5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler."

Transcripción

1 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica la gla d Baow y dtmina si ist l límit d, s halla una pimitiva lim d. Sin ma- go, hay una clas amplia d funcions continuas (como po jmplo la función f ( ) = ) cuyas pimitivas no son calculals po métodos lmntals. En stos casos pud qu nos ints sa, al mnos, si la intgal convg, aunqu no spamos calcula su valo. Los citios d convgncia son condicions qu nos pmitn gaantiza la convgncia d algunas intgals impopias. EJEMPLO. Vamos qu la intgal lim d. Sa- mos qu d s convgnt, s dci, qu ist d s una función ccint d, con lo cual, cuando, su límit tind a infinito (si no stá acotada) o in, su límit s finito (si stá acotada). Vamos qu ocu sto sgundo. Paa llo, osva l siguint gáfico. Entoncs, paa cada tnmos qu, paa. Esto nos dic qu la cuva d cuación y = stá situada nt l j OX y la cuva d cuación y =, como podmos osva n la figua. Ahoa in, paa >, tnmos qu valos d stán acotados po d d=. Po tanto, los y, n conscuncia, ist l siguint límit NOTA. Sa g : a,) g(), sindo a un númo cualquia, una función ccint. Si la función g stá acotada (s dci, ist una constant M tal qu g( ) M paa todo [ a, ), ntoncs ist lim g( ) y s finito. Si la función g no stá acotada, ntoncs lim g ( ) =.

2 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. y la intgal d s convgnt. lim d lim + = + La técnica mplada n st jmplo sugi l siguint citio. PROPOSICIÓN (CRITERIO DE COMPARACIÓN). San f,g :[a,) dos funcions continuas y positi- vas tals qu f ( ) g( ) paa todo [ a, ). Entoncs, paa las intgals impopias f ( d ) a gd ( ), s vifica qu: a () Si la intgal gd ( ) convg, ntoncs la intgal f ( d ) tamién convg. a a () Si la intgal f ( d ) divg, ntoncs la intgal gd ( ) tamién divg. a a Es más, si la función f no s positiva, po f ( ) g( ) paa todo [ a, ). Entoncs, la intgal f ( d ) convg si la intgal gd ( ) convg. a a LA FUNCIÓN Γ DE EULER. Sa n un númo natual. Entoncs la intgal impopia convg y n d = ( )!. En lo qu sigu, dnotamos po Γ () = d =, fcto, paa n = otnmos qu como hmos visto n los jmplos d la scción antio. En gnal, tnmos qu n d n Γ ( n): = d. En u =, du = d n n Γ ( n) = d= lim d= n n dv = d, v = n n n n n = lim lim d lim d ( n ). n = + = Γ + n n n Entoncs Γ ( n+ ) = nγ ( n) paa todo n =,,... Pusto qu Γ () = otnmos qu Γ ( n) = ( n )! paa todo n =,,... D sta foma, tnmos dfinida la función Γ paa númos natuals. Usando l citio d compaación s pud tnd la dfinición d la función Γ a númos als. Dado un númo al p considamos la intgal p d. S tata d una intgal impopia d pi-

3 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. ma y d sgunda spci. Paa studia su convgncia (dido a qu l intgando pud qu no sté acotado n = ) dividimos sta intgal n dos p d = p d + p d. Comnzamos studiando la intgal I. Supongamos qu p y considmos un natual n tal qu p n. Entoncs p n paa todo. convgnt, l citio d compaación nos dic qu la intgal gnt. Si p <, ntoncs p d tamién s conv- p paa todo. Como la intgal d s con- p d tamién s convgnt. vgnt, l citio d compaación nos dic qu la intgal I Como la intgal I n d s En dfinitiva, la intgal I convg paa cualqui valo d p. Ahoa studiamos la convgncia d la intgal I. Si, como la función ponncial s dccint, ntoncs p p p d y. Como la intgal convg si p p p <, s dci, si p >, l citio d compaación asgua qu la intgal d convg si p >. Po ota pat, como la intgal divg si p, s dci si p, l citio d p p d compaación asgua tamién qu la intgal d divg si p. En dfinitiva, la intgal I convg si, y sólo, si p >. En sumn, la intgal p > la función p d convg si, y sólo, si. p Γ ( p): = dqu s llama función gamma d Eul. p > Esto nos pmit dfini, paa EJEMPLO. Vamos a usa l citio d compaación paa stalc qu la intgal d s divgnt. Dmos nconta una función f( ) d foma qu f( ) paa (o in + + paa suficintmnt gand, digamos a ) y d mana qu f ( d ) sa divgnt. Paa a nconta sta función osvmos qu cuando la función vin a s pacida a la +

4 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. función, n l sntido d qu lim + =. Entoncs, d ocui qu +, o quivalntmnt,, paa suficintmnt gand. D hcho s vifica qu paa + +. Como la intgal d s divgnt, ntoncs la intgal d tamién s divgnt. En conscuncia, la intgal d s divgnt. La técnica mplada n st jmplo + + sugi l siguint citio. PROPOSICIÓN (CRITERIO DE COMPARACIÓN POR PASO AL LÍMITE). San f,g :[a,) dos funcions continuas y positivas tals qu ist L = lim. f ( ) g ( ) Entoncs, paa las intgals impopias f ( d ) gd ( ), s vifica qu: a a () Si < L <, las dos intgals gd ( ) y f ( ) dtinn l mismo caáct, s dci, la a a intgal f ( d ) convg si, y sólo, si la intgal gd ( ) convg. a a () Si L = y la intgal gd ( ) convg, ntoncs la intgal f ( d ) tamién convg. a a () Si L = y la intgal gd ( ) divg, ntoncs la intgal f ( d ) tamién divg. a a LA FUNCIÓN B DE EULER. Una compaña inspaal d la función gamma s la función ta d p q Eul, dfinida paa p > y q > po la igualdad B( pq, ): = ( ) d. Osvmos qu l intgando no stá acotado n los puntos = y =. Vamos a compoa, usando l citio d p q compaación po paso al límit, qu la intgal ( ) d s convgnt si, y sólo si, p > y q >. Paa sto vamos a dscompon la intgal n dos, d la siguint foma p ( ) q d = p ( ) q d + p ( ) q d. I La intgal I s impopia poqu l intgando no stá acotado n = y la intgal I s impopia poqu l intgando no stá acotado n =. Comnzamos studiando la convgncia d la p q intgal I. Osvmos qu ( ) lim =. El citio antio nos dic qu I p tin l mis- I

5 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. p d = d y ya samos qu sta última intgal convg si, y sólo, p+ mo caáct qu si p + <, s dci, p >. Paa studia la convgncia d la intgal I osvmos qu p q ( ) lim =. q ( ) caáct qu la siguint intgal El citio d compaación po paso al límit nos dic qu I tin l mismo q ( ) d = d y ya samos qu sta última in- q+ ( ) tgal convg si, y sólo, si q + <, s dci, q >. En dfinitiva, tnmos qu s convgnt si, y sólo si, p > y q >. La funcions p p d Γ ( ) = y (, ) p q B pq = ( ) d p q s llaman intgals ulianas y B( pq, ) = ( ) d apacn n vaias áas d la matmática aplicada. Eistn muchas popidads intsants qu vifican las funcions ulianas, así como lacions nt llas. Quizá la más lvant sa qu Γ( p) Γ( q) B( p, q) = paa todos p > y q >. A vcs sta igualdad pmit calcula intgals Γ ( p + q) p q tigonométicas. Po jmplo, si hacmos l camio = sn θ n la intgal ( ) d otnmos = sn θ, d = snθ cosθ π p ( ) q d = =,θ = ; =,θ = π = sn p θ cos q θsnθ cosθ dθ π π = sn p θ cos q θ dθ. Entoncs sn p θ cos q θ dθ = Γ( p) Γ(q) B( p,q) =. Pusto qu la función gamma stá taulada, muchas d stas intgals s pudn calcula o apoima d sta mana. Osva qu la Γ( p + q) π p q intgal sn θ cos θdθ pud s una intgal impopia d sgunda spci, pusto qu la función sno s anula n θ = y la función cosno s anula n θ = π. d EJEMPLO. En la scción antio calculamos l valo d sta intgal impopia. Ahoa ( + ) vamos a stalc la convgncia d dicha intgal sin calculala. Usamos l citio d compaación po paso al límit. Samos qu sta intgal s impopia poqu l intvalo d intgación 5

6 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. s infinito y tamién poqu l intgando f( ) = (qu s positivo n l intvalo d intgación) no stá acotado n =. Spaamos la intgal n dos, po jmplo, ( + ) ponmos d d d = +. (+ ) (+ ) (+ ) I ( + ) La intgal I s d sgunda spci. Admás s vifica qu lim = lim =. El citio d compaación po paso al límit nos dic qu I ( + ) tin l mismo caáct qu d. Como, < sta intgal s convgnt, lugo I tamién lo s. La intgal I s d pima spci. ( + ) Admás s vifica qu lim = lim =. El citio d compaación po paso al ( + ) d límit nos dic qu I tin l mismo caáct qu. Como >, sta intgal s convgnt, lugo I d tamién lo s. Entoncs la intgal ( + ) s convgnt. EJEMPLO. Vamos a usa ahoa l citio d compaación po paso al límit paa stalc qu la intgal d s divgnt. Osvmos qu sta intgal s d pima spci. Admás, l + intgando s compota como + cuando. Esto significa actamnt qu lim + = lim =. + El citio d compaación po paso al límit nos dic, po jmplo, qu las intgals d + d d tinn l mismo caáct. Como s divgnt, ntoncs d divg, lugo + d tamién s divgnt. + I 6

7 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. d, sindo EJEMPLO. En st último jmplo analizamos la convgncia d la intgal log p log p >. Comnzamos con l caso p =. Osvmos qu lim = lim =. El citio d log d d compaación po paso al límit nos dic qu, pusto qu s divgnt, ntoncs log tamién s divgnt. En l caso gnal ocu algo simila pusto qu samos qu paa todo p >. La conclusión d qu p log lim = lim = p log d s divgnt s hac igual qu n l caso p =. log p EJERCICIO. Dtmina si las siguints intgals impopias convgn y, n su caso, calcula su valo. log () ( asn + cos ) d. () d. () log d. () + d. EJERCICIO. Considmos la función dfinida po f( ) =, con [, ). Diuja la + + gáfica d la cuva d cuación y = f( ) y calcula l volumn gnado al gia dicha cuva alddo dl j OX. EJERCICIO. Estudia la convgncia d las siguints intgals impopias y, n su caso, calcula su valo: + () d, () / ( ) ( + ) d, () d, () d. + EJERCICIO. Usando l citio d compaación po paso al límit, compua qu la intgal impopia log d s convgnt. EJERCICIO 5. Compua qu la intgal impopia n función d la función Γ d Eul. π d s convgnt y psa su valo cos( ) 7

8 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. EJERCICIO 6. Estalc la convgncia d la intgal impopia postiomnt, calcula l valo d dicha intgal. log d, sin calculala y, ( + ) EJERCICIO 7. Compua qu la intgal impopia d convgnt la intgal impopia? snh d s convgnt y calcula su valo. Es snh EJERCICIO 8. Consida la función f : (,) f () = log. () Diuja (d foma squmática) la gáfica d la función y = f( ). () Calcula los siguints límits lim y lim f( ). log + () Justifica qu la intgal impopia f ( d ) s convgnt. sn d paa stu- EJERCICIO 9. Es posil aplica algún citio d convgncia a la intgal dia su convgncia? Razona la spusta. A continuación, intga po pats paa otn la igualdad d = cos d paa todo. A pati d aquí, dtmina si la intgal sn cos cos sn impopia d s convgnt o divgnt. Razona la spusta. 8

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección? CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CASTEAR BADAJOZ PRUEBA DE ACCESO (OGSE) UNIVERSIDAD DE A RIOJA JUNIO (GENERA) (RESUETOS po Antonio Mnguiano) MATEMÁTICAS II Timpo máimo: hoas y minutos El alumno contstaá a los jcicios d una d las

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

v = (área de la base)(altura) = (ab)h

v = (área de la base)(altura) = (ab)h El volumn dl paallpípdo d la figua siguint s v = (áa d la bas)(altua) = (ab)h IGURA El volumn dl cilindo cicula cto d la figua 4, a) siguint s (m )h. h a) ~---------------v~---------------- IGURA 4 TI

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

TRANSMISIÓN DE CALOR POR CONDUCCIÓN

TRANSMISIÓN DE CALOR POR CONDUCCIÓN ERMODINAMICA ÉCNICA Y RANSMISIÓN DE CAOR RANSMISIÓN DE CAOR POR RANSMISIÓN DE CAOR POR EN ESACIONARIO. Intoducción.. Balanc d ngía n una supfici plana. 3. Balanc d ngía n supficis cilíndicas y sféicas.

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

Ejemplo 1: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

Ejemplo 1: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 . CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando l signo d la divada pima podmos sab cuando una función s ccint o dccint. Esto s llama también l studio d la monotonía d la función. Popidad: - Si

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

Facultad de Ingeniería Física 1 Curso 5

Facultad de Ingeniería Física 1 Curso 5 Facultad d Ingniía Física Cuso 5 Índic Funt n moviminto con spcto al ai 3 Rsumn5 Ejcicio 5 Ejcicio 28 El obsvado stá n moviminto spcto a la unt n poso8 Rsumn Funt y obsvado n moviminto Ejcicio 3 Númo d

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una

Más detalles

I.E.S. Mediterráneo de Málaga Modelo6_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1

I.E.S. Mediterráneo de Málaga Modelo6_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1 I.E.S. Mditáno d Málaga Modlo6_9_Solucions Juan Calos Alonso Gianonatti - Sa f:r R la función dfinida po f ( ) =+. Opción A Ejcicio 1 [ 7 puntos] Dtmina los intvalos d cciminto y dcciminto d f, así como

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

xdx 10. e dx 2 x x.ln dx x dx 7. x.cosh 15. x.(ln x) dx 9 x *Ver soluciones de los números impares en el libro de Leithold

xdx 10. e dx 2 x x.ln dx x dx 7. x.cosh 15. x.(ln x) dx 9 x *Ver soluciones de los números impares en el libro de Leithold REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgrals impropias Primra spci-unidad

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A I.E.S. CSTELR DJOZ PRUE DE CCESO (LOGSE) UNIVERSIDD DE LERES JUNIO (RESUELTOS po nonio Mnguiano) MTEMÁTICS II Timpo máimo: hoas minuos Consa mana claa aonaa una las os opcions popusas. Caa cusión s punúa

Más detalles

Guía 0: Repaso de Análisis Matemático

Guía 0: Repaso de Análisis Matemático ÍSICA II A/B Pim Sgundo Cuatimst d 009 Guía 0: Rpaso d Análisis Matmático ). Calcula n coodnadas sféicas la intgal f,, d sindo,, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo f,, ) ) g

Más detalles

Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO

Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO Prof. Jsús Olivar Rsumn d Cálculo II ING. PETRÓLEO.- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f, dirmos qu F s una primitiva suya si F

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

2. Vector tangente y gráficas en coordenadas polares.

2. Vector tangente y gráficas en coordenadas polares. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

tiene por límite L cuando la variable independiente x tiende a x

tiene por límite L cuando la variable independiente x tiende a x UNIDAD (Continuación).- Funcions rals. Límits y continuidad 9. LÍMITES. LÍMITES LATERALES Rcordamos dl año antrior qu una función y f () tin por it L cuando la variabl indpndint tind a, y s notaba por

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES EALES DE UNA VAIABLE EAL.- Estudiar la continuidad, n los puntos y d la función: f ( ) L( ) si / si Solución: f continua n y El dominio d la

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

Técnicas de cálculo de derivadas: Derivadas de funciones elementales. Cálculo de la derivada de la función inversa. Derivación logarítmica

Técnicas de cálculo de derivadas: Derivadas de funciones elementales. Cálculo de la derivada de la función inversa. Derivación logarítmica BLOQUE a Para ralizar stos jrcicios dbs conocr: La rprsntación gráfica las propidads d las funcions lmntals. La dfinición d continuidad drivabilidad d una función n un punto la rlación ntr ambos concptos.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD

RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD RESUMEN DE CARACTERÍSTICAS DE LAS FUNCIONES REALES. CONTINUIDAD. ACOTACIÓN DE FUNCIONES COTA SUPERIOR KR s cota suprior d f( ) D s f( ) K Cualquir nº mayor qu una cota suprior también s una cota suprior.

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller. 7.1 Conceptos generales sobre transformación de coordenadas

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller. 7.1 Conceptos generales sobre transformación de coordenadas Unisidad Simón Bolía Consión d Engía Eléctica - Pof José Manul All Tansfomación d Coodnadas 71 Concptos gnals sob tansfomación d coodnadas El sistma d cuacions difncials 61, qu modla l compotaminto d la

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

EJERCICIOS RESUELTOS TEMA 1: PARTE 3

EJERCICIOS RESUELTOS TEMA 1: PARTE 3 Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en ÍSICA II A/B/8.0 Sgundo Cuatimst d 06 última vsión: o C.06) Guía 0: Rpaso d Análisis Matmático. Calcula n coodnadas sféicas la intgal f, ),, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo,

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas UNIVESIDD USTL DE CILE INSTITUTO DE CIENCI Y TECNOLOGI DE LOS LIMENTOS (ICYTL) / SIGNTU: INGENIEI DE POCESOS III (ITCL 34) POESO: Elton. Moals Blancas UNIDD : TNSEENCI DE CLO PO CONDUCCION (ESTDO ESTCIONIO)

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

CAPACITANCIA Y DIELÉCTRICOS

CAPACITANCIA Y DIELÉCTRICOS Capitulo v CAPACITANCIA Y DIELÉCTRICOS 196 5.1. Intoducción Cuando ncsitamos lcticidad, s ncsaio psiona un intupto y obtnla dl suministo. Po oto lado si tnmos accso a un gnado, podmos asguanos qu obtnmos

Más detalles

EXÁMEN TIPO DE ACÚSTICA APLICADA

EXÁMEN TIPO DE ACÚSTICA APLICADA EXÁMEN PO DE ACÚCA APLCADA P.. - El uido n los alddos dl áa d taao d una cotadoa d mtal fu analizado n andas d octava dando como sultado los valos d la siguint tala: Fcuncia cntal n Hz Nivl d ntnsidad

Más detalles

6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntesis Teórico-Práctica Prof. Sergio Weinberger-

6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntesis Teórico-Práctica Prof. Sergio Weinberger- 6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntsis Tórico-Práctica. 007 Prof. Srgio Winbrgr- DEFINICIÓN DE LÍMITE FINITO: a f () α E( α, ε) E *(a, δ) / E *(a, δ) f () E( α, ε) y Es dcir qu,dado un

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

Complementos de matemáticas. Curso 2004-2005

Complementos de matemáticas. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería Técnica Industrial Complementos de matemáticas. Curso 004-005 Colección de ejercicios del tema 1 Las soluciones aparecen en color azul, y si disponéis de la posibilidad

Más detalles

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado.

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado. EJECCO DE OTENCA EN TEMA TFÁCO. EJECCO 1.- n sistma tifásico tifila d 40 V y scuncia T, alimnta una caga tifásica quilibada conctada n tiángulo, fomado po impdancias d valo 0 80º Ω. Halla la lctua d dos

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

2. Integrales dobles sobre regiones no rectangulares.

2. Integrales dobles sobre regiones no rectangulares. GRADO DE INGENIERÍA AEROESPACIAL. CRSO 0. Lección. Integrales múltiples.. Integrales dobles sobre regiones no rectangulares. Supongamos que tenemos una función f :(, ) f(, ) continua positiva cuo dominio

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

TÉCNICAS DE INTEGRACIÓN

TÉCNICAS DE INTEGRACIÓN C TÉCNICAS DE INTEGRACIÓN C. CONCEPTOS PRELIMINARES C.. Función primitiva Sea f : I R, donde I es un intervalo real. Diremos que la función F : I R es una función primitiva de la función f en I si se cumple

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn

Más detalles