RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL"

Transcripción

1 Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm tsino su lo iniil oini on l j "" positivo. Cuno un ángulo, stá n posiión noml, l lo finl pu st n uno los unts, n uo so s i qu ést ptn tl unt. Lo Finl Véti Lo Iniil (-) Véti Lo Iniil Lo Finl Dl gáfio : * : s un ángulo n posiión noml * IIC ; 0 * : s un ángulo n posiión noml * IIIC ; 0 Dfiniión ls Rzons Tigonométis: P tmin l vlo ls R.T. un ángulo n posiión noml, tommos un punto P( 0 ; 0 ) lo finl. ptnint su P( ; ) o o ' o o S fin: Sn o Cos o Tn o o Cot o o S o Cs o * * o o ' : s nomin ángulo fni

2 Signo ls R.T. n los unts Dpnino l unt l qu ptnz un ángulo n posiión noml, sus R.T. pun s positivs o ngtivs. Es sí omo s otin l uo junto. Sno Cosnt Tngnt Cotngnt Tos son positivs Cosno Snt Rzons Tigonométis Ángulos Cuntls ins (gos) Sn Cos Tn Cot S Cs N. D. N. D. 90º 0 N. D. 0 N. D. 80º 0-0 N. D. - N. D. 70º - 0 N. D. 0 N. D. - Not: N.D. no finio Ángulos Cotminls: Son qullos ángulos tigonométios qu posn l mismo véti, l mismo lo iniil finl. Ejmplo: i) Lo ii) iniil Lo finl Véti P( ; ) o o S tin qu : * : son otminls * : son otminls (stán n P. N.) Popis: Si son otminls s umpl qu: I. II. - = 0ºn ; n Z R.T. () = R.T.( )

3 EJERCICIOS PROPUESTOS 0. Dl siguint gáfio, lul: E 0Sn Cot ) 0 ) ) ) ) (;-) 0. Po l punto P( ; ) ps l lo finl un ángulo n posiión noml u mi s " ". Clul: Cos. ) -/ ) -/ ) -/ ) -/ ) -/ 07. Clul: ( ) S0º ( ) Cos80 E Cs 70 ) ) ) ) - ) Si: IVC Cs Sn 0 Clul: E = Sn + Cos ) ) / ) / ) / ) / 09. Si: Cos 0, IIC Clul: E Tn S ) ) ) ) ) 0. Si: Sn IIIC. Clul: E (Tn S) 0. Si: f()=sn+cos+tn. Clul: f( ) ) - ) - ) - ) ) 0. Ini l signo psión: I. Sn00ºTn0º II. Cos0ºTn00º III. Sn0ºCos0º ) +, +, + ),, ), +, + ) +,, ) +,, + 0. A qué unt ptn " ", si: Tn 0 Cos 0. ) IC ) II ) IIIC ) IV ) IC IIC 0. D l figu, lul: " Tn" ) 0 ) ) ) - ) -.Un íz l uión: 0 s un vlo "Tn ", si: IIIC. Clul: E 0(Sn Cos) ) - ) - ) - ) - ) -. Si: f()=sn+cos+tn. Clul: f( ) ) 0 ) ) ) - ) -. Si: son mis ángulos otminls s umpl qu: Tn <0 Cos =-Cos. A qué unt ptn " "? (-;) 7 ) IC ) IIC ) IIIC ) IVC ) IC IIC ) ) - ) - ) - ) -

4 . Clul: E Sn Tn, pti l figu most: (;7) ) -/7 ) -/7 ) -/7 ) -/7 ) -7/ 0. Dl gáfio, lul: " Tn ". (-;-8) ) ) ) ) 7 ) 9. Po l punto P( ; 7 ) ps po l finl un ángulo n posiión noml u mi s " ". Clul: 7 Cs. ) ) ) ) - ) -. Clul: E Sn Cos ) 0 ) ) ) ) 7. Si: IV Tn( Cos), tmin l signo : E Sn Cos ) + ) - ) + ó - ) - + ) Tos son ots 8. Con u l gáfio mosto, lul: Cos( ) Sn( ) E Sn( ) ) / ) / ) / ) / ) /. D uo l gáfio lul: (;-) K Cos Cos (-;7) (-;-) ) ) ) ) ). Si l punto Q(8; ) ptn l lo finl un ángulo nónino " ". Clul: R Cs Cot ) 0, ) 0, ) 0, ) 0, ) 0,. Simplifi: ( ) Sn ( ) Cos L Sn Cos ) / ) / ) / ) / ) / ) ) ) ) ) 9. D l figu, lul: "Tn " 7º. Sñl los signos : M Sn0º Cos0º Tn00º Tn0º R Tn0º Cos7º Tnº Cos8º Sn8º ) () No s pu pis. ) ; ) ; () ) () ; () ) () ;

5 . Sñl Vo (V) o Flso (F) sgún ospon n: I. Si: Sn 0 Cos 0, ntons IV. II. Si: Tn 0 S 0, ntons IIIC. III. Si: Cs 0 Cot 0, ntons IIC. ) VVF ) VVV ) VFV ) FFV ) FVV. Sino qu: Sn 0 Tn S 0 A qué unt ptn l ángulo nónio? ) IC ) IIC ) IIIC ) IVC ) No s pu pis. 7. Sñl l unt l qu ptn " " si: Cos Tn ) IC ) IIC ) IIIC ) IVC ) No s pu pis 8. Sñl Vo (V) o Flso, sgún ospon n: I. Si: 90º ; 80º, ntons IIC. II. Si: IIC, ntons 90º ; 80º. III. Si: IIIC, s positivo mno qu un vult, ntons 80º ; 70º. ) VVF ) VFV ) VFF ) FVV ) VVV 9. Sino qu: IIC Clul: ) ) Tn Q Sn Cos ) ) ) 0. Si l lo finl un ángulo nónio " " ps po los puntos P(m+n; n) Q(n;mn), Clul: K Cot Tn ) ) ) ) 8 ) ) ) () ) o () ) () ) No s pu pis.. Dl gáfio, lul : E Tn º ) 0 ) ) ) ). Tomno, sino qu: Ctg = - 0, qu IVC. Cuál s l vlo Cs? ), ), ) 0,7 ),8 ),8. Los unts n los qu l Cosno Tngnt tinn l mismo signo son: ) º º ) º º ) º º ) º º ) º º. S tinn os ángulos otminls tls qu l mo s l mno omo s. Su sum stá ompni nt 80º 00º. Cuál s l mi l mo? ) 0º ) 70º ) 80º ) 0º ) 000º. Sino: Sn Cos Cos Clul: K Sn Cos ) ) ) ) ) 7. El vlo numéio l psión: Sn80º+Cos80º+Sn70º+Cos70º- S80º-Cs70º s: ) ) ) ) ) 8. Sino qu " " s un ángulo positivo mno qu un vult ptnint l IIIC sñl l signo : Q Sn Cos Tn

6 8. Ini los signos ls siguints psions n l on F. G. H. S8ºTn 8º Sn0º F Cs º Ctg8º Sn 0º Ctg º Cosº G Cs9ºTnº H 9. Si: Sn9º Ctg0º Cs8º Tgº S98º ), +, ),, + ),, ) +,, ) +, +, + f( ) Cos() Sn () Cos Clul: ) ) ) ) f f ) 0. Dtmin l signo S n uno los unts (I, II, III, IV). S = Ctg + Sn - Cs I II III IV ) ) ) + + ) + + ) + +. Dtmin l signo : Sn QS QCtg Q ) ; si Q ptn l IC. ) + ; si Q ptn l IIC. ) + ; si Q ptn l IIIC. ) + ; si Q ptn l IVC. ) ; si Q ptn l IIC.. Do: p q Cos ; p > q > 0 p q Clul Tg, on n l sguno unt. pq ) q p pq ) q p pq pq ) ) q p q p q p ) q p. Sino qu: CosQ 70º < Q < 0º Clul l vlo l psión: SQ CsQ CtgQ ) 0, ) 0,0 ),0 ),00 ),0. Si s un ángulo l t unt, tl qu: Ctg 8 Clul: ( 8S) ) 8 ) ) 8 ) 8 8 ). Si l ángulo s positivo, ptn l uto unt s tl qu: 0. Entons, hll l signo ls siguints psions tigonométis. I. II. III. Tn Sn Co s Cot S Cos Sn Tn S 8 ) ) () () () ) () ) () () () ) () (). Hll l signo ls psions tigonométis, n l on o: Sn Cos ; Sn Cot ; Sn 0 Cot 7 0 ) () ) () () ) () ) () () ) ()

7 7. Si s un ángulo n l pimo unt Sn 0,. Cuál s l vlo Cs Ctg? ) ) 9 9 ) ) 9 9 ). Ini l ltntiv ot p l signo ls siguints psions: I. Sn(º) Cos(º) II. Sn Cos III. Tn S(º ) 8. Si Tg,, sino un ángulo n l III unt, l vlo l psión: ) ) ) ) M (S Cs) s : ) 9. Clul l Cosno l ángulo l sguno unt, tl qu ) ) 0. Si ) ) Sn. ) Tn stá n l sguno unt. Hll : (Cos Sn) K Ctg ) 0 ) ) 0 ) 0 ) 0 0. En l figu junt, hll: 0 0 V Sn Cos Tn ) + ; ; + ) + ; + ; ) ; ; + ) + ; ; ) + ; + ; +. S un ángulo l t unt. Ini l ltntiv ot l simplifi: E Sn Cos ) Sn ) Sn ) Cos ) Sn ) Cos. Si: Sn = 0,, uál s l vlo Cos, sino qu s un ángulo l sguno unt? ) Cos = 0,8 ) Cos = 0, ) Cos = 0,7 ) Cos = 0,9 ) Cos = 0,8. Si " " " " son ángulos untls, positivos mnos qu un vult, tls qu: Cot Cos Clul: Cos Sn K Sn Cos ) ) ) ) ). Si son ángulos positivos, qu no son guos; Cos 0 ; Tn 0 ; ( 0º ) Sn: = Sn( ) = Sn = Sn Entons, son positivs. ) ) ) ). ). ),. ). ). ) 9 7 ) 7

8 7. Si: Tn Clul l vlo : E Sn Cos ) ) ) ) ) ; IC 8. Hll toos los vlos qu pu tom l ángulo l pim unt, uo ángulo ol stá n l sguno unt, su ángulo tipl stá n l t unt su uáupl n l uto unt; po infio 9. Si: IIC Clul: Cos Sn (Sn) Tg Sn ) ) ) 9 ) ) 0. S tin os ángulos qu s ifnin n un múltiplo 0º. S s qu l uáupl l mno s l sum l ángulo mno más l tipl l mo los ángulos, omo s. Hll l mno los ángulos, si s s qu stá ompnio nt 080º 0º. ) 80º ) 0º ) 00º ) 0º ) 0º ) ) ) Fltn tos ) ) 8 8

9 9 Clvs Clvs

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES I.E 0 LA RAMADA SALAS RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES Son aquellos triángulos rectángulos donde conociendo las medidas de sus ángulos agudos, se puede saber la proporción existente entre sus

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS IES Mditáno d Málg Solución Spti 6 Jun Clos lonso Ginontti PRUEB PROBLEMS PR-- - ) Hálls l lo d p l qu l ct l plno sn pllos ) P clcúls l cución dl plno qu contin s ppndicul ) Los ctos dictos d ct plno

Más detalles

p m son términos semejantes

p m son términos semejantes Páin dl Colio d Mtmátics d l ENP-UNAM Ocions con monomios olinomios Auto: D. José Mnul Bc Esinos OPERACIONES CON MONOMIOS Y POLINOMIOS UNIDAD IV IV. OPERACIONES CON MONOMIOS Un vil s un lmnto d un ómul,

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Ejercicio 1. x a. Ejercicio 2.

Ejercicio 1. x a. Ejercicio 2. Sptim 5 - Opción A (Molo 6) Ejcicio. D un función f: R R s s qu f() y qu f (. () [ punto] Dtmin f. () [ 5 puntos] Clcul l á l ión limit po l áfic f, po l j sciss y po ls cts cucions - y. () Aplicno l Tom

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Oió Ejiio.- S s ué. Clul d od lido ls oidds duds l lo d los siguits dtits: B B IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Ejiio..- Hll l uió dl

Más detalles

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado.

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado. EJECCO DE OTENCA EN TEMA TFÁCO. EJECCO 1.- n sistma tifásico tifila d 40 V y scuncia T, alimnta una caga tifásica quilibada conctada n tiángulo, fomado po impdancias d valo 0 80º Ω. Halla la lctua d dos

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

Facultad de Ingeniería Física 1 Curso 5

Facultad de Ingeniería Física 1 Curso 5 Facultad d Ingniía Física Cuso 5 Índic Funt n moviminto con spcto al ai 3 Rsumn5 Ejcicio 5 Ejcicio 28 El obsvado stá n moviminto spcto a la unt n poso8 Rsumn Funt y obsvado n moviminto Ejcicio 3 Númo d

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria.

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria. Númeos Complejos Un Defnón Llmemos númeo omplejo un númeo z que se ese e l fom, one y son númeos eles, e vef:. Al númeo se lo enomn pte el e z y l númeo, pte mgn e z. pte } pte } mgn Se esgn on Re ( z)

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

1. Dada la siguiente grafica. 3. Determine la grafica de Donde A) B) Determine la grafica de A) B) 4 C) D) C) D) 4. Dada la grafica de

1. Dada la siguiente grafica. 3. Determine la grafica de Donde A) B) Determine la grafica de A) B) 4 C) D) C) D) 4. Dada la grafica de 1. Dada la siguiente grafica 3. Determine la grafica de Donde Determine la grafica de 4 4. Dada la grafica de 2. Dada la grafica de la función Indique el valor de A) 16 B) -16 C) 32 D) -32-30 I) II) III)

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015 Primr Pril Introuión l Invstigión Oprions Fh: 5 myo 2015 INDICACIONES Durión l pril: 3 hrs. Esriir ls hojs un solo lo. No s prmit l uso mtril ni lulor. Numrr ls hojs. Ponr nomr y númro éul n l ángulo suprior

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

CONICAS ESTUDIO DE SUS FORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE 2º GRADO EN DOS VARIABLES

CONICAS ESTUDIO DE SUS FORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE 2º GRADO EN DOS VARIABLES CONICAS ESTUDIO DE SUS ORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE º GRADO EN DOS VARIABLES Lug Goétio: Consios l plno oo onjunto puntos llos lug goétio n l plno too suonjunto puntos l iso finio

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

Halle A) B) C) D) E) Halle A) B) C) D) E)

Halle A) B) C) D) E) Halle A) B) C) D) E) 1. Dada las funciones 2. la regla de correspondencia de VVV VVF VFV VFF FVV 6. Dada las funciones 3. Sea la función, tal que es el número de primos menores o iguales a. Si Entonces es igual a: 0 1 3 4.

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años).

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años). IES Mditáo d Málg Ju los loso Giotti DISTRITO UNIVERSITRIO DE Mdid MTEMÁTIS (Mos d ños. OPIÓN Ejcicio.- (. tos. S id l cució ticil do ls tics:. tos. Idic ls dios qu d t l ti.. tos. lcul l is -. c. tos.

Más detalles

Solución Tarea de Aproximaciones y errores de redondeo

Solución Tarea de Aproximaciones y errores de redondeo Métodos numéicos y álgb linl CB0085 Apoximcions y os d dondo T d Apoximcions y os d dondo. Clcul l o bsoluto y l o ltivo si p y p 2.78 dond p s l vlo clculdo. : vlo l vlo clculdo 2.78 o bsoluto : vlo clculdo

Más detalles

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

Tabla 2.A1.1.- Perfiles IPN

Tabla 2.A1.1.- Perfiles IPN Tl 2.1.1.- Pfils IPN = d l sión = Monto státio d di sión, sto X. = Monto d ini d l sión, sto X. = 2 : h. Módlo sistnt d l sión, sto X. = ( : ) 1/2. Rdio d gio d l sión, sto X. = Monto d ini d l sión, sto

Más detalles

PSU Matemática NM-4 Guía 16: Ángulos en la circunferencia

PSU Matemática NM-4 Guía 16: Ángulos en la circunferencia entro ducacional San arlos de ragón. pto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía 6: Ángulos en la circunferencia Nombre: urso: Fecha: - ontenido: Geometría. prendizaje sperado: Utiliza

Más detalles

SOLUCIONARIO. Examen UNI 2014 I. MATEMÁTICA PARTE I. Matemática

SOLUCIONARIO. Examen UNI 2014 I.  MATEMÁTICA PARTE I. Matemática SOLUIONIO Eamen UNI 0 I Matemática MTEMÁTI PTE I Pregunta 0 Las notas obtenidas por tres postulantes hacen un promedio de 5. La relación entre las notas del primero y el segundo es /5 y la relación entre

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

UNIDAD: GEOMETRÍA CONGRUENCIA DE TRIÁNGULOS Y ELEMENTOS SECUNDARIOS

UNIDAD: GEOMETRÍA CONGRUENCIA DE TRIÁNGULOS Y ELEMENTOS SECUNDARIOS U R S O : MTMÁTI MTRIL N 012-I UNI: GOMTRÍ GUÍ TORIO PRÁTI Nº 11 ONGRUNI TRIÁNGULOS Y LMNTOS SUNRIOS ONGRUNI TRIÁNGULOS 1. INIIÓN os triángulos son congruentes si y sólo si existe una correspondencia entre

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos I.E.S. CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE EXTREMDUR JUNIO 9 (RESUELTOS po ntonio Menguino) MTEMÁTICS II Tiempo máimo: ho minutos El lumno elegiá un de ls dos opciones popuests. Cd un de

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

Curso: Álgebra. 1.- Determine el valor de la determinante

Curso: Álgebra. 1.- Determine el valor de la determinante 1.- Determine el valor de la determinante 5.- Determine el valor de verdad de las siguientes afirmaciones: I) Sea P una matriz no singular entonces A) B) C) D) 2.-Determine el valor de verdad de las siguientes

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

TEMA 7. SUCESIONES NUMÉRICAS.

TEMA 7. SUCESIONES NUMÉRICAS. º EO Tem 7 TEMA 7. UCEIONE NUMÉRICA.. UCEIONE NUMÉRICA. Imgiemos el ecoido que efectú u bló que se h lzdo l suelo y midmos ls distcis ete bote y bote: Ls distcis fom u sucesió de úmeos: 0, 5, 0, 5,. U

Más detalles

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado:

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado: EL ÁLGER GEÉTRI EL ESPI Y TIEP 87 6. GEETRÍ EL TETRER Volmn l ttrro El volmn n ttrro s l st prt l volmn l prllpípo q lo ontin (vés igr 5.6). El volmn l prllpípo s igl l proto trior trs rists lsqir no prlls.

Más detalles

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección? CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría. Halla la altura de un edificio que proyecta una sombra de 56 m a la misma hora que un árbol de m proyecta una sombra de m.. En un mapa, la distancia entre La Coruña y Lugo

Más detalles

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3 TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

MATEMATICA Parte III para 1 Año

MATEMATICA Parte III para 1 Año Crpet e Trjos Prátios e MATEMATICA Prte III pr 1 Año APELLIDO Y NOMBRE DEL ALUMNO:... PROFESOR:... DIVISIÓN:... Crpet e Trjos Prátios e Mtemáti Prte III 1º ño Págin 1 POLÍGONOS TRIÁNGULOS 3) En el triángulo

Más detalles

Reglamento de D i v er s i ones y E s p ec tá c u los P ú b li c os Ayuntamiento Constitucional de Zapotlanejo 2007-2009 e n t e M u n i c i Z a t n e j o, J a o, a h a t a n t e m u n i c i o h a g o

Más detalles

1. Determine la matriz

1. Determine la matriz 1. matriz A) 3. Se define la matriz tal que es la matriz que se obtiene de intercambiar la fila con su antecesor. suma de los elementos de la matriz B) A) 30 B) 31 28 D) 33 34 4. Dada la matriz D) Determine

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo

Más detalles

BLOQUE II Trigonometría y números complejos

BLOQUE II Trigonometría y números complejos LOQUE II Trigonometría y números complejos Pág. de 6 En el triángulo, rectángulo en, conocemos tg ^ =, y b = 6 cm. Halla los lados y los ángulos del triángulo. tg ^ b 6 = 8, = 8 c = cm c c c a a = 6 +

Más detalles

Lección 3.4. Leyes del Seno y Coseno. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 17

Lección 3.4. Leyes del Seno y Coseno. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 17 Leión 3.4 Leyes del Seno y Coseno /0/04 Prof. José G. Rodríguez Ahumd de 7 Atividdes 3.4 Refereni Texto: Seíón 8. Ley de los Senos; Problems impres -5 págins 577 y 578 (53 y 533); Seión 8. Ley de los Cosenos;

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

Ejercicios sobre Ángulos de Referencia

Ejercicios sobre Ángulos de Referencia www.matebrunca.com Prof. Waldo Márquez González TRIGONOMETRÍA: ÁNGULOS 1 Ejercicios sobre Ángulos de Referencia 1. Localizar los siguientes puntos en un sistema de coordenadas rectangulares y encontrar

Más detalles

2100 5015 5222 0002 8368 (LA CAIXA)//3035 0087 01 0870044874 (CAJA LABORAL)

2100 5015 5222 0002 8368 (LA CAIXA)//3035 0087 01 0870044874 (CAJA LABORAL) 2100 5015 5222 0002 8368 (LA CAIXA//3035 0087 01 0870044874 (CAJA LABORAL " # $ 2100 5015 5222 0002 8368 (LA CAIXA//3035 0087 01 0870044874 (CAJA LABORAL 2100 5015 5222 0002 8368 (LA CAIXA//3035 0087 01

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 La Trigonometría es el estudio de la relación entre las medidas de los lados y los ángulos del triángulo. Ángulos En este

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

VECTORES EN TRES DIMENSIONES

VECTORES EN TRES DIMENSIONES FÍSIC PR TODOS 1 CRLOS JIMENEZ HURNG VECTORES EN TRES DIMENSIONES Los vetoes pueden epesase en funión de oodenadas, de la siguiente manea: a; b; ) o de ota foma: a i + b j + k donde: i, j, k, son vetoes

Más detalles

2322 2322 22322 67882222 2367367829273678238 2322 67892 92 67892 92 67892 92 2336789 672 67 7 3 9 68 67 23 3 2 23667896293267939763 2336789778 688 6889 688 6888 2 26 22 2 23 2 23678969768768 *9696+622

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente. 89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr

Más detalles

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid 9 de noviembre de 0 PRUE POR EQUIPOS º y º de E.S.O. (45 minutos). ntonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de ntonio y le añade un a la derecha y obtiene un número

Más detalles

Preguntas Propuestas

Preguntas Propuestas Preguntas Propuestas 2 ... Propiedades periódicas de los elementos 1. En qué orden varía el tamaño (volumen atómico) de los elementos alcalinos? A) K > Cs > Rb > Na > Li B) Na > Rb > K > Cs > Li C) Li

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

EJERCICIOS DE TRIGONOMETRÍA

EJERCICIOS DE TRIGONOMETRÍA EJERIIOS DE TRIGONOMETRÍA EJERIIOS PROPUESTOS 1. El vigía de un barco pirata observa el punto más alto de un acantilado bajo un ángulo de 60º. Si el barco se aleja 100 m se observa bajo un ángulo de 45º.

Más detalles

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1 Arturo Díz Pérez Aálisis y Diseño e Aloritmos Teorem Mestro Arturo Díz Pérez Aálisis y Diseño e Aloritmos Mestro- Itroucció Recurreci eerl pr estrteis ivie y vecerás T + T T Aálisis y Diseño e Aloritmos

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones

Más detalles

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS ÁNGULO FUNCIÓN SENO Y FUNCIÓN COSENO FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS CONOCIDOS 5 IDENTIDADES TRIGONOMÉTRICAS. Eisten epresiones algebraicas que contienen funciones

Más detalles

b) Trapezoides Asimetricos.-Es un cuadrilátero irregular que no tiene ningún lado paralelo al otro.

b) Trapezoides Asimetricos.-Es un cuadrilátero irregular que no tiene ningún lado paralelo al otro. ROF: JI UIS SS URILTROS URILTROS FIIIÓ.- Son polígonos que tienen cuatro lados, y pueden ser: = + y lementos 1) Vértices: Son los puntos de intersección,, y, de las rectas que forman el cuadrilátero. )

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

Triángulos Rectángulos y Ángulos Agudos

Triángulos Rectángulos y Ángulos Agudos Triángulos Rectángulos y Ángulos Agudos Un ángulo agudo es un ángulo con una medida mayor que 0º y menor que 90º. Se utilizan letras griegas (alpha), (beta), (gamma), (theta), and (phi) para nombrar ángulos,

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

ANGULO TRIGONOMETRICO SISTEMA DE MEDICION ANGULAR

ANGULO TRIGONOMETRICO SISTEMA DE MEDICION ANGULAR . ANGULO TRIGONOMÉTRICO. Es una figura generada por la rotación de un rayo, alrededor de un punto fijo llamado vértice, desde una posición inicial hasta una posición final. L.I.: Lado inicial L.F.: Lado

Más detalles

UNIDAD: GEOMETRÍA ÁNGULOS EN LA CIRCUNFERENCIA Y TEOREMAS. Trazo cuyos extremos son el centro de la circunferencia y un punto de ésta (OA ).

UNIDAD: GEOMETRÍA ÁNGULOS EN LA CIRCUNFERENCIA Y TEOREMAS. Trazo cuyos extremos son el centro de la circunferencia y un punto de ésta (OA ). u r s o : Matemática Material N 16 UNI: GMTRÍ ÁNGULS N L IRUNFRNI Y TRMS GUÍ TÓRI RÁTI Nº 13 FINIINS IRUNFRNI: ado un punto y una distancia r, se llama circunferencia de centro y radio r al conjunto de

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

ÁNGULOS ENTRE PARARLELAS CORTADAS POR UNA SECANTE

ÁNGULOS ENTRE PARARLELAS CORTADAS POR UNA SECANTE 02 1 ÁNGULOS ENTRE PARARLELAS CORTADAS POR UNA SECANTE Encuentra la medida de los ángulos que se forman entre líneas paralelas cortadas por una secante. En presentación de contenidos se estudia qué son

Más detalles

ё! " #%$ & ')(*"+,-/.0 "12436572 89: "%;= @?A1BDC=EF@GC=HJIKELNMPOQC=RTS)UVWXLYUZ[L=MP\)]^LJ_`CNEQabI[RcRTLYRYMdeCgf%I[hQi2UHkjlV monlpq C=E)U2C=RXrNs1sut vuwyxz!{,w { }~%~%!&}{!}G{ { +~l4~% &}-X~%;~N,oя

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

... / (.0)!" #$ %.-1 *.2.%3!43 ( 4/ ( + ..-5 (.!4.)..(.2+ '*-% 1/&. '".. & ' (). / (../( *...) 23!4 ).. * +..4*-.% 1 ) ( 1..(..*../...(. *.4.

... / (.0)! #$ %.-1 *.2.%3!43 ( 4/ ( + ..-5 (.!4.)..(.2+ '*-% 1/&. '.. & ' (). / (../( *...) 23!4 ).. * +..4*-.% 1 ) ( 1..(..*../...(. *.4. www.larioja.org Prado Viejo, 6 bis 6071-Logroño. La Rioja. Teléfono: 941 91 100 Fax: 941 91 705 Agricultura, Ganadería y Medio Ambiente Calidad Ambiental y Agua!" #$% & ' () " * +'+,+,-... / (.0)!" #$

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

SACI TRANSFORMADORES TRANSFORMADORES S.A. DE CONSTRUCCIONES INDUSTRIALES

SACI TRANSFORMADORES TRANSFORMADORES S.A. DE CONSTRUCCIONES INDUSTRIALES SI S.. ONSTRUIONS INUSTRILS SI M PROUTOS MI (NVOLVNT PLÁSTIO) PRIMRIO PSNT PRIL STRHO; PS, TRIPL PS- TU PS, TU PS- O V U N TRIPL arril IN TM O V U N TU_, TU_,TL_ OTROS MOLOS TU_ PRIMRIO OINO NÚLO IRTO

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: sen. hipotenusa. hipotenusa.

TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: sen. hipotenusa. hipotenusa. TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: seno de cos eno de cateto opuesto hipotenusa cateto próximo hipotenusa cateto opuesto tan gente

Más detalles

Capítulo 8. Estructura electrónica de moléculas diatómicas

Capítulo 8. Estructura electrónica de moléculas diatómicas Cpítulo 8. Estuctu lctónic d moléculs ditómics Apoximción d Bon-Oppnhim Suponindo qu los núclos y lctons posn mss puntuls y dspcindo ls intccs spin-óit y ots considcs ltivists, l hmiltonino d un sistm

Más detalles

Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1.

Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1. GUIA FUNCIONES TRIGONOMETRICAS GRADO DECIMO FUNCIOENES TRIGONOMETRICAS El estudio de la trigonometría se puede realizar por medio de las relaciones entre los ángulos y los lados de un triángulo rectángulo,

Más detalles

TRIGONOMETRIA DEL TRIANGULO RECTO. Copyright 2009 Pearson Education, Inc.

TRIGONOMETRIA DEL TRIANGULO RECTO. Copyright 2009 Pearson Education, Inc. TRIGONOMETRIA DEL TRIANGULO RECTO Copyright 2009 Pearson Education, Inc. Triángulos Rectángulos y Ángulos Agudos Un triángulo recto es un triángulo con un ángulo de 90º y dos ángulos agudos (menor que

Más detalles

!! "!#$%&" #$% &" ' #% (" )*% + ",% + -*% +. - / ) " (! 012)$"3*"*"! (+ / + ( $% " ' + %

!! !#$%& #$% & ' #% ( )*% + ,% + -*% +. - / )  (! 012)$3**! (+ / + ( $%  ' + % ! !! "!#$%&" #$% &" ' #% (" )*% + ",% + (" -*% +. - / ) " (! 012)$"3*"*"! (+ / + ( $% " ' + % (" ))% (!! " 4 ( -% ( " / (!. - / ) )#% ( " ' (! )*+ #," " / ( 55* + ' 012#$ " (! "$! $&!" / +! & *%" $% +

Más detalles

0. x = 0. 0. x = b. x Solución:

0. x = 0. 0. x = b. x Solución: TEMA : ECUACIONES E INECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu l umpln tn solo un sri númros qu son ls soluions. Es ir, Ls soluions un uión son los vlors qu n tomr ls ltrs pr qu l igul

Más detalles

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES IES Jun Gcí Vldemo Deptmento de Mtemátics º Bchilleto de CCSS. SUMA Y RESTA DE FUNCIONES Dds g unciones eles de vile el se deine l unción sum g como: g g con Dom g Dom Dom g Es deci, l unción g hce coesponde

Más detalles

Ejercicios resueltos de tiro oblicuo

Ejercicios resueltos de tiro oblicuo Ejercicios resueltos de tiro oblicuo 1) Un arquero dispara una flecha cuya velocidad de salida es de 100m/s y forma un ángulo de 30º con la horizontal. Calcula: a) El tiempo que la flecha está en el aire.

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles