5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler."

Transcripción

1 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica la gla d Baow y dtmina si ist l límit d, s halla una pimitiva lim d. Sin ma- go, hay una clas amplia d funcions continuas (como po jmplo la función f ( ) = ) cuyas pimitivas no son calculals po métodos lmntals. En stos casos pud qu nos ints sa, al mnos, si la intgal convg, aunqu no spamos calcula su valo. Los citios d convgncia son condicions qu nos pmitn gaantiza la convgncia d algunas intgals impopias. EJEMPLO. Vamos qu la intgal lim d. Sa- mos qu d s convgnt, s dci, qu ist d s una función ccint d, con lo cual, cuando, su límit tind a infinito (si no stá acotada) o in, su límit s finito (si stá acotada). Vamos qu ocu sto sgundo. Paa llo, osva l siguint gáfico. Entoncs, paa cada tnmos qu, paa. Esto nos dic qu la cuva d cuación y = stá situada nt l j OX y la cuva d cuación y =, como podmos osva n la figua. Ahoa in, paa >, tnmos qu valos d stán acotados po d d=. Po tanto, los y, n conscuncia, ist l siguint límit NOTA. Sa g : a,) g(), sindo a un númo cualquia, una función ccint. Si la función g stá acotada (s dci, ist una constant M tal qu g( ) M paa todo [ a, ), ntoncs ist lim g( ) y s finito. Si la función g no stá acotada, ntoncs lim g ( ) =.

2 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. y la intgal d s convgnt. lim d lim + = + La técnica mplada n st jmplo sugi l siguint citio. PROPOSICIÓN (CRITERIO DE COMPARACIÓN). San f,g :[a,) dos funcions continuas y positi- vas tals qu f ( ) g( ) paa todo [ a, ). Entoncs, paa las intgals impopias f ( d ) a gd ( ), s vifica qu: a () Si la intgal gd ( ) convg, ntoncs la intgal f ( d ) tamién convg. a a () Si la intgal f ( d ) divg, ntoncs la intgal gd ( ) tamién divg. a a Es más, si la función f no s positiva, po f ( ) g( ) paa todo [ a, ). Entoncs, la intgal f ( d ) convg si la intgal gd ( ) convg. a a LA FUNCIÓN Γ DE EULER. Sa n un númo natual. Entoncs la intgal impopia convg y n d = ( )!. En lo qu sigu, dnotamos po Γ () = d =, fcto, paa n = otnmos qu como hmos visto n los jmplos d la scción antio. En gnal, tnmos qu n d n Γ ( n): = d. En u =, du = d n n Γ ( n) = d= lim d= n n dv = d, v = n n n n n = lim lim d lim d ( n ). n = + = Γ + n n n Entoncs Γ ( n+ ) = nγ ( n) paa todo n =,,... Pusto qu Γ () = otnmos qu Γ ( n) = ( n )! paa todo n =,,... D sta foma, tnmos dfinida la función Γ paa númos natuals. Usando l citio d compaación s pud tnd la dfinición d la función Γ a númos als. Dado un númo al p considamos la intgal p d. S tata d una intgal impopia d pi-

3 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. ma y d sgunda spci. Paa studia su convgncia (dido a qu l intgando pud qu no sté acotado n = ) dividimos sta intgal n dos p d = p d + p d. Comnzamos studiando la intgal I. Supongamos qu p y considmos un natual n tal qu p n. Entoncs p n paa todo. convgnt, l citio d compaación nos dic qu la intgal gnt. Si p <, ntoncs p d tamién s conv- p paa todo. Como la intgal d s con- p d tamién s convgnt. vgnt, l citio d compaación nos dic qu la intgal I Como la intgal I n d s En dfinitiva, la intgal I convg paa cualqui valo d p. Ahoa studiamos la convgncia d la intgal I. Si, como la función ponncial s dccint, ntoncs p p p d y. Como la intgal convg si p p p <, s dci, si p >, l citio d compaación asgua qu la intgal d convg si p >. Po ota pat, como la intgal divg si p, s dci si p, l citio d p p d compaación asgua tamién qu la intgal d divg si p. En dfinitiva, la intgal I convg si, y sólo, si p >. En sumn, la intgal p > la función p d convg si, y sólo, si. p Γ ( p): = dqu s llama función gamma d Eul. p > Esto nos pmit dfini, paa EJEMPLO. Vamos a usa l citio d compaación paa stalc qu la intgal d s divgnt. Dmos nconta una función f( ) d foma qu f( ) paa (o in + + paa suficintmnt gand, digamos a ) y d mana qu f ( d ) sa divgnt. Paa a nconta sta función osvmos qu cuando la función vin a s pacida a la +

4 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. función, n l sntido d qu lim + =. Entoncs, d ocui qu +, o quivalntmnt,, paa suficintmnt gand. D hcho s vifica qu paa + +. Como la intgal d s divgnt, ntoncs la intgal d tamién s divgnt. En conscuncia, la intgal d s divgnt. La técnica mplada n st jmplo + + sugi l siguint citio. PROPOSICIÓN (CRITERIO DE COMPARACIÓN POR PASO AL LÍMITE). San f,g :[a,) dos funcions continuas y positivas tals qu ist L = lim. f ( ) g ( ) Entoncs, paa las intgals impopias f ( d ) gd ( ), s vifica qu: a a () Si < L <, las dos intgals gd ( ) y f ( ) dtinn l mismo caáct, s dci, la a a intgal f ( d ) convg si, y sólo, si la intgal gd ( ) convg. a a () Si L = y la intgal gd ( ) convg, ntoncs la intgal f ( d ) tamién convg. a a () Si L = y la intgal gd ( ) divg, ntoncs la intgal f ( d ) tamién divg. a a LA FUNCIÓN B DE EULER. Una compaña inspaal d la función gamma s la función ta d p q Eul, dfinida paa p > y q > po la igualdad B( pq, ): = ( ) d. Osvmos qu l intgando no stá acotado n los puntos = y =. Vamos a compoa, usando l citio d p q compaación po paso al límit, qu la intgal ( ) d s convgnt si, y sólo si, p > y q >. Paa sto vamos a dscompon la intgal n dos, d la siguint foma p ( ) q d = p ( ) q d + p ( ) q d. I La intgal I s impopia poqu l intgando no stá acotado n = y la intgal I s impopia poqu l intgando no stá acotado n =. Comnzamos studiando la convgncia d la p q intgal I. Osvmos qu ( ) lim =. El citio antio nos dic qu I p tin l mis- I

5 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. p d = d y ya samos qu sta última intgal convg si, y sólo, p+ mo caáct qu si p + <, s dci, p >. Paa studia la convgncia d la intgal I osvmos qu p q ( ) lim =. q ( ) caáct qu la siguint intgal El citio d compaación po paso al límit nos dic qu I tin l mismo q ( ) d = d y ya samos qu sta última in- q+ ( ) tgal convg si, y sólo, si q + <, s dci, q >. En dfinitiva, tnmos qu s convgnt si, y sólo si, p > y q >. La funcions p p d Γ ( ) = y (, ) p q B pq = ( ) d p q s llaman intgals ulianas y B( pq, ) = ( ) d apacn n vaias áas d la matmática aplicada. Eistn muchas popidads intsants qu vifican las funcions ulianas, así como lacions nt llas. Quizá la más lvant sa qu Γ( p) Γ( q) B( p, q) = paa todos p > y q >. A vcs sta igualdad pmit calcula intgals Γ ( p + q) p q tigonométicas. Po jmplo, si hacmos l camio = sn θ n la intgal ( ) d otnmos = sn θ, d = snθ cosθ π p ( ) q d = =,θ = ; =,θ = π = sn p θ cos q θsnθ cosθ dθ π π = sn p θ cos q θ dθ. Entoncs sn p θ cos q θ dθ = Γ( p) Γ(q) B( p,q) =. Pusto qu la función gamma stá taulada, muchas d stas intgals s pudn calcula o apoima d sta mana. Osva qu la Γ( p + q) π p q intgal sn θ cos θdθ pud s una intgal impopia d sgunda spci, pusto qu la función sno s anula n θ = y la función cosno s anula n θ = π. d EJEMPLO. En la scción antio calculamos l valo d sta intgal impopia. Ahoa ( + ) vamos a stalc la convgncia d dicha intgal sin calculala. Usamos l citio d compaación po paso al límit. Samos qu sta intgal s impopia poqu l intvalo d intgación 5

6 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. s infinito y tamién poqu l intgando f( ) = (qu s positivo n l intvalo d intgación) no stá acotado n =. Spaamos la intgal n dos, po jmplo, ( + ) ponmos d d d = +. (+ ) (+ ) (+ ) I ( + ) La intgal I s d sgunda spci. Admás s vifica qu lim = lim =. El citio d compaación po paso al límit nos dic qu I ( + ) tin l mismo caáct qu d. Como, < sta intgal s convgnt, lugo I tamién lo s. La intgal I s d pima spci. ( + ) Admás s vifica qu lim = lim =. El citio d compaación po paso al ( + ) d límit nos dic qu I tin l mismo caáct qu. Como >, sta intgal s convgnt, lugo I d tamién lo s. Entoncs la intgal ( + ) s convgnt. EJEMPLO. Vamos a usa ahoa l citio d compaación po paso al límit paa stalc qu la intgal d s divgnt. Osvmos qu sta intgal s d pima spci. Admás, l + intgando s compota como + cuando. Esto significa actamnt qu lim + = lim =. + El citio d compaación po paso al límit nos dic, po jmplo, qu las intgals d + d d tinn l mismo caáct. Como s divgnt, ntoncs d divg, lugo + d tamién s divgnt. + I 6

7 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. d, sindo EJEMPLO. En st último jmplo analizamos la convgncia d la intgal log p log p >. Comnzamos con l caso p =. Osvmos qu lim = lim =. El citio d log d d compaación po paso al límit nos dic qu, pusto qu s divgnt, ntoncs log tamién s divgnt. En l caso gnal ocu algo simila pusto qu samos qu paa todo p >. La conclusión d qu p log lim = lim = p log d s divgnt s hac igual qu n l caso p =. log p EJERCICIO. Dtmina si las siguints intgals impopias convgn y, n su caso, calcula su valo. log () ( asn + cos ) d. () d. () log d. () + d. EJERCICIO. Considmos la función dfinida po f( ) =, con [, ). Diuja la + + gáfica d la cuva d cuación y = f( ) y calcula l volumn gnado al gia dicha cuva alddo dl j OX. EJERCICIO. Estudia la convgncia d las siguints intgals impopias y, n su caso, calcula su valo: + () d, () / ( ) ( + ) d, () d, () d. + EJERCICIO. Usando l citio d compaación po paso al límit, compua qu la intgal impopia log d s convgnt. EJERCICIO 5. Compua qu la intgal impopia n función d la función Γ d Eul. π d s convgnt y psa su valo cos( ) 7

8 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. EJERCICIO 6. Estalc la convgncia d la intgal impopia postiomnt, calcula l valo d dicha intgal. log d, sin calculala y, ( + ) EJERCICIO 7. Compua qu la intgal impopia d convgnt la intgal impopia? snh d s convgnt y calcula su valo. Es snh EJERCICIO 8. Consida la función f : (,) f () = log. () Diuja (d foma squmática) la gáfica d la función y = f( ). () Calcula los siguints límits lim y lim f( ). log + () Justifica qu la intgal impopia f ( d ) s convgnt. sn d paa stu- EJERCICIO 9. Es posil aplica algún citio d convgncia a la intgal dia su convgncia? Razona la spusta. A continuación, intga po pats paa otn la igualdad d = cos d paa todo. A pati d aquí, dtmina si la intgal sn cos cos sn impopia d s convgnt o divgnt. Razona la spusta. 8

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CASTEAR BADAJOZ PRUEBA DE ACCESO (OGSE) UNIVERSIDAD DE A RIOJA JUNIO (GENERA) (RESUETOS po Antonio Mnguiano) MATEMÁTICAS II Timpo máimo: hoas y minutos El alumno contstaá a los jcicios d una d las

Más detalles

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección? CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

TRANSMISIÓN DE CALOR POR CONDUCCIÓN

TRANSMISIÓN DE CALOR POR CONDUCCIÓN ERMODINAMICA ÉCNICA Y RANSMISIÓN DE CAOR RANSMISIÓN DE CAOR POR RANSMISIÓN DE CAOR POR EN ESACIONARIO. Intoducción.. Balanc d ngía n una supfici plana. 3. Balanc d ngía n supficis cilíndicas y sféicas.

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

Facultad de Ingeniería Física 1 Curso 5

Facultad de Ingeniería Física 1 Curso 5 Facultad d Ingniía Física Cuso 5 Índic Funt n moviminto con spcto al ai 3 Rsumn5 Ejcicio 5 Ejcicio 28 El obsvado stá n moviminto spcto a la unt n poso8 Rsumn Funt y obsvado n moviminto Ejcicio 3 Númo d

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

Guía 0: Repaso de Análisis Matemático

Guía 0: Repaso de Análisis Matemático ÍSICA II A/B Pim Sgundo Cuatimst d 009 Guía 0: Rpaso d Análisis Matmático ). Calcula n coodnadas sféicas la intgal f,, d sindo,, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo f,, ) ) g

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en ÍSICA II A/B/8.0 Sgundo Cuatimst d 06 última vsión: o C.06) Guía 0: Rpaso d Análisis Matmático. Calcula n coodnadas sféicas la intgal f, ),, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo,

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

CAPACITANCIA Y DIELÉCTRICOS

CAPACITANCIA Y DIELÉCTRICOS Capitulo v CAPACITANCIA Y DIELÉCTRICOS 196 5.1. Intoducción Cuando ncsitamos lcticidad, s ncsaio psiona un intupto y obtnla dl suministo. Po oto lado si tnmos accso a un gnado, podmos asguanos qu obtnmos

Más detalles

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas UNIVESIDD USTL DE CILE INSTITUTO DE CIENCI Y TECNOLOGI DE LOS LIMENTOS (ICYTL) / SIGNTU: INGENIEI DE POCESOS III (ITCL 34) POESO: Elton. Moals Blancas UNIDD : TNSEENCI DE CLO PO CONDUCCION (ESTDO ESTCIONIO)

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado.

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado. EJECCO DE OTENCA EN TEMA TFÁCO. EJECCO 1.- n sistma tifásico tifila d 40 V y scuncia T, alimnta una caga tifásica quilibada conctada n tiángulo, fomado po impdancias d valo 0 80º Ω. Halla la lctua d dos

Más detalles

< 0, entonces la función f es estrictamente decreciente en x

< 0, entonces la función f es estrictamente decreciente en x UNIDAD.- Aplicacions d las divadas (tma dl libo). CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando l signo d la divada pima podmos sab cuando una función s ccint o dccint. Esto s llama también l studio

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)

Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2) Ejrcicios 6/7 Lcción 6. Funcions.. Dtrmina los intrvalos d gno constant d la función f() + 6 +. Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( )

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida ntgral indfinida achillrato ntgral indfinida. Primitiva d una función Dfinición: Sa f() una función dfinida n l intrvalo (a,b), llamarmos primitiva d la función f() a toda función ral d variabl ral, F(),

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

Esquema del bloque (1) Relación entre Variables Cuantitativas. Correlación. Asociación entre variables cuantitativas Objetivos. Esquema del bloque (2)

Esquema del bloque (1) Relación entre Variables Cuantitativas. Correlación. Asociación entre variables cuantitativas Objetivos. Esquema del bloque (2) Esquma dl bloqu (1) Rlación nt Vaiabls Cuantitativas Colación 1. Intoducción 2. CORRELACIÓN Asociación Vaiabls Cuantitativas a) Coficint d Colación Concpto significado Infncias J.F. Casanova Colación Rgsión

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos . Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

Esquema del bloque (1) Relación entre Variables Cuantitativas. Correlación y Regresión. Asociación entre variables cuantitativas Objetivos

Esquema del bloque (1) Relación entre Variables Cuantitativas. Correlación y Regresión. Asociación entre variables cuantitativas Objetivos Esquma dl bloqu (1) Rlación nt Vaiabls Cuantitativas Colación 1. Intoducción. CORRELACIÓN Asociación Vaiabls Cuantitativas a) Coficint d Colación Concpto significado Infncias J.F. Casanova Colación Esquma

Más detalles

EL MANTENIMIENTO DE SUS REGISTROS

EL MANTENIMIENTO DE SUS REGISTROS EL MANTENIMIENTO DE SUS REGISTROS R s o u c & R f a l H a n d o u t Ud. db mantn sus gistos (cods) paa figua sus impustos coctamnt. Sus cods dbn s pmannts, xactos, compltos, y dbn stablc claamnt sus ingsos,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando -PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos

Más detalles

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgral dfinida: (º) Aplicación:

Más detalles

Límite Idea intuitiva del significado Representación gráfica

Límite Idea intuitiva del significado Representación gráfica LÍÍMIITES DE FUNCIIONES ((rrsumn)) LÍMITE DE UNA FUNCIÓN f() k s : ímit d a función f() cuando tind a k Límit Ida intuitiva d significado Rprsntación gráfica Cuando f() A aumntar, os vaors d f() s van

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : LÍMITES Y CONTINUIDAD DE FUNCIONES REALES Comptncias Utilizar técnicas d aproimación n procsos numéricos infinitos

Más detalles

NÚMEROS COMPLEJOS. Autor: Patrici Molinàs Mata (pmolinas@uoc.edu), José Francisco Martínez Boscá (jmartinezb@uoc.edu) NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS. Autor: Patrici Molinàs Mata (pmolinas@uoc.edu), José Francisco Martínez Boscá (jmartinezb@uoc.edu) NÚMEROS COMPLEJOS Númros complos NÚMEROS COMPLEJOS Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martín Boscá (martinb@uoc.du) MAPA CONCEPTUAL Dfinición Fórmula d Cardano NÚMEROS COMPLEJOS Rsolución d cuacions

Más detalles

5. EL METODO DE LOS ELEMENTOS FINITOS (MEF ó FEM).

5. EL METODO DE LOS ELEMENTOS FINITOS (MEF ó FEM). PORCOE L EUDO DE L QU ELECRC DE FLUO XL EDE L PLCCO DEL EODO DE LO ELEEO FO. E DOCORL. 5. EL EODO DE LO ELEEO FO (EF ó FE). 5.. El método gnal. 5... Dfinición dl método. El método d los lmntos finitos

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES 96 LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES JUSTIFICACIÓN: En sta Lcción s cntrará la atnción n l studio d aqullas cuacions difrncials ordinarias d primr ordn

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

2. Vector tangente y gráficas en coordenadas polares.

2. Vector tangente y gráficas en coordenadas polares. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO Docnt: Ángl Aita Jiménz SEGUNDO TALLER DE REPASO EJERCICIOS DE LEY DE GAUSS 1. Una sfa aislant d adio R tin una dnsidad d caga unifom ρ y una caga positiva total Q. Calcula l campo léctico n las gions.

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

2. Integrales dobles sobre regiones no rectangulares.

2. Integrales dobles sobre regiones no rectangulares. GRADO DE INGENIERÍA AEROESPACIAL. CRSO 0. Lección. Integrales múltiples.. Integrales dobles sobre regiones no rectangulares. Supongamos que tenemos una función f :(, ) f(, ) continua positiva cuo dominio

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

LÍMITES DE FUNCIONES. CONTINUDAD

LÍMITES DE FUNCIONES. CONTINUDAD LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

Introducción al método de los

Introducción al método de los Introducción al método d los Elmntos Finitos n D Lcción Discrtizacion Intrpolación n D Adaptado por Jaim Puig-Py (UC) d:. Zabaras, N. Curso FE Analysis for Mch&Arospac Dsign. U. Cornll. 0.. Fish, J., Blytschko,

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

EXAMEN FINAL DE ANÁLISIS DESCRIPTIVO DE DATOS ECONÓMICOS. 15-FEBRERO-2002.

EXAMEN FINAL DE ANÁLISIS DESCRIPTIVO DE DATOS ECONÓMICOS. 15-FEBRERO-2002. EXMEN FINL DE NÁLII DECRIPTIVO DE DTO ECONÓMICO. 5-FERERO-00. PELLIDO: NOMRE: D.N.I.: FIRM: GRUPO: - - C - D Rod con un cículo lo qu pocda Los alumnos qu apobaon l pim pacial sólo tinn qu spond a las pguntas

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS IES Mditáno d Málg Solución Spti 6 Jun Clos lonso Ginontti PRUEB PROBLEMS PR-- - ) Hálls l lo d p l qu l ct l plno sn pllos ) P clcúls l cución dl plno qu contin s ppndicul ) Los ctos dictos d ct plno

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions actas linals Ecuacions difrncials actas Torma 4 Solución d una cuación difrncial acta Ecuacions linals 1 Solución d una cuación linal 1 Rsumn 19 Bibliografía rcomndada

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles