SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( )"

Transcripción

1 SEPTIEMRE 5 INSTRUCCIONES El mn psn os opcions ; l lumno bá lgi un sólo un lls solv los cuo jcicios qu cons. No s pmi l uso clculos con cpci psnción gáfic. PUNTUCIÓN L clificción máim c jcicio s inic n l ncbzmino l mismo Timpo 9 minuos OPCIÓN Ejcicio. ( punos) Discui sgún los vlos l pámo l λ l posición liv los plnos π z λ π π ( λ ) ( λ ) z λ ( λ ) ( λ 6) z λ L posición liv s plnos s soci l ipo solución qu ng l sism cucions qu fomn., ss su vz, con los ngos l mics qu finn l sism sgún l om Rouché. * * Dminos (g g n).s.c.d. Compibls (g g ) Sisms * Inminos (g g < n).s.c.i. * Incompibls (g g ).S.I. Ls mics qu finn l sism qu fomn ls cucions los s plnos son λ λ λ ( λ ) ( λ 6) * λ λ λ λ λ 6 λ Po ls imnsions qu inn ls mics * * g( ) g( ) Si l minn s isino co, los ngos ls mics coincin son igul l númo incógnis, po lo qu l sism s compibl mino psn s plnos concuns n un puno, nino n cun so, s iscu l posición los plnos p los vlos l pámo λ qu nuln l minn. λ λ ( λ ) ( λ ) ( λ ) ( λ ) ( λ 6) ( λ ) ( λ 6) igulno co l psión l minn λ λ ( λ ) ( λ ) λ λ Discusión i. Si λ,, g g * n. Plnos concuns n un puno. El puno co s l solución l sism.

2 ii. Si λ, como l minn s co, l g <. P compob qu 6 in ngo s busc un mno on os, g. P sui l ngo 6 l miz mpli s p l mno on os nio solo s 6 suin sus mnos olos, los os posibls, uno s l minn coficins, qu s nulo, l oo s 56 ; g * g, los plnos no inn 6 punos comuns, ls os posibls posicions livs, nino n cun qu n los vcos ccísicos los plnos no is popocionli, s isponn fomno un pism ingul iss plls. iii. Si λ, como l minn s co, l g <. P compob qu in ngo s busc un mno on os, g. P sui l ngo l miz mpli s p l mno on os nio solo s suin sus mnos olos, los os posibls, uno s l 7 minn coficins, qu s nulo, l oo s ; 7 g * g, los plnos no inn punos comuns, ls os posibls posicions livs, nino n cun qu n los vcos ccísicos los plnos π π is popocionli, h os plnos pllos uno qu los co.

3 Ejcicio. ( punos) S consin ls cs z s z 7 ) ( puno). Hll l c, ppnicul s, qu ps po l oign. L c busc s clcul con l mínim minción linl (Puno, vco). El puno s sc l nuncio P (,, ). El vco icción s obin min l pouco vcoil los vcos icción ls cs s, nino n cun qu l vco icción l c b s ppnicul los vcos icción ls cs s. λ λ (,, ) λ z (,, ) z λ µ z µ (, 7, ) s 7 µ 7 s (,,) z µ s (,, ) (,,),, (,,) Con l vco icción l puno s obin ls pméics l c. δ P (,, ) δ δ R,, z δ b) ( puno). Hll ls coons l puno inscción l c s con l c obni n l po ). S busc un puno Q( o, o, z o ) qu pnc ls os cs (s ), po no b cumpli mbs cucions o µ o δ Q s z o o 7 µ µ Q igulno s obin un sism s cucions con os incógnis (µ, δ) µ δ µ δ 7 µ δ ; onno µ δ 7 µ δ µ δ P sb qu l sism in solución únic nino n cun qu l ngo l miz coficins s os 7 h qu compob qu l minn l miz mpli s co. 7 ( ) ( 7) L os cucions qu sulv l sism nino n cun l mno on os isino co son z o o δ δ

4 7 µ δ µ Rsolvino po Cm 7 µ δ 7 7 δ 7 Susiuno µ n s ó δ n s obin l puno Q o δ o Q (,, ) z o Ejcicio. ( punos) Ds ls mics I ) ( puno). Hll os consns α β ls qu α βi. P clcul los pámos α β s susiun n l igul α βi. α β α β α α β igulno émino émino. α β. α.. α β s obin un sism os cucions con os incógnis α β α α β susiuno n l psión I. b) ( puno). Clcul 5 uilizno l psión obni n l po nio. 5 ( ) ( I) Tnino n cun qu ls mics I conmun, s pu s pu soll l binomio po l méoo Nwon ( I) ( ) I I I ( I) I I susiuno n l psión 5. 5 I ( I) 5 I c) ( puno). Hll os ls mics X qu sisfcn ( X) ( X) X. Opno con l pim mimbo l igul s obin l conición qu bn cumpli ls mics X p sisfc l igul. X X X X X X X X X X P un miz gnéic X z, l igul s pu convi n un sism.

5 z z z z z. z. igulno simplificno z. z z z. z El sism no pn, po lo s vibl pu om culqui vlo ( µ). Qu po solv l cución cución qu in solución inmin, ncsino un pámo p solvl. z λ quno l miz pi l fom λ µ X λ, µ R λ Ejcicio. ( punos). D l función f s pi ) ( puno). Hll l cución l c ngn su gáfic n l puno (, f ) p >. L cución l c ngn un función n un puno n fom puno-pnin s o m ( o ) ( o, o ) Puno on m Pnin Tnino n cun qu l pnin l c ngn s l iv l función piculiz n l puno ( m f ( o )), qu l puno pnc l función po no in l fom ( o, f ( )), l cución l ngn n l puno o in l fom f f ( ) on f () f f susiuno n l cución l c ngn ( ) muliplicno o l cución po onno s ps fom gnl b) ( puno). Hll los punos co l c ngn hll n l po ) con los os js coonos. P obn los punos inscción l c con los js coonos, s ps l cución fom cnónic. OX (,) OY, 5

6 6 c) ( puno). Hll l vlo > qu hc qu l isnci n los os punos hllos n b) s mínim. b b P obn l mínimo s función s iv spco s igul co. ± Como s pi l vlo posiivo, l posibl mínimo sá n. P compob qu s un mínimo, l signo l pim iv l izqui uno ( ) b s ngivo (ccin) l ch ( ) posiivo (ccin). P qu sul más sncillo l suio, s convnin simplific l psión l iv nino n cun l psión simplific l iv, su signo solo pn l numo. > < p is un mínimo.

7 OPCIÓN Ejcicio. ( punos) D l función f ln on ln signific logimo npino, fini p >, hll un puno (, f() ) l qu l c ngn l gáfic f() n s puno s pll l j OX. Tnino n cun qu l iv un función n un puno s l pnin l c ngn l función n s puno, qu ls cs hoizonls inn pnin co, s pi hll los punos l función on s nul l iv P simplific l iv s pu simplific l psión l función nino n cun ls popis los logimos. f ln Ln Ln( ) Ln Ln( ) ( ) f ( ) p clcul l sgun componn l puno s susiu n l función. f ln Ln En l puno (, Ln ) l función in un ngn hoizonl. Ejcicio. ( punos) S consi l función f ( ) ) ( puno). Clcul los mos locls /o globls l función f(). L conición ncsi suficin p qu un función ng un mo livo n un puno, s qu n s puno l pim iv s co l sgun iv s isin co. P iscni si s un máimo ó un mínimo s pun us os ciios, n s cso, po l complji l sgun iv, s más ápio l ciio l signo l pim iv n ls poimis l puno. Sí f f ( o ) > ( Ccin) f ( o ) < ( Dccin) n o, f ( o ) o f ( o ) < ( Dccin) f ( o ) > ( Ccin) n o, f ( o ) ( ) ( ) ( ) ( ) f ( ) ( ) ( ) Ln f ( ) is un máimo is un mínimo P sui l signo l iv n ls poimis co, s sui l signo l psión, qu ls más psions son posiivs p oo Rl ( > R). ( ) > f ( ) < f En, l función psn un máimo livo. Puso qu l función s coninu n oo R los límis cuno in ± son finios, Lím ( ) ( ) Lím L H Lím Lím ( ) ( ) ( ) ( ) ( ) ( ) 7

8 l máimo livo s máimo bsoluo l función. f() > p oo Rl, in máimo bsoluo vlo ¼, po lo no s un función co n,, l ínfimo l función s co po no s mínimo bsoluo qu l función nunc llg vl co. b) ( puno). Dmin l vlo l pámo l qu f ( ) f n n f () () f '() C n RROW n ( ) Ln Ejcicio. ( punos) S consi l fmili plnos m (m ) (m l)z (m ) sino m un pámo l. S pi ) ( puno). Dmin l c común oos los plnos l fmili. Dno m os vlos ls, s obinn ls cucions os plnos l hz, l inscción los os plnos s l c busc. m π () (l)z (), onno π z. M σ ( ) ( l)z ( ), onno σ. Los plnos π σ finn l c, is l Hz. z p ps l c pméics s nsfom un ls vibls n pámo ( λ) λ λ λ R z λ b) ( puno). Dmin l plno s fmili qu ps po l puno P (l, l, ). Si un puno pnc un plno, ls coons l puno cumpln l cución l plno. m (m ) (m l) (m ) m m susiuno l vlo m n l hz 5 z simplificno 5 z

9 9 c) ( puno). Dmin l plno s fmili qu s pllo l c z z P qu un c un plno sn pllos, l vco noml l plno l icción l c bn s ppniculs. po no su pouco scl sá co. El vco icción l c s obin muliplicno vcoil los vcos nomls los plnos qu l finn.,,,,,,,, π π,, m, m m, n n o,, m, m m, o 6m 6 m susiuno n l Hz 6 5 z simplificno 5z 5 Ejcicio. ( punos).ds ls mics ) ( puno). Hll. S clculn ls sucsivs poncis p v si is lgun l cunci n lls. pi, os ls poncis son l miz nul, po lo no

10 b) ( puno). Hll l miz invs. L conición ncsi suficin p qu un miz cu ng invs, s qu su minn s isino co. j j j j c) ( puno). En l cso picul, hll. P S clculn ls sucsivs poncis p v si is lgun l cunci n lls. siguino l scunci, s pu infi.

SEPTIEMBRE 2001 INSTRUCCIONES:

SEPTIEMBRE 2001 INSTRUCCIONES: SEPTIEMBRE INSTRUCCIONES El mn psnt os opcions B; l lumno bá lgi un lls contst zonmnt los cuto jcicios qu const ich opción n h. min. OPCIÓN Ejcicio. Clificción máim puntos. Dtmin l cución ctsin l lug gomético

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

GUÍA DE EJERCICIOS III

GUÍA DE EJERCICIOS III Fculd d Ingnií UCV Álg Linl Gomí Anlíic Ciclo Básico GUÍA DE Vifiqu n cd cso si l conjuno ddo s un spcio vcoil Si no lo s indiqu qu iom no s cumpl ) El conjuno d mics digonls d odn n con l sum d mics muliplicción

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

Ejercicio 1. x a. Ejercicio 2.

Ejercicio 1. x a. Ejercicio 2. Sptim 5 - Opción A (Molo 6) Ejcicio. D un función f: R R s s qu f() y qu f (. () [ punto] Dtmin f. () [ 5 puntos] Clcul l á l ión limit po l áfic f, po l j sciss y po ls cts cucions - y. () Aplicno l Tom

Más detalles

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti IES Mditáno d Málg Solución Junio Jun Clos Alonso Ginontti BLOQUE A CUESTIÓN A..- ) Discut l guint stm d cucions n unción dl pámto [ 5 puntos] ) Rsul l stm cundo s comptil [ punto] λ λ λ Solución 8 Con

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.. Mdiáno d Málg Junio Jun Clo lono Ginoni OPCIÓN.- Conido l unción dinid n l inlo [ ]. Din l cución d l c ngn l cu qu pll l c qu p po lo puno P( Q(. ( puno..- Clcul l ingl indinid iguin d d ( puno.

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

Tema 5. Ecuaciones de rectas y planos en el espacio (Posiciones relativas)

Tema 5. Ecuaciones de rectas y planos en el espacio (Posiciones relativas) Memáics II (Bcilleo e Ciencis) Geomeí el espcio Ecuciones e ecs plnos 9 Tem Ecuciones e ecs plnos en el espcio (Posiciones elis) Ecuciones e un ec en el espcio Rec efini po un puno un eco Un ec que efini

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

MECANICA CELESTE PASO A PASO

MECANICA CELESTE PASO A PASO MCANICA CLST PASO A PASO (Un nfoqu Pdgógico po Iván Mcín F v3.0 G M m m M Mcánic Nwonin 684 Iván Mcín Mcánic Cls pso Pso Copyig 005-007 CURRICULUM ( v Cuiculum Dlldo IVAN CARLOS MACHIN MORRA Licncido n

Más detalles

Vectores. Bases. Solución: a) Los vectores son linealmente independientes pues: λ(1, 2) + µ( 3, 1) = (0, 0) λ 3µ = 0; 2λ + µ = 0 λ = 0 y µ = 0

Vectores. Bases. Solución: a) Los vectores son linealmente independientes pues: λ(1, 2) + µ( 3, 1) = (0, 0) λ 3µ = 0; 2λ + µ = 0 λ = 0 y µ = 0 Geomeí CTSL Vecoes. Bses. Ddos los vecoes u (, ) v (, ): ) Compueb que u v fomn un bse del espcio vecoil de los vecoes del plno. b) Encuen ls componenes del veco w (, 5) en l bse {u, v }. ) Los vecoes

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.S. diáno álg Junio Jun Clo lono Ginoni OPCIÓN.- ) Pon un jplo i iéi on oo i niiéi on. ) S un i iéi on on () -. Clul onndo l pu l inn indo l i pu. ) Clul un i iéi ngo qu iiqu ) Un i iéi qull n qu l

Más detalles

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar:

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar: Ceno Concedo Pl Mde Mol nº 86- MADRID TEMA GEOMETRÍA RECTAS Y PLANOS P empe. Ddo lo puno A() B(8) hll ) L coodend de lo vecoe fijo AB BA b) Do puno C D le que CD e equipolene AB. c) El eemo F de un veco

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDDES ÚBLIS DE L OMUNIDD DE MDRID RUEB DE ESO ESTUDIOS UNIVERSITRIOS (LOGSE) JUNIO INSTRUIONES GENERLES Y VLORIÓN El lumo coeá lo cuo ejecicio e u e l o opcioe ( o B) que e le oece. Nuc ebeá coe

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R MOVIMIENTO CIRCULAR Es un ipo de movimieno en el plno, en el cul l pícul gi un disnci fij lededo de un puno llmdo ceno. El movimieno cicul puede se de dos ipos: Movimieno cicul unifome Movimieno cicul

Más detalles

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados.

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados. SOLUCIONES ecas. Sea A ) B ) C ). Deemina los vecoes e iección e las ecas AB BC CA. Halla las ecuaciones paaméicas e ichas ecas. A AB ) ) ) AB AB B BC ) ) ) BC BC C CA ) ) ) BC CA ) ) ) ) ). Demosa que

Más detalles

Tomamos el menor formado por las dos primeras columnas y la primera y tercera filas. 1 1

Tomamos el menor formado por las dos primeras columnas y la primera y tercera filas. 1 1 Blu I. Álg Mtmátis II Autvluión Págin D l mti M m m : ) Hll ls vls m u ls vts il M sn linlmnt innints. ) Estui l ng M sgún ls vls m. ) P m, lul l invs M. ) P u ls vts il M sn linlmnt innints, n (M ) tin

Más detalles

ECUACIONES EXPONENCIALES

ECUACIONES EXPONENCIALES ECUACIONES EXPONENCIALES. Rsolvr ls siguins cucions ponncils ) Eponncils con igul s, s iguln los ponns. ) Los dos érminos s pudn prsr como ponncils d igul s. c) 0' Los dos érminos s pudn prsr como ponncils

Más detalles

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo Modelo. Ejecicio. lificció máim puos Siedo que el vlo del deemie es igul clcul el vlo de los deemies: ) ( puo) ) ( puo). dos co comú e colum duo co comú e colum * * l iecmi l posició de dos líes (fils

Más detalles

TEMA 9: DETERMINANTES

TEMA 9: DETERMINANTES más º llo. Ál Lnl TE : DETERNNTES. DETERNNTE DE UN TRZ UDRD. PROPEDDES DE LOS DETERNNTES. ENOR OPLEENTRO Y DJUNTO DE UN ELEENTO DE UN TRZ UDRD. DESRROLLO DE UN DETERNNTE POR LOS ELEENTOS DE UN LÍNE. ENORES

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d

Más detalles

MATEMÁTICAS (II) JUNIO 2002

MATEMÁTICAS (II) JUNIO 2002 MTEMÁTICS (II) JUNIO El emen present dos opciones, B. El lumno deberá elegir UN Y SÓLO UN de ells resolver los cutro ejercicios de que const. No se permite el usó de clculdors con cpcidd de representción

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia

A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia Un ct B s mu n dicción ppndicul su dicción cn lcidd cnstnt. En su mimint, ct un cicunfnci fij d cnt di n l punt ibl. Supnind qu l ct l cicunfnci pmncn n un pln únic n td instnt: B Hll l lcidd clción dl

Más detalles

CASTILLA LEÓN / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA LEÓN / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO OCIÓN A Cd lumno lgiá obligtoimnt un d ls dos opcions qu s poponn. L puntución máxim s d 3 puntos p cd poblm y d puntos p cd custión. OBLEMAS. ) Si l luz sol td n pomdio 8,33 minutos n llg l Ti,,7 minutos

Más detalles

OPCIÓN A. rg A = rg A* = n = 3 sistema compatible determinado.

OPCIÓN A. rg A = rg A* = n = 3 sistema compatible determinado. UNIVERSIDDES ÚBLICS DE L COUNIDD DE DRID RUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Cuso -5 TERI: TEÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN Dsués l tntnt tos ls gunts, l luno á sog un ls

Más detalles

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente.

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente. LAS FUNCIONES DE ONDA PARA EL HIDROGENO qq Ddo qu : U k dpnd solnt d l distnci dil nt l núclo y l lctón, lgunos d los stdos pitidos p st átoo pudn s psntdos dint funcions d ond qu solo dpndn d L s sipl

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

CINEMÁTICA DE UNA PARTÍCULA

CINEMÁTICA DE UNA PARTÍCULA Cpíulo IX CINEMÁTICA DE UNA PARTÍCULA 9.1 INTRODUCCIÓN L Cinemáic e ocup del movimieno de lo cuepo in conide l cu que oiginn dicho movimieno. E deci, eudiemo el movimieno de lo cuepo o pícul in conide

Más detalles

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que Tem 8: Integl de iemnn Monotonídelintegl Si f y g son funciones integbles en [, b] tles que f(x) g(x) x [, b] entonces b b f Como cso pticul p g =se obtiene que si f es un función integble en [, b] tl

Más detalles

Tema 8. Funciones vectoriales de variable real.

Tema 8. Funciones vectoriales de variable real. Tem 8. Funciones vecoiles de vile el. 8.1 Cuvs ecuciones pméics. Cálculo en pméics. 8. Funciones vecoiles: límie, coninuidd, deivción e inegción. 8.3 Cuvs en coodends poles. Aneo: cónics. E. U. Poliécnic

Más detalles

Solución Tarea de Aproximaciones y errores de redondeo

Solución Tarea de Aproximaciones y errores de redondeo Métodos numéicos y álgb linl CB0085 Apoximcions y os d dondo T d Apoximcions y os d dondo. Clcul l o bsoluto y l o ltivo si p y p 2.78 dond p s l vlo clculdo. : vlo l vlo clculdo 2.78 o bsoluto : vlo clculdo

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) I.E.S. CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEBRE (RESUELTOS por Anonio enguino) ATEÁTICAS II Tiempo máimo: hors Se elegirá el Ejercicio A o el B, del que sólo se hrán

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

III. Campo eléctrico y conductores

III. Campo eléctrico y conductores III. Cmpo léctico y conductos Método d ls imágns Gbil Cno Gómz, G 7/8 Dpto. Físic F Aplicd III (U. Svill) Cmpos Elctomgnéticos ticos Ingnio d Tlcomunicción Gbil Cno G Gómz, 7/8 Sistm cg puntul plno plno

Más detalles

EXAMEN RESUELTO Septiembre de 2002

EXAMEN RESUELTO Septiembre de 2002 EXMEN RESUELTO Sepieme de V L{ 45} ë ë Sen los suespcios de R : V ë ë V Hll: Ls dimensiones uns ses de los es suespcios. L dimensión del suespcio VV c Uns ecuciones implícis del suespcio V V. d Compo si

Más detalles

T3. Elementos finitos en elasticidad 2D (I)

T3. Elementos finitos en elasticidad 2D (I) . Elmno no n lcdd D.. oí d lcdd dmnonl.. Fomlcón dl lmno ngl d ndo.. Dczcón dl cmo d domcon.. Eccon d lo d l dczcón.5. Fomlcón dl lmno cngl d co ndo.. Condcon cc d l olcón ond con l MEF.. Condcon l convgnc

Más detalles

2. Conversión de Coordenadas.

2. Conversión de Coordenadas. Cvsó Cs Ctí Mtátc A Stll Vázquz Cvsó Cs Pccó C Sst cs sétc sétc Pl l Pccó,, Elps supc c ptz, φ, Cálcul lítc ucó Alítc vbl cplj λ = λ λ,sλ l ltu l M Ctl l Hus, φ l lttu Isétc cspt l lttu ésc ϕ s S s ucs

Más detalles

5.4 ANÁLISIS CUALITATIVO PARA LA ESTABILIDAD DINÁMICA. DIAGRAMA DE FASE DE DOS VARIABLES.

5.4 ANÁLISIS CUALITATIVO PARA LA ESTABILIDAD DINÁMICA. DIAGRAMA DE FASE DE DOS VARIABLES. Moisés Villna Muñoz ap. Sismas d Ecuacions Dincials n Dincias... INTRODUIÓN.. EUIONES DIFERENILES SIMULTÁNES.. EUIONES EN DIFERENIS SIMULTÁNES.. NÁLISIS ULITTIVO PR L ESTILIDD DINÁMI. DIGRM DE FSE DE DOS

Más detalles

m m = -1 = μ - 1. Halla la Apellidos: Nombre: Curso: 2º Grupo: A Día: 27 - IV - 15 CURSO Opción A

m m = -1 = μ - 1. Halla la Apellidos: Nombre: Curso: 2º Grupo: A Día: 27 - IV - 15 CURSO Opción A S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nobre: Curso: º Grupo: A Dí: 7 - IV - 5 CURSO 4-5 ) Durción: HORA y 3 MINUTOS. b) Debes elegir entre relizr únicente los cutro ejercicios

Más detalles

Solución de la ecuación de Schödinger para una partícula libre.

Solución de la ecuación de Schödinger para una partícula libre. Solución d l cución d Schöding un tícul lib. Vmos nliz l volución tmol d l función d ond d un tícul lib con un jmlo concto. Ptimos d l siguint condición inicil: (; ) ik dond y k son dos constnts ls. Lo

Más detalles

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO : L euión generl es de l form M N Pz donde todos los oefiientes son no nulos M N P Se puede esriir l euión nterior en l form: ± ± on Llmd form nóni de un uádri sin entro. Álger B Fultd de Ingenierí UNMdP

Más detalles

DETERMINANTES. Resuelve la ecuación propuesta en a) y calcula el valor del determinante propuesto en b):

DETERMINANTES. Resuelve la ecuación propuesta en a) y calcula el valor del determinante propuesto en b): DETERINNTES Ejeiio nº.- Clul el vlo e los siguienes eeminnes: Ejeiio nº.- Resuelve l euión oues en ) lul el vlo el eeminne oueso en ): Ejeiio nº.- ) Resuelve l euión: ) Clul el vlo el eeminne: Ejeiio nº.-

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS IES Mditáno d Málg Solución Spti 6 Jun Clos lonso Ginontti PRUEB PROBLEMS PR-- - ) Hálls l lo d p l qu l ct l plno sn pllos ) P clcúls l cución dl plno qu contin s ppndicul ) Los ctos dictos d ct plno

Más detalles

4. PRUEBA DE SELECTIVIDAD-MODELO

4. PRUEBA DE SELECTIVIDAD-MODELO Pruebs de Selectividd de Ciencis PRUEB DE SELECTIVIDD-MODELO-- OPCIÓN : ) Hll l longitud de los ldos del triángulo isósceles de áre máim cuo perímetro se m Perímetro b h h re h ( ) Derivmos : bse crece

Más detalles

EL STOR ENROLLABLE. El stor enrollable, es una cortina de una sola pieza, que se recoge verticalmente, mediante el accionamiento de un mando cadena

EL STOR ENROLLABLE. El stor enrollable, es una cortina de una sola pieza, que se recoge verticalmente, mediante el accionamiento de un mando cadena EL STOR ENROLLABLE El so nollbl, s n oin d n sol piz, q s og vilmn, mdin l ionmino d n mndo dn 3 mdids Únio sopo p ho y pd (fonl y ll) 3 mdids 3 diámos 32, 43 y 58 Po dás Idl p sp los slins Cíd d l oin

Más detalles

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8). CÓNICS º BCHILLERTO ) Hll L ecución d lugr geométrico los puntos d plno cu distnci P(,) doble que su distnci Q(-,). d ( R, P) d( R, Q) ( ) ( ) ( ) ( ) ( ) 0 0 0 ) Encuentr l circunferenci circunscrit l

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1 ÁLGEBRA Preguns de Selecividd de l Comunidd Vlencin Resuelos en vídeo hp://www.prendermemics.org/bmeccnnlgebr_pu.hml Pág.. (PAU junio A Clculr los vlores que sisfcen ls siguienes ecuciones: C AY AX B AX

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

Vc=19,825 m/s d=16,031 m

Vc=19,825 m/s d=16,031 m 7.. ese un rp que se encuenr 5 e lur el suelo se lnz un objeo e s k ci l clle, uilizno el uelle e consne k75 /, coo uesr l iur. l objeo se encuenr un isnci inicil e, lueo se coprie el uelle 5 c se suel,

Más detalles

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1 RISTIN ROND HERNÁNDEZ Mries deerminnes OLEGIO SN LERTO MGNO MTEMÁTIS II MTRIES Y DETERMINNTES. 8 MODELO OPIÓN Ejeriio. [ 5 punos] Dds ls mries lul l mriz P que verifi P = T ( T es l mriz rnspues de )..

Más detalles

PROBLEMAS DEL TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA

PROBLEMAS DEL TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA ROBLEMAS DEL TEOREMA UNDAMENTAL DE LAS INTEGRALES DE LÍNEA. Indpndncia dl camino n una ingal d lína. alcula l abajo llvado a cabo po l campo d ua al llva un objo dsd A hasa B siguindo a un camino compuso

Más detalles

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB Cuso: FISICA II CB 3U Ley de Coulomb (1736-186). Si ls cgs se ten o epelen signific que hy un fuez ente ells. LEY DE COULOMB L fuez ejecid po un cg puntul sobe ot Está diigid lo lgo de l líne que los une.

Más detalles

IES Mediterráneo de Málaga Solución Junio 2013 Juan Carlos Alonso Gianonatti. x - z = 1, y - z = 1,

IES Mediterráneo de Málaga Solución Junio 2013 Juan Carlos Alonso Gianonatti. x - z = 1, y - z = 1, ES Medieáneo de Málg Solción Jnio Jn Clos lonso Ginoni OPCÓN Ejecicio - -. Cliicción máim: pnos. Ddos el pno P(- ls ecs: s se pide: ( pno Deemin l posiion eli de s. b ( pno Deemin l ección de l ec qe ps

Más detalles

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( )

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( ) Te de Estdo Sólido 5/Septiembe/008 Min Eugeni Fís Anguino. Pob que, b b, b π π π Donde los vectoes b i cumplen l siguiente elción: b πδ i j ij Po constucción geométic, los dos conjuntos de vectoes y b

Más detalles

Electromagnetismo II

Electromagnetismo II Electomgnetismo II Semeste: 215-1 EXAMEN PARCIAL 2: Solución D. A. Reyes-Coondo Poblem 1 (2 pts.) Po: Jesús Cstejón Figueo ) Escibe ls cuto ecuciones de Mxwell en fom difeencil, escibiendo el nombe de

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Medieáneo de Málg Soluión Junio Jun Clos lonso Ginoni OPCIÓN..- Clul l se l lu del iángulo isóseles de peímeo áe máim h Máimo. d d u u h u Si d d.h h IES Medieáneo de Málg Soluión Junio Jun Clos lonso

Más detalles

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA UNVERSDD NCONL DEL CLLO FCULTD DE NGENERÍ ELÉCTRC Y ELECTRÓNC ESCUEL PROFESONL DE NGENERÍ ELÉCTRC CURSO: TEORÍ DE CMPOS ELECTROMGNÉTCOS PROFESOR: ng. JORGE MONTÑO PSFL PROBLEMS RESUELTOS DE CORRENTE ELÉCTRC

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS UNIVRSIDAD NACIONAL DL CALLAO FACULTAD D INGNIRÍA LÉCTRICA Y LCTRÓNICA SCULA PROFSIONAL D INGNIRÍA LÉCTRICA CURSO: TORÍA D CAMPOS LCTROMAGNÉTICOS PROFSOR: Ing. JORG MONTAÑO PISFIL PROBLMAS RSULTOS SOBR

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos I.E.S. CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE EXTREMDUR JUNIO 9 (RESUELTOS po ntonio Menguino) MTEMÁTICS II Tiempo máimo: ho minutos El lumno elegiá un de ls dos opciones popuests. Cd un de

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

PROBLEMAS RESUELTOS DE CINEMÁTICA DE UNA PARTÍCULA

PROBLEMAS RESUELTOS DE CINEMÁTICA DE UNA PARTÍCULA UNIERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO : MECÁNICA DE SÓLIDOS I PROFESOR : Ing. JORGE MONTAÑO PISFIL PROBLEMAS RESUELTOS

Más detalles

Progresividad y redistribución por fuentes de renta en el IRPF dual*

Progresividad y redistribución por fuentes de renta en el IRPF dual* H Púb pñ / w Pb, 26-(3/213): 57-87 213, I F DOI: 1.7866/HP-P.13.3.3 Pg y bó p IPF * CLOS DÍZ CO U x JOG ONUBI FNÁNDZ U Cp M JSÚS PÉZ MYO U x b: My, 213 p: Spb, 213 í z b bó y pg g p b p p pñ 27. P gí q

Más detalles

Pagina inicial de Solicitud de Registro de Marcas, A la cual podrá acceder desde

Pagina inicial de Solicitud de Registro de Marcas, A la cual podrá acceder desde Ci 1. Iii...2 2. Mú piipl...4. Cii U...4 b. Cá...4. Rgí...5 3. Olvi ñ...7 4. A l Sim...9. Opi Mú,...10 i. D Uui...10 ii. Gió Sliiu...11 iii. Pñ Slii...12 iv. Pñ M...15 v. Pñ Pii / Ié Rl,...17 vi. Pñ Aju

Más detalles

Determinantes y matrices

Determinantes y matrices emáics SS Deerminnes José rí rínez edino Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los

Más detalles

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades.

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Integles y licciones. 4. Integles imois: definición y oieddes. Hst este momento hemos clculdo integles definids de funciones con ngo finito en intevlos

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

Intersección Cono-Esfera - Oposición Hoja 1/3. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4.

Intersección Cono-Esfera - Oposición Hoja 1/3. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4. V 2 En la intersección del cono y de la esfera, dada la posición de sus ejes, que son paralelos y están contenidos en un proyectante

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3). ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMAS, CÁLCULO I, er CURSO. FUNCIONES DE VARIABLE REAL GRADO EN INGENIERÍA EN: SISTEMAS AUDIOVISUALES

Más detalles

vectores Componentes de un vector

vectores Componentes de un vector Vectores Un vector es un segmento orientdo. Está formdo por se representn: - con un flech encim v - en un eje de coordends - el módulo: es l longitud del origen l extremo - l dirección: es l rect que contiene

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

geometria proyectiva primer cuatrimestre 2003 Práctica 5

geometria proyectiva primer cuatrimestre 2003 Práctica 5 geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se

Más detalles

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I.

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I. DEPARTAMENTO DE ECONOMÍA Emen Finl (sólo ª prte) de Análisis Mtemático -Mo-05 GRADOS ECO ENI NOMBRE: DNI TURNO: TEST 45 PUNTOS (Cd pregunt contestd correctmente sum 05 puntos, contestd errónemente rest

Más detalles

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido.

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido. EJERCICIOS FUNCIONES 4º OPCIÓN B 1 De las siguienes funciones decir cuál de ellas son funciones, en ese caso indica el dominio el recorrido. a) b) c) Aplicando el es de la línea verical se observa que

Más detalles