TEMA 2 MODELO DE REGRESIÓN LINEAL SIMPLE
|
|
- María Elena Piñeiro Martin
- hace 3 años
- Vistas:
Transcripción
1 TEMA MODELO DE REGRESIÓN LINEAL SIMPLE. INTRODUCCIÓN A LA REGRESIÓN SIMPLE! 4 Supogamos qu la varal s ua fucó lal d otra varal, dod la rlacó tr y dpd d parámtros! y! dscoocdos.
2 Itroduccó a la Rgrsó Smpl! 4 S ustro trés fura coocr la rlacó qu u a co, tocs dríamos stmar los parámtros dscoocdos. Supogamos qu tmos ua mustra d 4 osrvacos d, Itroduccó a la Rgrsó Smpl! Q Q Q Q 4 4 S la rlacó tr fura xacta, solo astaría dos putos para hallar ua solucó para los parámtros! y!.
3 Itroduccó a la Rgrsó Smpl! P Q Q Q P P Q 4 4 S margo, las rlacos coómcas o so xactas: muchos d los putos qu osrvamos o va a star la rcta 4 Itroduccó a la Rgrsó Smpl! P Q Q Q P P Q 4 4 Para prmtr dvrgca tr la varal d la rcta d trés, troducmos u térmo d prturacó al modlo, qu o s osrval:!! u. Por jmplo, s s l gasto ropa y la rta, u pud rprstar los gustos: así dos dvduos co l msmo grso pud tr u gasto dstto ropa. 5
4 Itroduccó a la Rgrsó Smpl! u P Q Q Q P P Q 4 4 Cada valor d t tocs ua part o alatora!! y ua part alatora, u. La prmra osrvacó la hmos dscompusto stas dos parts. Itroduccó a la Rgrsó Smpl P P P 4 E l mudo ral, úcamt osrvamos los putos P para cada. 7
5 Itroduccó a la Rgrsó Smpl P P P 4 Naturalmt, podríamos utlzar los putos P para dujar ua lía qu aproxm a ^!!. Podmos scrr sta lía como, dod s ua stmacó d! y s ua stmacó d!. 8 Itroduccó a la Rgrsó Smpl valor ral valor prdcho P R R R 4 R P P 4 A sta lía aproxmada s la cooc como l modlo ajustado, y a los valors d la varal sa lía s l llama valors prdchos o ajustados so los putos R. 9
6 Itroduccó a la Rgrsó Smpl valor ral valor prdcho rsduo 4 P R R R 4 R P P 4 Osrvad qu hay ua dscrpaca tr l valor d ralmt osrvado los putos P y l valor prdcho por la lía aproxmada R. A sta dscrpaca s l llama rsduo. 0 Itroduccó a la Rgrsó Smpl valor ral valor prdcho P R R R 4! R P P 4 Es mportat osrvar qu los valors qu toma los rsduos so dsttos a los valors dl térmo d prturacó. Esto s ddo a qu la aproxmacó qu hacmos uca va a cocdr xactamt co la vrdadra lía qu rlacoa a stas varals.
7 Itroduccó a la Rgrsó Smpl valor ral valor prdcho! P Q Q Q P P Q 4 4 La prturacó s la rsposal d la dsvacó qu xst tr l compot o alatoro y las vrdadras osrvacos. Itroduccó a la Rgrsó Smpl valor ral valor prdcho P R R R 4! R P P 4 Los rsduos so la dfrca tr l valor ral y l valor prdcho por la rcta stmada as a la aproxmacó d los parámtros dscoocdos
8 Itroduccó a la Rgrsó Smpl valor ral valor prdcho P R R R 4! R P P 4 Etocs, s atural qu cuado los rsduos sa pquños, l ajust sa uo y los rsduos tda a star crca d la prturacó. Pro lo qu d qudar claro s qu los dos cocptos rprsta cosas dsttas. 4 Itroduccó a la Rgrsó Smpl valor ral valor prdcho u 4 Q 4! 4 Amas lías, la aproxmada y la vrdadra, so mportats l aálss d rgrsó, pusto qu prmt dscompor l valor osrvado d dos parts. 5
9 Itroduccó a la Rgrsó Smpl valor ral valor prdcho u 4 Q 4! 4 Usado la rlacó téorca, o vrdadra, s dscompo su part o stocástca!! y su part stocástca u. Itroduccó a la Rgrsó Smpl valor ral valor prdcho u 4 Q 4! 4 Esta s ua dscomposcó tórca dado qu o coocmos los valors xactos d! o!, los dl térmo d prturacó. Esta dscomposcó s utlzará para uscar stmadors d los parámtros. 7
10 Itroduccó a la Rgrsó Smpl valor ral valor prdcho 4 R 4! 4 La sguda dscomposcó dl valor ral d s hac fucó d la lía ajustada: s la suma dl valor prdcho d y d su rsduo. Esta dscomposcó la utlzarmos para otr fórmulas qu os prmta aproxmar los valors dscoocdos d los parámtros 8 CRITERIO DE MÍNIMOS CUADRADOS: Mmzar la SCR suma d cuadrados d los rsduos, dod SCR!... Por qué o..? Por qué mmzamos la suma al cuadrado y o la suma drctamt? 9
11 P P P 4 La rspusta stá qu los rrors postvos y gatvos s compsaría. El ajust prfcto st caso sría ua lía rcta la mda dl valor d 0 P P P 4 Cuado s lva al cuadrado s aula la posldad d compsacó. Admás, otad qu cuado lvamos al cuadrado stamos dado más pso a los valors muy ljaos d, s dcr, a aquéllos qu t rsduo grad. Estos mpujará la curva haca llos.
12 . EL CRITERIO DE MÍNIMOS CUADRADOS Vrdadro Modlo: " " u El vrdadro modlo o s osrval. Lo qu samos s qu tr y xst ua rlacó lal y, por lo tato, utlzarmos los valors osrvados d stas varals para calcular ua aproxmacó El Crtro d Mímos Cuadrados Modlo vrdadro: " " u Supogamos qu tmos las osrvacos:,,,5, y,.
13 El Crtro d Mímos Cuadrados Modlo vrdadro: " " u Modlo Ajustado:! Cómo dtrmamos y? 4 El Crtro d Mímos Cuadrados Dada cualqur lccó d y, podmos dfr los rsduos como la dfrca tr l valor osrvado y l prdcho. 5 Etocs, para otr l mjor ajust, lo qu hacmos s mmzar stos rsduos.
14 SCR Osrvad qu los rsduos dpd d los parámtros y qu, por lo tato, s pud lgr los parámtros d forma tal qu haga míma dcha suma d rsduos al cuadrado SCR # $ $ SCR # $ $ SCR 7
15 El Crtro d Mímos Cuadrados Rsolvdo las codcos d prmr ord, otdríamos valors para los y, lo qu os prmtría hacr l gráfco d la curva ajustada 8 Modlo vrdadro: " " u Modlo Ajustado:!
16 Modlo vrdadro:!! u Qué pasa s tmos osrvacos? 0 Dada ustra lccó d y, la rcta ajustada s la qu s mustra l gráfco.
17 El Crtro d Mímos Cuadrados Vrdadro Ajustado : : ˆ!! u Dfmos l rsduo para la prmra osrvacó El Crtro d Mímos Cuadrados Vrdadro Ajustado : : ˆ!! u Dl msmo modo, dfmos los rsduos para l rsto d osrvacos. E la gráfca s sñala l corrspodt a la últma osrvacó.
18 !!!!! SCR El Crtro d Mímos Cuadrados SCR Dfmos SCR, la suma d los cuadrados d los rsduos, para l caso gral. Los datos dl jmplo umérco s mustra para comparar. 4!!!!! SCR El Crtro d Mímos Cuadrados SCR Llgad a sta xprsó 5
19 El Crtro d Mímos Cuadrados SCR 70 $ SCR 0 # $ $ SCR 0 # 8 $ !!!! SCR $ SCR 0 # $!! 0! Calculamos la prmra drvada rspcto a. El Crtro d Mímos Cuadrados SCR 70 $ SCR 0 # $ $ SCR 0 # 8 $ !!!! SCR $ SCR 0 # $!! 0! $ SCR 0 #! $!! 0 Ahora, la prmra drvada rspcto a. 7
20 $ SCR 0 #!! $!! 0 Así, otmos ua xprsó para. 8 El Crtro d Mímos Cuadrados Vrdadro Ajustado : : ˆ!! u Hmos lgdo los parámtros d la rcta ajustada d modo qu mmc la suma d cuadrados d los rsduos. 9
21 Exprsos altratvas para 40
Análisis Estadístico de Datos Climáticos
Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,
PRÁCTICA 9: PROPIEDADES DESEABLES DE LOS ESTIMADORES
PRÁCTICA 9: PROPIEDADES DESEABLES DE LOS ESTIMADORES EJERCICIO Rcordmos prmro la sgut dfcó: U stmador T s dc ssgado rspcto a u parámtro μ ET μ a E T laldad d la spraza [ EX + EX ] + [ EX3 + EX ] 6 3 μ
4.1 Procedimientos de inferencia para la distribución exponencial
4 Ifrca paramétrca 4 Procdmtos d frca para la dstrbucó xpocal La dstrbucó xpocal fu la prmra dstrbucó para modlar tmpos d falla y para lla s ha dsarrollado métodos stadístcos d mara xtsva a T ua va xpocal
TEMA 3: ESTIMACIÓN PUNTUAL.
TEMA 3: ESTIMACIÓN PUNTUAL..- S tra ua mustra por m.a.s. d tamaño d ua poblacó qu sgu l modlo d Posso. Obtr l stmador por l método d los momtos y l stmador por l método d máma vrosmltud. Solucó: El método
al siguiente límite si existe: . Se suele representar por ( x )
UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit límit si ist: f f ' lím sigifica lo mismo.
10 REGRESIÓN LINEAL SIMPLE
Part stadístca Prof. María B. Ptarll GIÓN LINAL IMPL. Itroduccó muchos problmas st ua rlacó tr dos o más varabls, rsulta d trés studar la aturalza d sa rlacó. l aálss d rgrsó s la técca stadístca para
EXAMEN DE TÉCNICAS CUANTITATIVAS III.
APEIDOS: DNI: EXAMEN DE TÉCNICAS CUANTITATIVAS III. NOMBRE: GRUPO: E todos los casos, cosdr u vl d cofaza dl 95% (z=).. U mprsaro qur stmar l cosumo msual d lctrcdad ua comudad d 000 hogars dvddos 400
ANEXO A. Bipuerto libre de. i 1. i 2 V 2 ruido. Figura A.1 Bipuerto libre de ruido con dos fuentes equivalentes de corriente de ruido, configuración π
xo. Bpurtos rudosos NEXO BIPUERTOS RUIDOSOS.. REPRESENTCIÓN DE BIPUERTOS RUIDOSOS U bpurto rudoso, sgú la toría prstada [], s pud rprstar como u bpurto lbr d rudo co dos futs quvalts d rudo, coctadas a
MODELO DE REGRESIÓN LINEAL MÚLTIPLE
Modlo d Rgrsó Lal Múltpl MODELO DE REGRESIÓN LINEAL MÚLTIPLE Autors: Ratas Kzys (rzys@uoc.du), Ágl A. Jua (ajuap@uoc.du). ESQUEMA DE CONTENIDOS Hpótss sobr l térmo d prturbacó Hpótss sobr varabls xplcatvas
2. Utilizando el método adimensional basado en el factor de calidad Q, determine:
Uivrsidad Simó Bolívar Dpartamto d Covrsió y Trasport d Ergía Autor: Eduardo Albaz. Cart: 06-391 Profsor: J. M. Allr Máquias Eléctricas II CT-311 U motor d iducció coxió strlla d 100 kw, 416 V, rdimito
11 INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS)
INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS) Los sistmas o lials pud llgar a tr comportamitos ralmt sorprdts alguos casos: por u lado pud llgar a tr diámicas totalmt difrts sgú l valor qu
1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:
.- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro
RIESGO MORAL. Comportamiento (acciones) del A no observable para el P (o, simplemente, no verificable). P. ej.:
RIESGO MORA Comportamto accos dl A o obsrvabl para l o, smplmt, o vrfcabl.. j.: s A pd jrcr dsttos vls d sfrzo, co RM l o sab cál d llos llva a cabo. acr sfrzo spo dstldad para l A Úca varabl cotratabl:
8 Límites de sucesiones y de funciones
Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...
Tema 3 Modelo de regresión lineal simple (I)
Itroduccó a la Ecoometría. Curso 7-8 3º de Ecoomía Tema 3 Modelo de regresó leal smple (I. EL MODELO: MOTIVACIÓN DEFINICIONES El modelo de regresó leal smple trata de capturar la relacó etre dos varales
EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3
Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más
que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)
APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)
CONTRASTES DE SIGNIFICACIÓN CONJUNTA EN EL MBRL
Cotrasts d sgfcacó cojuta APNTE DE CLAE ECONOMETRÍA I. DI ECONOMETRÍA E INFORMÁTICA CONTRATE DE IGNIFICACIÓN CONJNTA EN EL MBRL Prof. Rafal d Arc Rafal.darc@uam.s I. Cotrast d sgfcacó cojuta dl modlo a
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas
Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.
(tema 13 del libro) 1. PARÁMETROS DE CENTRALIZACIÓN
UIDAD.- Dstrbucos udmsoals. Parámtros (tma dl lbro). PARÁETROS DE CETRALIZACIÓ Auqu las tablas stadístcas y las rprstacos grácas cot toda la ormacó rlatva a u problma, muchas vcs trsa smplcar s cojuto
Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares.
Fscouímca II-Módulo d Estructura y Propdads Molculars. Bollla 4. Coctado las dscrpcos mcro/macroscópcas: Trmodámca Estadístca 4. La coxó tr la dscrpcó cuátca y las propdads trmodámcas. Hmos vsto como dscrbr
Automá ca. Capítulo4.RespuestadeRégimenTransitorio
Automáca Capítulo.RputadRégmratoro JoéRamóLlataGarcía EthrGozálzSaraba DámaoFrádzPérz CarloorFrro MaríaSadraRoblaGómz DpartamtodcologíaElctróca IgríadStmayAutomáca Rputa d Régm ratoro Rputa d Régm ratoro..
Bootstrap en los modelos de elección discreta: una aplicación en el método de valoración contingente
UNIVERSIDAD NACIONA MAYOR DE SAN MARCOS FACUTAD DE CIENCIAS MATEMÁTICAS UNIDAD DE POSGRADO Bootstrap los modlos d lccó dscrta: ua aplcacó l método d valoracó cotgt TESIS Para optar l Grado Académco d Magístr
9 Momentos y funciones generatrices de Momentos
9 omos y fucos grarcs d omos Edgar Acua ESA 400 Edgar Acua 9. omos Sa ua varabl alaora s df su smo momo co rspco al org como μ E[ ], smpr qu l caso dscro y qu p < f d < l caso couo. Obvam, μμ..tamb, s
TEMA 5: LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS
Dpartamto d Matmáticas. IE.S. Ciudad d Arjoa º Bach Socials. LÍMITES Propidads: TEMA : LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS. LÍMITES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES. RESOLUCIÓN DE INDETERMINACIONES.
Tema 5. Contraste de hipótesis (II)
Tma 5. Cotrast d hpótss (II CA UNED d Hulva, "Profsor Dr. José Carlos Vílchz Martí" Itroduccó Bvda Objtvos pdagógcos: Aprdr a obtr la fucó d potca d u cotrast y la rprstar la curva d potca d u cotrast.
a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.
(Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar
3. Regresión lineal. Regresión simple consumo y peso de automóviles. Curso Estadística. Regresión Lineal. Consumo (litros/100 Km)
3. Rgrsó lal Curso - Estadístca Rgrsó smpl cosumo pso d automóvls Núm. Obs. Pso Cosumo g ltros/ m 98 878 3 78 8 4 38 5 64 3 6 655 6 7 73 4 8 485 7 9 366 8 35 8 635 9 3 888 7 4 766 9 5 98 3 6 79 7 7 34
Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen.
Uivrsidad d Costa Rica Istituto Tcológico d Costa Rica Tma: Itgrals impropias. Objtivos: Clasificar las itgrals impropias sgú su spci: primra, sguda o trcra spci. Calcular itgrals impropias utilizado su
Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin
Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,
Capítulo III. Colectivos estadísticos.
Capítulo III. Colctvos stadístcos. Lccó Itroduccó al formalsmo d los colctvos d Gbbs. Lccó Colctvo caóco. Lccó Colctvos macrocaóco y mcrocaóco Lccó 4 Aplcacó dl colctvo caóco: gas dal mooatómco. arabls
Señales y Sistemas. Análisis de Fourier.
Sñals y Sistmas Aálisis d Fourir. Itroducció El foqu d st capítulo s la rprstació d sñals utilizado sos y cosos ( otras palabras, xpocials complas). El studio d sñals y sistmas utilizado xpocials complas
CONTRASTES DE SIGNIFICACIÓN CONJUNTA EN EL MBRL
Cotrasts d sgfcacó cojuta /4 APUNTE DE CLAE ECONOMETRÍA I. UDI ECONOMETRÍA E INFORMÁTICA CONTRATE DE IGNIFICACIÓN CONJUNTA EN EL MBRL Prof. Rafal d Arc Prof. Ramó Mahía rafal.darc@uam.s ramo.maha@uam.s
TEMA 1: CALCULO DIRECTO DE LÍMITES
INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL
donde k < 1, tiene una raíz y sólo una. Determinar una sucesión convergente hacía esta raíz.
Hoja d roblmas Aálss III 9. Dmostrar qu la cuacó a a dod
FACULTAD DE ECONOMÍA, U.V. PRIMER EXAMEN DE ECONOMETRÍA 1 Profesor: Carlos Pitta Arcos. Grupos 401 y 402
FACULTAD DE ECONOMÍA, U.V. PIME EAMEN DE ECONOMETÍA Profsor: Carlos Ptta Arcos. Grupos 40 y 40 Paorama Gral: El am costa d 5 problmas, co ua podracó fal d 00 putos (pts). Para facltarl l cálculo dl valor
El error con ese presupuesto será aproximadamente del 3,1% Ejercicio 8.2
EJERCICIO 8.1 U ivstigador dispo d 0.000 para ralizar las trvistas d ua custa ua gra ciudad. El custioario s admiistrará mdiat trvistas tlfóicas, sido l cost d cada trvista d 0. Qué marg d rror dbrá asumir
Elementos de Probabilidad y Estadística
Capítulo 3 Elmtos d robabldad y Estadístca 3.. Itroduccó E st capítulo s prsta cocptos báscos d robabldad y Estadístca, ya u dtro dl dsño y plaacó d ua obra hdráulca juga u papl mportat l aálss hdrológco
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS
ESTIMADORES DE LA VARIANZA DE LAS PERTURBACIONES ALEATORIAS EN EL MBRL
Apts d Clas d cootría Prof Rafal d Arc STMADORS D LA VARANZA D LAS PRTURBACONS ALATORAS N L MBRL rafaldarc@as Ua vz ddcda a fórla para la stacó para la dtracó d los parátros dl odlo, a través d los MCO
MODELO DE REGRESIÓN LINEAL MÚLTIPLE
Modlo d Rgrsó Lal Múltpl MODELO DE REGRESIÓN LINEAL MÚLTIPLE Autors: Ratas Kzys (rzys@uoc.du), Ágl A. Jua (ajuap@uoc.du). ESQUEMA DE CONTENIDOS Hpótss sobr l térmo d prturbacó Hpótss sobr varabls xplcatvas
Teoría de errores. Tema 4
Toría d rrors Tma 4 Tma 4 Toría d rrors 4. El rror rdadro 4. Clasfcacó d rrors Sgú las causas qu los prooca Sgú los fctos qu produc 4.3 Ly d rrors d Gauss Postulados d Gauss y dstrbucó d rrors Valor más
Introducción a la Inferencia Estadística. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff
Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
BLOQUE I: ESTADÍSTICA DESCRIPTIVA TEMA 1. ESTADISTICA DESCRIPTIVA UNIDIMENSIONAL
BLOQUE I: ESTADÍSTICA DESCRIPTIVA TEMA. ESTADISTICA DESCRIPTIVA UNIDIMENSIONAL. Graldads Estadístca: Cojuto d torías y téccas para la rcoplacó, l aálss, la trprtacó y la prstacó d datos umércos Etapas
LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto
LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima
APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS
APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado
TEMA 6 DISTRIBUCIONES DE PROBABLIDAD DISCRETAS
www.ova.ud.s/wbags/ild/wb/d.htm -mal: mozas@l.ud.s TEMA 6 DISTRIBUCIONES DE PROBABLIDAD DISCRETAS Dstbucó dgada u uto c.- Fucó d obabldad: P( = c) = ; P( c) = 0. Fucó d dstbucó: F() = 0, c, c Momtos: E()
Modelos de Regresión Simple
Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable
Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...
TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN S llama sucsió a u cojuto d úmros dados ordadamt d modo qu s puda umrar: primro, sgudo, trcro,... Los lmtos d la sucsió s llama térmios y s
MATEMÁTICAS Y CULTURA B O L E T Í N No. 273 COORDINACIÓN DE MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE
MATEMÁTICAS Y CULTURA B O L E T Í N 23.04.20 No. 273 COORDINACIÓN DE MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE E l Boltí Matmáticas Y Cultura No. 257 dl 23 d abril
Política Fiscal. Gobiernos de coalición o de intereses geográficos dispersos
Política Fiscal Goiros d coalició o d itrss oráficos disrsos Goiros d coalició o d itrss oráficos disrsos Escario olítico dod l oiro stá comusto or dos artidos coalició:. Partidos ti rfrcias distitas sor
Tema 5: Transistor Bipolar de Unión (BJT)
Tma 5: Trasistor ipolar d Uió JT) 5.1 troducció otidos 5.2 ucioamito dl trasistor Zoa Activa Dircta 5.3 Modlo d orrits dl Trasistor. Modlo d rs-moll 5.4 Modos o Zoas d Opració 5.5 Modlos Spic 5.6 jmplos
1.- Contraste de combinaciones lineales entre parámetros 1.1 Caso General
Tma 3: l modlo Básco d grsó Lal Múlpl II.- Coras d combacos lals r parámros. Caso Gral. Coras d sgfcacó global.3 Sbcojo d parámros.4 Coras d sgfcacó dvdal. smacó por rvalo d cofaza.- Prdccó mímo cadráca
LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL
LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES EALES DE UNA VAIABLE EAL.- Estudiar la continuidad, n los puntos y d la función: f ( ) L( ) si / si Solución: f continua n y El dominio d la
I.AURIOL - E.OLIVERA ) convexity for the set of equilibrium in n-person cyclic game s wit h. en en los cuales la función de pago de
Rvsta d a U ó Matmátca Agta Voum 9 994 I INTRCAMBIABILIDAD DL CNUNT D PUNTS D QUILIBRI N UGS N-PRSNALS C CL ICS IAURIL - LIVRA ) Abstact I ths pap w show th quvac of tchagabt ad covxt fo th st of qubum
Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria.
Rspusta frcucia. Procsado Digital d Sñals.4º Igiría Elctróica. Uivrsitat d Valècia. Profsor Emilio Soria. 1 Itrés uso PDS. Ti l mismo uso qu sistmas cotiuos: dtrmiar la salida d u sistma stado stacioario;
Tema 5: Transistor Bipolar de Unión (BJT)
Tma 5: Trasistor ipolar d Uió JT) 5.1 troducció otidos 5.2 ucioamito dl trasistor Zoa Activa Dircta 5.3 Modlo d orrits dl Trasistor. Modlo d rs-moll 5.4 Modos o Zoas d Opració 5.5 Modlos Spic 5.6 jmplos
MECÁNICA ESTADÍSTICA
FAyA Lccatura Químca Físca III año 26 MÁIA SADÍSIA IRODUIÓ ROBABILIDAD robabldad s la cuatfcacó d la spraza dl rsultado d u xprmto o vto. S l posbl rsultado d u xprmto s A la probabldad d qu ocurra A s
Procesamiento Digital de Señales de Voz
Procsamto Dgtal d Sñals d Voz Trasparcas: Procsamto d Sñals y Métodos d Aálss para rcoocmto d Voz Autor: Dr. Jua Carlos Gómz Basado : Rabr, L. ad Juag, B-H.. Fudamtals of Spch Rcogto, Prtc Hall,.J., 993.
Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión
Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la
Tema 4 - FUNDAMENTOS DE LA MECÁNICA ESTADÍSTICA CLÁSICA
ma 4 - FUDAMOS D LA MCÁICA SADÍSICA CLÁSICA Cocptos stadístcos lmtals. Mcáca stadístca d sstmas mcroscópcos. Los colctvos mcrocaóco caóco y gracaóco. La fucó d partcó y las fucos trmodámcas. l gas dal
Y i, es decir, la. Regresión Simple y Múltiple Parte II Profesor Oscar Millones Borrador, Octubre 12, Supuestos en el modelo de regresión
Rgrsón Smpl y Múltpl Part II Profsor Oscar Mllons Borrador, Octubr 1, 8 Supustos n l modlo d rgrsón 1.- Para cada valor d X, xst un grupo d valors d Y qu tnn una dstrbucón normal. (grafcar sta da).- Las
6 Cinemática de rotaciones finitas
6 Cmátca d otacos ftas 6. Momto sféco Dfcó: Cpo ígdo: s sstma d patíclas tal q las dstacas t las dsttas patíclas o aía sta codcó s dal, po la mayoía d los casos los sóldos pd dspcas los pqños cambos d
Intensificación en Estadística
GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro
Capítulo 12. Introducción a la Termodinámica Estadística.
Capítulo. Itroduccó a la Trmodámca Estadístca. ) Itroduccó Mcáca Estadístca: dscpla ctífca qu prtd prdcr las propdads macroscópcas d u sstma a partr d las propdads molculars. Trmodámca stadístca: part
TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS
Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa
Análisis de Regresión y Correlación Lineal
Aálss de Regresó y Correlacó Leal 2do C. 2018 Mg. Stella Fgueroa Clase Nº 14 Tpos de relacoes etre varables Exste u compoete aleatoro por lo que las predccoes tee asocado u error de predccó. Modelo determsta
TEMA 2. ESPACIOS Y OPERADORES LINEALES CONTENIDO
TEMA. ESPACIOS Y OPERADORES LINEALES CONTENIDO ESPACIOS LINEALES SOBRE UN CAMPO INDEPENDENCIA LINEAL, BASES Y CAMBIOS DE BASES OPERADORES LINEALES Y SUS REPRESENTACIONES SISTEMAS DE ECUACIONES ALGEBRÁICAS
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL
ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL TIPOS DE RELACIONES ENTRE VARIABLES Dos varables puede estar relacoadas por: Modelo determsta Modelo estadístco Ejemplo: Relacó de la altura co la edad e ños.
Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5
página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),
UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO 1
ESCUELA UNIVERSITARIA DE TÉCNICA INDUSTRIAL UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO La sguete tabla muestra la ota fal e los exámees de estadístca (E) e vestgacó operatva (IO) de ua
REGRESIÓN LINEAL SIMPLE
RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó
1.3. Longitud de arco.
.. Logtud de arco. Defcó. Sea C ua curva suave defda paramétrcamete por la fucó vectoral f : R R / f () t = ( f() t, f() t,, f ( t) ) e el espaco R, co t [ a, b], que se recorre exactamete ua vez cuado
Prueba de bondad de ajuste Prueba de independencia Prueba de homogeneidad.
5.4 PRUEBS CHI-CUDRDO CONTENIDOS: OBJETIVOS: 5.4.1. Pruba d bodad d aust. 5.4. Pruba d dpdca. 5.3.3 Pruba d hoogdad. Platar hpótss para dfrts propóstos. Dtrar los pasos a sgur al ralzar ua pruba ch-cuadrado.
Cap. II: Principios Fundamentales del Flujo de Tránsito
Cap. II: Pricipios Fudamtals dl Flujo d Trásito Diagrama Espacio-Timpo Distacia 1 2 Itralo (i) 3 4 5 6 Espaciamito () Timpo Flujo, q Dsidad, Vlocidad, Tasa horaria quialt a la cual trasita los hículos
Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa
Error tpo I: Rechazar H sedo H Verdara Test Hpótess Error tpo II: No rechazar H sedo H Falsa Nvel Sgfcacó: = P(error tpo I = P(Rechazar H sedo H Verdara Probabldad error tpo II: = P(error tpo II = P(No
Unidad 11 Derivadas 4
Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no
La inferencia estadística es primordialmente de naturaleza
VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la
Regresión simple consumo y peso de automóviles. Modelo general de regresión. Hipótesis del modelo. Modelo. Parámetros. x i. Regresión lineal simple
Modlo gral d rgrsó grsó smpl cosumo pso d auomóvls Objvo Aalzar la rlacó r ua o varas varabls dpds u cojuo d facors dpds. Tpos d rlacos f Y Y... Y X X... X - lacó o lal - lacó lal k grsó lal smpl l úm.
Potencial periódico Término de corrección Término sin de segundo orden perturbación Término de corrección de primer orden
Bds d rgí otdo Tor d Boch. Torí d ctró cs r.org d ds. Modo d Krog-Py. jo. stdo Sódo Potc áss otc qu s usó áss tror fu u otc tt. s áss d uy u rsutdo s s ctr trs tá us ocurr u tto d ctros. S rgo, otros trs
1. Consecuencias de la inclusión de variables irrelevantes en el modelo
Tma 7: spcificació d la cació: Problmas, cotrasts, métodos d slcció d variabls y lcció d forma fcioal. Cosccias d la iclsió d variabls irrlvats l modlo. Cosccias d la omisió d variabls rlvats l modlo 3.
1 Realizar los ejercicios resueltos números 1 y 2 del tema 3 de Integración de. 2 Terminar los ejercicios de la práctica realizada este día.
Est documto coti las actividads o prscials propustas al trmiar la clas dl día qu s idica. S sobrtid qu tambié s db ralizar l studio d lo plicado clas auqu o s icluya sa tara st documto. Clas 5 d ovimbr
CÁLCULO NUMÉRICO (0258)
CÁLCULO NUÉRICO (58) Tema 4. Apromacó de Fucoes Juo. Ecuetre los polomos de meor grado que terpola a los sguetes cojutos de datos plateado y resolvedo u sstema de ecuacoes leales: 7 y 5-4 7 y 4 9 6.5.7.
Solución a la práctica 6 con Eviews
Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)
UIDAD.- Estadístca. Tablas y grácos (tma dl lbro). ESTADÍSTICA: CLASES Y COCEPTOS BÁSICOS E sus orígs hstórcos, la Estadístca stuvo lgada a custos d Estado (rcutos, csos, tc.) y d ahí prov su ombr. Hoy
91 EJERCICIOS de DERIVABILIDAD 2º BACH.
9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
Análisis estadístico de los factores de riesgo que influyen en la enfermedad Angina de Pecho. Flores Manrique, Luz CAPÍTULO III
Aálss stadístco d los factors d rsgo qu fluy la frmdad Aga d Pcho. Flors Marqu, Luz Drchos rsrvados coform a Ly CAPÍTULO III MODELOS DE REGRESIÓN LOGÍSTICA 3. ANTECEDENTES La rgrsó logístca s ua d las
Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura
T 4: grsos lls o lls TEMA 4. EGEIONE LINEALE LINEALE Y NO.. 3. Itroduccó 4. Nocltur 5. Llzcó Ajust grsó ll ll d últpl cucos 6. 7. 8. grsos EUMEN Progrcó o lls Mtlb Cálculo uérco Igrí T 4: grsos lls o lls.
4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór
Capítulo 4 Iterpolacó polomal de Hermte E determadas aplcacoes se precsa métodos de terpolacó que trabaje co datos prescrtos de la fucó y sus dervadas e ua sere de putos, co el objeto de aumetar la aproxmacó
Límites finitos cuando x: ˆ
. Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador
REPRESENTACIÓN DE CURVAS
REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort
1. Introducción 1.1. Análisis de la Relación
. Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado