-2014. Universidades de Andalucía. Selectividad Junio 2014. Examen de Física (Resuelto)

OPCION A OPCION B CURSO 2013-2014. Universidades de Andalucía. Selectividad Junio 2014. Examen de Física (Resuelto) Univsidads d ndalucía. Slctividad unio 4. Examn d Física (Rsulto) CURSO 3-4 OPCION. a) Expliqu las caactísticas dl campo gavitatoio d una masa puntual. b) Dos patículas d masas m y m stán spaadas una cita

Más detalles

EXAMEN DE SEPTIEMBRE CURSO 2003 2004 INSTRUMENTACIÓN ELECTRÓNICA Soluciones

EXAMEN DE SEPTIEMBRE CURSO 2003 2004 INSTRUMENTACIÓN ELECTRÓNICA Soluciones EXAMEN DE SEPEMBE CUSO 00 004 NSUMENACÓN ELECÓNCA Solucions Psntación: Estimado studiant d la asignatua d ngniía d nstumntación Elctónica E dl cuso 0/04, l amn d sptimb consta d ts pats, una pima pat con

Más detalles

CAPACITANCIA Y DIELÉCTRICOS

CAPACITANCIA Y DIELÉCTRICOS Capitulo v CAPACITANCIA Y DIELÉCTRICOS 196 5.1. Intoducción Cuando ncsitamos lcticidad, s ncsaio psiona un intupto y obtnla dl suministo. Po oto lado si tnmos accso a un gnado, podmos asguanos qu obtnmos

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO Docnt: Ángl Aita Jiménz SEGUNDO TALLER DE REPASO EJERCICIOS DE LEY DE GAUSS 1. Una sfa aislant d adio R tin una dnsidad d caga unifom ρ y una caga positiva total Q. Calcula l campo léctico n las gions.

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

5. EL METODO DE LOS ELEMENTOS FINITOS (MEF ó FEM).

5. EL METODO DE LOS ELEMENTOS FINITOS (MEF ó FEM). PORCOE L EUDO DE L QU ELECRC DE FLUO XL EDE L PLCCO DEL EODO DE LO ELEEO FO. E DOCORL. 5. EL EODO DE LO ELEEO FO (EF ó FE). 5.. El método gnal. 5... Dfinición dl método. El método d los lmntos finitos

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable Instuccions a) Duación: 1 oa y 3 minutos b) Db dsaolla las custions y poblmas d una d las dos opcions c) Pud utiliza calculadoa no pogamabl d) Cada custión o poblma s calificaá nt y,5 puntos (1,5 puntos

Más detalles

Transformador VALORES NOMINALES Y RELATIVOS

Transformador VALORES NOMINALES Y RELATIVOS Tasfomado VAORE NOMNAE Y REATVO Nobto A. mozy VAORE NOMNAE as picipals caactísticas d las máquias vi dadas po los fabicats la domiada placa o chapa d caactísticas; dod s spcifica, t otas cosas, la potcia

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Manual de Ayuda del Sistema para la Impresión de Planilla de Reemplazo

Manual de Ayuda del Sistema para la Impresión de Planilla de Reemplazo Manual d Ayuda dl Sstma paa la Impsón d Planlla d Rmplazo PASOS A REALIZAR PASO NRO 1: El pm paso s ngsa al sto d la Dccón Gnal d Escula, la dccón s http//:bass.mndoza.du.a/ntant, n l stos dbá ngsa l nomb

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas UNIVESIDD USTL DE CILE INSTITUTO DE CIENCI Y TECNOLOGI DE LOS LIMENTOS (ICYTL) / SIGNTU: INGENIEI DE POCESOS III (ITCL 34) POESO: Elton. Moals Blancas UNIDD : TNSEENCI DE CLO PO CONDUCCION (ESTDO ESTCIONIO)

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado.

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado. EJECCO DE OTENCA EN TEMA TFÁCO. EJECCO 1.- n sistma tifásico tifila d 40 V y scuncia T, alimnta una caga tifásica quilibada conctada n tiángulo, fomado po impdancias d valo 0 80º Ω. Halla la lctua d dos

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

Tema 4. Relatividad especial

Tema 4. Relatividad especial ma 4. latividad spial Pima pat: latividad d Galilo. Pinipio d latividad as lys d la mánia son las mismas n dos sistmas d fnia, si s muvn d modo qu su vloidad lativa sa onstant.+ S dfin un sistma inial

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

PROBLEMAS DEL TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA

PROBLEMAS DEL TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA ROBLEMAS DEL TEOREMA UNDAMENTAL DE LAS INTEGRALES DE LÍNEA. Indpndncia dl camino n una ingal d lína. alcula l abajo llvado a cabo po l campo d ua al llva un objo dsd A hasa B siguindo a un camino compuso

Más detalles

Fenómenos Ondulatorios: Interferencias

Fenómenos Ondulatorios: Interferencias Fenómenos Ondulatoios: Inteeencias Fenómenos de supeposición de ondas. Inteeencias (pags 67-76 Guadiel) Cuando en un punto de un medio coinciden dos o más ondas (petubaciones) se dice que en ese punto

Más detalles

El Efecto Doppler. (u + v) λ. ν =

El Efecto Doppler. (u + v) λ. ν = El Efecto Doppler Si te sitúas en una carretera y escuchas la bocina de un auto que se acerca hacia tí notarás un cambio abrupto de frecuencia cuando el auto cruza frente a tí. Al acercarse, la bocina

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

ENSAYO DE PRUEBA SONIDO 4º MEDIO 2009 PROF.: EUGENIO CONTRERAS Z.

ENSAYO DE PRUEBA SONIDO 4º MEDIO 2009 PROF.: EUGENIO CONTRERAS Z. VITTORIO MONTIGLIO Fondata nel 1891 DEPTO. DE MATEMATICA Y FISICA 1.) Además de sonidos, se habla de infrasonidos y ultrasonidos. En comparación con los sonidos que habitualmente percibimos, los ultrasonidos

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 08

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 08 IS Al-Ándalus. Dto d Física Quíica. Cuso 7/8-1 - OPCIÓN A UNIVRSIDADS D ANDALUCÍA SLCIVIDAD. FÍSICA. JUNIO 8 1. Cont azonadant la vacidad o falsdad d las siguints afiacions: a) La fuza agnética nt dos

Más detalles

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo,

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo, CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillrmo Bcrra Córdova Ára d Física, Dpto. Prparatoria Agrícola, Univrsidad Autónoma Chapingo, Chapingo, Txcoco, Estado d México, México, E-mail: gllrmbcrra@yahoo.com

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Astrofísica de altas energías

Astrofísica de altas energías Astrofísica d altas nrgías Un ión cósmico d nrgía suprior a 10 15 V al ntrar n la atmósfra intracciona con los átomos d las capas altas d ésta, producindo una racción nuclar qu da como rsultado una sri

Más detalles

Fundamentos Físicos de la Ingeniería Segundo Parcial / 2 abril 2009

Fundamentos Físicos de la Ingeniería Segundo Parcial / 2 abril 2009 undamntos sicos d a Ingnira Sgundo Parcia / abri 9. Una aria rctina y uniform, d masa m y ongitud ca ibrmnt n posición horizonta. En instant n qu su ocidad s, a aria gopa ásticamnt bord d una cuchia rgida

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

ANEXO 1 PROGRAMA EN AUDITORIA EN INFORMATICA

ANEXO 1 PROGRAMA EN AUDITORIA EN INFORMATICA ANXO 1 POGAMA N AUDITOIA N INFOMATICA OGANISMO HOJA Nº D FCHA D FOMULACION FAS DSCIPCION ACTIVIDAD Nº DL PSONAL PIODO STIMADO DIAS DIAS PATICIPANT INICIO TMINO HAB.ST HOM.ST ANXO 2 AVANC DL CUMPLIMINTO

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

EL MANTENIMIENTO DE SUS REGISTROS

EL MANTENIMIENTO DE SUS REGISTROS EL MANTENIMIENTO DE SUS REGISTROS R s o u c & R f a l H a n d o u t Ud. db mantn sus gistos (cods) paa figua sus impustos coctamnt. Sus cods dbn s pmannts, xactos, compltos, y dbn stablc claamnt sus ingsos,

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

4πε. q r 2. q r C 2 2

4πε. q r 2. q r C 2 2 . ) A un distnci d. cm dl cnto d un sf conducto con cg cuyo dio s d. cm, l cmpo léctico s d 48 N/. uál s l cmpo léctico.6 cm dl cnto d l sf? ) A un distnci d. cm dl j d un cilindo conducto muy lgo con

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Matemática financiera. Material recopilado por el Prof. Enrique Mateus Nieves Doctorando en Educación Matemática.

Matemática financiera. Material recopilado por el Prof. Enrique Mateus Nieves Doctorando en Educación Matemática. Mtátc fnnc. Mtl copldo po l Pof. Enqu Mtus Nvs Doctondo n Educcón Mtátc. 4. TASAS DE INTERES Y EQUIVALENCIA ENTRE TASAS OBJETIVOS. Dstngu y xplc ls dfncs nt ntés pódco, nonl y fctvo. 2. Copnd y xplc los

Más detalles

Ondas Sonoras 1. 1 Ondas Sonoras

Ondas Sonoras 1. 1 Ondas Sonoras Ondas Sonoras 1 1 Ondas Sonoras 2 Section 1 EL OIDO 3 -Son ondas longitudinales. -Clasificación de acuerdo a su frecuencia: i)ondas audibles. Frecuencias detectables por el oído humano. ii) Ondas infrasónicas

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10 IES Al-Ándalus. Dpto d Física y Química. Curso 9/ - - UNIVESIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO OPCIÓN A. a) Expliqu qué s ntind por vlocidad d scap y dduzca razonadamnt su xprsión. b) azon

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

Tu libro Cálculo está organizado en cuatro partes, cada una de las cuales corresponde a un bimestre académico. Tema 1. Tema 2. Tema 3. Tema 4.

Tu libro Cálculo está organizado en cuatro partes, cada una de las cuales corresponde a un bimestre académico. Tema 1. Tema 2. Tema 3. Tema 4. Cono tu libo Tu libo Cálulo stá oganizado n uato pats, ada una d las uals ospond a un bimst aadémio. Pa t Pnsamintos numéio vaiaional Tma Los númos als... Tma Gáias modlos... 8 Tma Las unions sus gáias...

Más detalles

Hay tres categorías de ondas mecánicas:

Hay tres categorías de ondas mecánicas: LAS ONDAS SONORAS en un medio material como el aire, el agua o el acero son ONDAS DE COMPRESIÓN Cuando las compresiones y rarefacciones de las ondas inciden sobre el tímpano del oído, dan como resultado

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

RESUMEN TEMAS 6 Y 7: RADIACIÓN ELECTROMAGNÉTICA Y ANTENAS LINEALES

RESUMEN TEMAS 6 Y 7: RADIACIÓN ELECTROMAGNÉTICA Y ANTENAS LINEALES Elctodinámica Clásica 4º Cuso Física RESUMEN TEMAS 6 Y 7: RADACÓN ELECTROMAGNÉTCA Y ANTENAS LNEALES ntoducción En st documnto s cog un sumn d los tmas 6 y 7 d la asignatua Elctodinámica Clásica d 4º cuso

Más detalles

Capítulo 15. Ultrasonidos

Capítulo 15. Ultrasonidos Capítulo 15 Ultrasonidos 1 Efecto Doppler El efecto Doppler consiste en el cambio de frecuencia que experimenta una onda cuando el emisor o el receptor se mueven con respecto al medio de propagación. La

Más detalles

Esquema del bloque (1) Relación entre Variables Cuantitativas. Correlación. Asociación entre variables cuantitativas Objetivos. Esquema del bloque (2)

Esquema del bloque (1) Relación entre Variables Cuantitativas. Correlación. Asociación entre variables cuantitativas Objetivos. Esquema del bloque (2) Esquma dl bloqu (1) Rlación nt Vaiabls Cuantitativas Colación 1. Intoducción 2. CORRELACIÓN Asociación Vaiabls Cuantitativas a) Coficint d Colación Concpto significado Infncias J.F. Casanova Colación Rgsión

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Ofertas y Contratos Agiles

Ofertas y Contratos Agiles Ofrtas y Contratos Agils algunas idas xtraídas dl libro Obra bajo licncia Crativ Commons los pilar s d transp arncia, ins adaptación pc, junto con l nfoqu d ción y continua q mjora u forman part d lo Agils,

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

< 0, entonces la función f es estrictamente decreciente en x

< 0, entonces la función f es estrictamente decreciente en x UNIDAD.- Aplicacions d las divadas (tma dl libo). CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando l signo d la divada pima podmos sab cuando una función s ccint o dccint. Esto s llama también l studio

Más detalles

Unidad III Sonido. Como las vibraciones se producen en la misma dirección en la que se propaga el sonido, se trata de una onda longitudinal.

Unidad III Sonido. Como las vibraciones se producen en la misma dirección en la que se propaga el sonido, se trata de una onda longitudinal. Unidad III Sonido Unidad III - Sonido 3 Sonido Te haz preguntado qué es el sonido? Sonido: (en física) es cualquier fenómeno que involucre la propagación en forma de ondas elásticas (sean audibles o no),

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS IES Mditáno d Málg Solución Spti 6 Jun Clos lonso Ginontti PRUEB PROBLEMS PR-- - ) Hálls l lo d p l qu l ct l plno sn pllos ) P clcúls l cución dl plno qu contin s ppndicul ) Los ctos dictos d ct plno

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles

El Retraso Mental. R e s o u r c e. R e f e r r a l. H a n d o u t. La Historia de Mateo. Qué es Retraso Mental?

El Retraso Mental. R e s o u r c e. R e f e r r a l. H a n d o u t. La Historia de Mateo. Qué es Retraso Mental? El Rtaso Mntal La Histoia d Mato R s o u c & R f a l H a n d o u t Mato tin 15 años. Como él tin taso mntal, ha stado cibindo svicios d ducación spcial dsd la scula pimaia. Aqullos svicios l han ayudado

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

Tema 3 (cont.). Birrefringencia.

Tema 3 (cont.). Birrefringencia. Tma 3 (cont.). Birrfringncia. 3.8 Anisotropía. Dobl rfracción. 3.9 Modlo d Lorntz para la birrfringncia 3.10 Polarizadors dicroicos. Ly d Malus 3.11 Propagación a través d una lámina rtardadora 3.1 Aplicacions

Más detalles

Capítulo 8. Estructura electrónica de moléculas diatómicas

Capítulo 8. Estructura electrónica de moléculas diatómicas Cpítulo 8. Estuctu lctónic d moléculs ditómics Apoximción d Bon-Oppnhim Suponindo qu los núclos y lctons posn mss puntuls y dspcindo ls intccs spin-óit y ots considcs ltivists, l hmiltonino d un sistm

Más detalles

Tema 6. Difracción. A.1 Apéndice. Integral de difracción.

Tema 6. Difracción. A.1 Apéndice. Integral de difracción. Tma 6. Diracción 6.1. Introducción 6. Princiio d Hugns-Frsnl Aroimación d Fraunhor 6.3 Diracción d Fraunhor or abrturas Abrtura rctangular Abrtura circular Abrtura sinusoidal. 6.4 Podr d rsolución d los

Más detalles

IES Al-Ándalus. Arahal. Dpto. Física y Química. Física 2º Bachillerato. - 1

IES Al-Ándalus. Arahal. Dpto. Física y Química. Física 2º Bachillerato. - 1 IS l-ándalus. ahal. Dpto. Física y Química. Física º achillato. - LGUOS PROLMS Y USTIOS TÓRIS DL TM 3. ITRIÓ LTROSTÁTI Poblma dl boltín.. Una patícula d caga - s ncunta n poso n l punto (,). S aplica un

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

EL SISTEMA DE INFORMACIÓN ESTADÍSTICA DE ANDALUCÍA.

EL SISTEMA DE INFORMACIÓN ESTADÍSTICA DE ANDALUCÍA. EL SISTEMA DE INFORMACIÓN ESTADÍSTICA DE ANDALUCÍA. Juan A. d Mula Duán. Antonio Molina Gonzálz. Svicio d Infomática dl Instituto d Estadística d Andalucía. Intoducción. El Instituto d Estadística d Andalucía

Más detalles

CAMPO ELECTROSTÁTICO 2.3

CAMPO ELECTROSTÁTICO 2.3 CMPO LCTOSTÁTICO.3 n sta unidad, pima dl lctomagntismo, s haá una intoducción a la física d las cagas lécticas stacionaias, s dci, n poso spcto al obsvado, n la qu s studiaán los siguints aspctos: Caga

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función: º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación

Más detalles

PROBLEMAS DE ONDAS. EFECTO DOPPLER. Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. EFECTO DOPPLER. Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. EFECTO DOPPLER Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Una sirena que emite un sonido de = 1000 Hz se mueve alejándose de un observador

Más detalles

( ) Peje=1 HP, Ve=120V, f=60hz, n=1650rpm, η=65%, fp=75% Sabemos que: 2

( ) Peje=1 HP, Ve=120V, f=60hz, n=1650rpm, η=65%, fp=75% Sabemos que: 2 Unividd Simón Bolív Dtmnto d Convión y Tnot d Engí Auto: Edudo Albánz. Cnt: 06-91 Pofo: J. M. All Máquin Eléctic II CT-11 Un moto d inducción monofáico d 1 HP, 10V, 60Hz, 1650m, 65% d ndiminto y 75% d

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO Antonio J. Barbro Mariano Hrnándz Alfonso Calra Pablo Muñiz José A. d Toro Mª Mar Artigao Dpto. Física Aplicada. UCLM. 1 Mdidas dl cuadrado d la vlocidad angular

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

Unión Taurina de Abonados de Málaga

Unión Taurina de Abonados de Málaga Unión Tauina d Abonados d Málaga Boltín d la Unión tauina d abonados d Málaga Volumn 1, no 1 Sptimb d 2004 ' \ \' Binvnida Quidos aficionados: l.;~iamos, con gan ilusión, la publicación dl "Boltín d la

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES

ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES www.loutrainrs.com/fisiotrapia 615 964 258 PRESENTACIÓN Lou Trainrs s una mprsa d Entrnaminto Prsonal, Fisiotrapia y Gstión Dportiva

Más detalles

Más información: Grupo DIA. Teléfono: 91 398 54 00. Nieves Álvarez. Lara Vadillo. Ginés Cañabate. comunicación@diagroup.com

Más información: Grupo DIA. Teléfono: 91 398 54 00. Nieves Álvarez. Lara Vadillo. Ginés Cañabate. comunicación@diagroup.com Doi pn Má infomción: Gpo DIA. Tléfono: 91 398 54 00 Niv Álvz. L Villo. Giné Cñbt comnicción@igop.com Román y Aocio. Tléfono: 91 591 55 00 Jvi Agil: j.gil@omnyocio. Silvi Sotomyo:.otomyo@omnyocio. INDICE:

Más detalles

La energía de las ondas

La energía de las ondas 7 La energía de las ondas 1. Propagación y clasificación de las ondas 102 2. Magnitudes características de las ondas 104 3. Algunos fenómenos ondulatorios 106 4. El sonido 108 5. La luz. Reflexión de la

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles