donde k < 1, tiene una raíz y sólo una. Determinar una sucesión convergente hacía esta raíz.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "donde k < 1, tiene una raíz y sólo una. Determinar una sucesión convergente hacía esta raíz."

Transcripción

1 Hoja d roblmas Aálss III 9. Dmostrar qu la cuacó a a dod <, t ua raíz y sólo ua. Dtrmar ua sucsó covrt hacía sta raíz. Solucó: La cuacó a quval a: a a a Sa a a Estudmos 6 t u mámo y. or lo tato: < <, cualqura qu sa R. Alcado l método d tracó, ud asurars la stca d ua úca raíz d la cuacó. S costruy ua sucsó covrt haca dcha raíz ldo u uto R arbtraro y tomado dsués:. /

2 9. Dmostrar qu la cuacó c s, dod < c <, t ua raíz y sólo ua. artdo d u valor cualqura R, s costruy la sucsó mdat la órmula c s,, robar qu sta sucsó covr hacía la raíz. Solucó: Vamos rmr luar qu la sucsó s covrt. ara llo, tommos c s : tomado valors absolutos: Sa Etocs: ξ, ξ ], [ c cos ξ c d c s c c cd c d. c d Co ayuda d sta dsualdad, comrobarmos qu la sucsó satsac l crtro d Cauchy: m m > m m c d m m c c c m... m c c d c c c c d c m m d c c < d c m d... c d y usto qu < c <, s vdt qu m ε smr qu sa m, v. Así us, la sucsó covr. Llamarmos a lm. A cotuacó, comrobmos qu a s ua raíz d la cuacó c s : /

3 Como s cotua, s vrca qu lm a. ro lm lm a, así qu rsulta a a, qu s lo qu quríamos robar. Falmt, dmostrarmos qu la raíz d la cuacó s úca: S b us otra raíz, tdríamos qu b b, así qu b a b - a ξ b a ξ b a < c b a < b a, lo cual s ua cotradccó. 9. Sa ua ucó ral cova dda u trvalo I d la rcta ral. Sa,..., utos d I y λ,...λ S d:.º robar qu utos dl trvalo ], [ λ I.º Dmostrar qu λ λ.º Establcr la dsualdad lo λ tals qu. λ lo Solucó:.º Sa α y β l mor y l mayor d los úmros,..., rsctvamt. Es claro qu El uto α αλ λ β λ β λ, or star comrddo tr α y β rtcrá al Itrvalo I..º ara la dsualdad s crta or dcó d ucó cova. Suoamos > y razomos or duccó. Admtdo qu la dsualdad s vrca ara robémosla ara. S t d dod s dduc qu l uto λ α λ λ β λ λ λ λ rtc al trvalo I, sdo λ. Como λ / λ, la hótss d duccó os rmt scrbr odo λ λ λ / λ λ λ / λ λ /

4 λ λ λ λ λ y obsrvado qu λ λ tdrmos, or sr ua ucó cova, qu λ λ λ λ λ Utlzado u rsultado obtdo más arrba coclumos qu λ λ λ λ qudado la rodad dmostrada ara y co llo stablcda ral..º Alcado l rsultado atror a la ucó - lo qu s cova tdrmos lo λ λ lo d dod rsulta la dsualdad a dmostrar multlcado or. 96. Escrbr l dsarrollo d Taylor d la ucó lo l uto hasta l luar d las drvadas d ord, co dvrsas órmulas dl térmo comlmtaro. Solucó: La órmula d Taylor hasta las drvadas d ord s o T!!! E dod T rrsta l térmo comlmtaro. Calculmos las drvadas qu aarc: lo lo lo lo /

5 lo lo 6lo E l uto, s t or lo tato:,,, 6 6 lo T T!!! Darmos dos ormas dsttas dl térmo comlmtaro: a Térmo comlmtaro d Lara: c T c 6lo c, < c <!! c b Térmo comlmtaro d Cauchy: c c T c 6lo c!! c 97. Escrbr l dsarrollo d MacLaur, d la ucó hasta l luar d las drvadas d ord. Solucó: El dsarrollo d MacLaur d srá: dod ], [!! 9! ξ! ξ. Es csaro calcular las drvadas sucsvas d. Sa. Las drvadas sucsvas d so: co /

6 6/!! > Rsulta tocs qu la úca drvada d qu o s aula ara s!. Vamos ahora ua mara d calcular las drvadas d, tdo cuta qu la órmula d MacLaur qu vamos a mlar, dchas drvadas hasta l ord 9 stá artcularzadas ara : las drvadas suts d ud calculars alcado la órmula d Lbtz sobr la drvada -sma d u roducto. ara smlcar las otacos, llamarmos. Etocs, s dcr, la úca drvada d qu o s aula s! usto qu: rsulta tocs qu: ya qu stas drvadas o aarc ú térmo. rsó la qu s aula todos los sumados X salvo l rmro. or tato:!

7 Obsérvs qu, hasta l ord, s aula todas las drvadas d. or lo tato las drvadas suts srá ulos todos los roductos los qu ura alua drvada d d ord mor qu l quto, o b alua drvada d d ord dstto dl cuarto. 6 6, , , , tdo cuta qu... ara todo, la rsó atror s aulará todos los térmos los qu aarzca ua drvada d d ord mayor o ual qu. or lo tato: Susttuydo la órmula d MacLaur, rsulta almt!! 9 9! 9 ξ ξ, ξ ], [ 98.Obtr l dsarrollo d MacLaur, d las suts ucos lo, α co l térmo comlmtaro d Cauchy. La drvada -sma d la ucó lo s obt s dcultad calculado las rmras y alcado l método d duccó. Rsulta sr! ara,,... Sus valors l uto so!. or cosut l dsarrollo d MacLaur d sta ucó co l térmo comlmtaro d Cauchy srá: 7/

8 lo... θ θ θ dod θ s crto úmro dl trvalo ],[. α La drvada -sma d la ucó bómca, dod α s u umro ral cualqura, s obt áclmt como l caso atror, rsultado α α α... α α ara,,... Sus valors l uto so omos or dcó α α α... α α α α... α! ralzado así la otacó d los úmros combatoros ordaros. El dsarrollo d MacLaur d ustra ucó, co l térmo comlmtaro d Cauchy s: α α α α... α θ θ α dod θ s crto úmro dl trvalo ],[. 99.Hacdo uso d la órmula d Taylor ara la ucó calcular aromadamt,. Stuado l térmo comlmtaro l luar d las drvadas trcras, stmar l rror comtdo. Solucó: Suodrmos coocdo l dsarrollo d Taylor d la ucó r. Tomado dcho dsarrollo r, rsulta: co < ξ <, y també! m ξ!! 8/

9 m 8 Tomado l dsarrollo d Taylor, 8!,,, T,,9 T,, T or lo tato:,,9 El rror comtdo s rcsamt l térmo comlmtaro: usto qu: T ξ, co <ξ <,!! ξ 9 8 ξ ξ Obtmos, como cota dl rror comtdo: E!. Dtrmar las asítotas y ramas arabólcas d la curva: Solucó: y cos s El camo d stca d sta curva s todo R, y admás s ródca d ríodo ya qu: cos s cos s or lo tato, os lmtarmos a rrstar rácamt la ucó l trvalo [-,]. Corts co los js: ara s y, así qu asa or,. ara y, rsulta la cuacó cos s o b: 9/

10 cos s s s s qu s ua cuacó d sudo rado s cuyas raícs so: ± ± s la solucó s o os srv orqu > así us, rsulta s, qu roorcoa dos valors d [-,], arcs. Es scllo comrobar qu sta curva o t asítotas. Mámos, mímos y utos d ló: y - s cos - s Calculmos los valors d qu aula y : y roorcoa la cuacó: cos s s dcr: cos o b s cuyas raícs so, l trvalo [-,],,,,. 6 6 Hmos d studar ahora l so d y : y - cos s 8 s s y así qu > corrsod a u mímo y 6 > y < y < mímo mámo mámo or lo tato, hay mímo rlatvo los utos,, los utos,,. 6 y u mámo rlatvo Los osbls utos d ló so los valors d qu aula la drvada suda: y roorcoa la cuacó /

11 cuyas raícs so: 8s s qu corrsod a cuatro valors d. s ± 8. Calcular sd or l método d las sumas d Rma, dvddo l trvalo [, arts uals. Solucó: S dvdmos l trvalo arts uals tdrmos qu: sd lm j j s S llamamos h, calculmos la suma j sjh sh sh... sh ara llo, mlarmos la ualdad: h cos hcos h sh s Dado a los valors,...,, s obt: h cos h cos h sh s h cos h cos h sh s... h cos h cos h s h s y sumado mmbro a mmbro stas ualdads: /

12 h cos h cos h s sh sh... s h d dod: h cos cos s h s h... s h h s Susttuydo st rsultado : sd lm cos cos s lm cos cos lm cos cos.. Estudar l cálculo d los suts límts, or l método d las sumas d Rma.º lm j.º lm j j j j Solucó:.º lm lm j j j j / d [ lo ] lo lo lo.º j j lm lm j j lm j j j 6 m lm lm 6 6 /

13 Obsérvs qu, l cálculo d st límt o ud mlars l método d las sumas j j d Rma orqu o corrsod a la suma d Rma d ua j tral roa. /

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r. (Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar

Más detalles

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros .8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

Capítulo 4: Rotaciones Multidimensionales con Operaciones Vectoriales

Capítulo 4: Rotaciones Multidimensionales con Operaciones Vectoriales Cítulo 4: Rotcos Multdmsols co Orcos ctorls Como s vo l cítulo tror s ud hcr rotr u ojto l sco D roorcodo - utos o cohrlrs s dcr s roorco l j d rotcó l cul s l rrstcó d u sml -D. E st cítulo s lz y td

Más detalles

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3 Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más

Más detalles

Multicupón no garantizado 07/09 1

Multicupón no garantizado 07/09 1 ANEXO AL CONTRATO FINANCIERO DENOMINADO MULTICUPÓN NO GARANTIZADO OBRE UPUETO DE AJUTE O UPUETO EPECIALE DE AJUTE. UPUETO DE AJUTE: E caso d qu s produzca cualqura d las stuacos qu a cotuacó s dca l Baco

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...

Más detalles

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: MADRID

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: MADRID C/ Gal. Auda, 6 Tléf.: 9 5 8 4-9 55 9 800 MADRID ORMULARIO DE ESTADÍSTICA. DISTRIBUCIONES UNIDIMENSIONALES. Esaza atátca. Sdo ua vaabl alatoa g ( ua fucó d la sa, dfos: E ( g ( ( g Caso dscto g ( f ( Caso

Más detalles

MODELO DE REGRESIÓN LINEAL MÚLTIPLE

MODELO DE REGRESIÓN LINEAL MÚLTIPLE Modlo d Rgrsó Lal Múltpl MODELO DE REGRESIÓN LINEAL MÚLTIPLE Autors: Ratas Kzys (rzys@uoc.du), Ágl A. Jua (ajuap@uoc.du). ESQUEMA DE CONTENIDOS Hpótss sobr l térmo d prturbacó Hpótss sobr varabls xplcatvas

Más detalles

TEMA 4: REGRESIÓN Y CORRELACIÓN.

TEMA 4: REGRESIÓN Y CORRELACIÓN. TEMA 4: REGREIÓN Y CORRELACIÓN. 4.. Rgrsó corrlacó lal smpl... 4.. El método d los mímos cuadrados las cuacos ormals.... 3 4.3. Rgrsó lal: rcta d rgrsó (mímos cuadrados)... 4 4.3.. Propdads d las rctas

Más detalles

Sistemas de ecuaciones diferenciales lineales

Sistemas de ecuaciones diferenciales lineales 695 Aálisis matmático para Igiría M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO Sistmas d cuacios difrcials lials d primr ord Cuado s studia matmáticamt ua situació d la ralidad, l modlo qu s

Más detalles

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l El Forward U corao fuuro o a plazo, s odo aqul cuya lqudacó o slm dfr hasa ua fcha posror spulada l msmo, s dcr s dos pas acurda hacr la rasaccó hasa u prodo fuuro dígas por jmplo 6 mss, so s u corao forward.

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Estadística Teórica II

Estadística Teórica II Tablas d Cotgca Estadístca Tórca II TABLAS DE CONTINGENCIA Satago d la Fut Frádz 89 CONTRASTE NO PARAMÉTRICO DE BONDAD DE AJUSTE Tablas d Cotgca.- Para comprobar s los opraros cotraba dfcultads co ua prsa

Más detalles

Procesamiento Digital de Señales de Voz

Procesamiento Digital de Señales de Voz Procsamto Dgtal d Sñals d Voz Trasparcas: Procsamto d Sñals y Métodos d Aálss para rcoocmto d Voz Autor: Dr. Jua Carlos Gómz Basado : Rabr, L. ad Juag, B-H.. Fudamtals of Spch Rcogto, Prtc Hall,.J., 993.

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Tema 8. Limite de funciones. Continuidad

Tema 8. Limite de funciones. Continuidad . Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.

Más detalles

Observación: si en la urna hubiese 1500 bolillas blancas y 500 verdes y se extraen dos bolillas al azar sin reemplazo, entonces

Observación: si en la urna hubiese 1500 bolillas blancas y 500 verdes y se extraen dos bolillas al azar sin reemplazo, entonces art Variabls alatorias rof. María B. itarlli.- Variabls alatorias discrtas imortats Distribució biomial Sa ε u xrimto alatorio. Sa u vto asociado a ε y aotamos Suogamos u xrimto alatorio ε u cuml los siguits

Más detalles

CAPÍTULO 2. Ecuación paraxial de Helmholtz.

CAPÍTULO 2. Ecuación paraxial de Helmholtz. CAPÍTLO Ecuacón paraal d Hlmholt. S dscut la posbldad d vsualar mdant un procsador óptco [1] a las solucons d la cuacón paraal d Hlmholt. Para llo s rala una comparacón d los rsultados obtndos consdrando

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

Diseño analógico de controladores digitales.

Diseño analógico de controladores digitales. CAPIULO 4 Dsño aalógco cotrolaors gtals. Aqul qu o ha fracasao s orqu uca ha ttao algo uvo Albrt Est. Coto: ma 4.: Cotrolaors PID gtals ma 4.: Rsño utlao la rtroalmtacó stao. ma 4.3: Métoos sño utlao la

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 214 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS Juio, Ejercicio 4, Oció B Reserva 2, Ejercicio 4, Oció B Reserva 4, Ejercicio

Más detalles

PENSUM DE ESTUDIOS DE INGENIERÍA DE SISTEMAS

PENSUM DE ESTUDIOS DE INGENIERÍA DE SISTEMAS O RÚBLICA BOLIVARIAA D VZULA UIVRSIDAD ACIOAL RIMTAL OLITÉCICA ATOIO JOSÉ D SUCR SUM D STUDIOS D IGIRÍA D SISTMAS SMSTR I 11015 MATMÁTICA I 4 2 0 6 5 -- 14012 DIBUJO I 1 3 0 4 2 -- 21012 IGLS I 1 0 3 4

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

GuíaDidáctica: Geometría AnalíticaPlana UTPL. La Universidad Católica de Loja MODALIDAD ABIERTA Y A DISTANCIA

GuíaDidáctica: Geometría AnalíticaPlana UTPL. La Universidad Católica de Loja MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA P P 1 0 A P 1 P (x (x 2 ) (0) (1) (x 1 )

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años).

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años). IES Mditáo d Málg Ju los loso Giotti DISTRITO UNIVERSITRIO DE Mdid MTEMÁTIS (Mos d ños. OPIÓN Ejcicio.- (. tos. S id l cució ticil do ls tics:. tos. Idic ls dios qu d t l ti.. tos. lcul l is -. c. tos.

Más detalles

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula 4. Vaables Agulaes Las vaables agulaes sve aa eeseta e foma mas smle e dóea al movmeto de otacó. La

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

() t ( )exp( ) 2. La transformada de Fourier

() t ( )exp( ) 2. La transformada de Fourier 1 x d La ransormada d ourr x d La ransormada d ourr Sa una uncón localmn ngrabl cuya ngral valor absoluo sa acoada n R. S dn su ransormada d ourr como: 1 d Esas xrsons nos rmn calcular la xrsón domno d

Más detalles

Dualidad entre procesos termodinámicos y electromecánicos

Dualidad entre procesos termodinámicos y electromecánicos ENERGÍA Y COENERGÍA EN IEMA ELECROMECÁNICO REALE, DEDE PROCEDIMIENO ERMODINÁMICO CLÁICO Alfredo Álvarez García Profesor de Inenería Eléctrca de la Escuela de Inenerías Industrales de adajoz. Resumen La

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

Tema 11. Limite de funciones. Continuidad

Tema 11. Limite de funciones. Continuidad Tma. Limit d fucios. Cotiuidad. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito

Más detalles

Administración de inventarios. Ejercicio práctico.

Administración de inventarios. Ejercicio práctico. Admnstracón d nvntaros. Ejrcco práctco. La Cía. GOMA REDONDA S.A. llva n nvntaro un crto tpo d numátcos, con las sgunts caractrístcas: Vntas promdo anuals: 5000 numátcos Costo d ordnar: $ 40/ ordn Costo

Más detalles

1 de 44 CODIGO: PREPARADO POR: Dr. Juan Rafael Mora López, MQC, Ph.D. JULIO DEL REVISADO POR: Dr. José Valdelomar Director Laboratorio Clínico

1 de 44 CODIGO: PREPARADO POR: Dr. Juan Rafael Mora López, MQC, Ph.D. JULIO DEL REVISADO POR: Dr. José Valdelomar Director Laboratorio Clínico ADM- 00 DEL 23 1 de 44 ADM- 00 DEL 23 2 de 44 ADM- 00 DEL 23 3 de 44 ADM- 00 DEL 23 4 de 44 ADM- 00 DEL 23 5 de 44 ADM- 00 DEL 23 6 de 44 ADM- 00 DEL 23 7 de 44 ADM- 00 DEL 23 8 de 44 ADM- 00 DEL 23 9

Más detalles

PENSUM DE ESTUDIOS DE INGENIERÍA MECÁNICA

PENSUM DE ESTUDIOS DE INGENIERÍA MECÁNICA O RÚBLICA BOLIVARIAA D VZULA UIVRSIDAD ACIOAL RIMTAL OLITÉCICA SUM D STUDIOS D IGIRÍA MCÁICA SMSTR I CODIGO ASIGATURAS T L HT/S U RQUISITOS C 11015 MATMÁTICA I 4 2 0 6 5 -- 14012 DIBUJO I 1 3 0 4 2 --

Más detalles

PENSUM DE ESTUDIOS DE INGENIERÍA INDUSTRIAL

PENSUM DE ESTUDIOS DE INGENIERÍA INDUSTRIAL O RÚBLICA BOLIVARIAA D VZULA UIVRSIDAD ACIOAL RIMTAL OLITÉCICA SUM D STUDIOS D IGIRÍA IDUSTRIAL SMSTR I 11015 MATMÁTICA I 4 2 0 6 5 -- 14012 DIBUJO I 1 3 0 4 2 -- 21012 IGLS I 1 0 3 4 2 -- 13013 QUÍMICA

Más detalles

A1. ELEMENTOS DE VIGA DE EULER BERNOULLI LIBRES DE ROTACIÓN

A1. ELEMENTOS DE VIGA DE EULER BERNOULLI LIBRES DE ROTACIÓN Anass d acas y amna 34 ANEJO I A. ELEMENOS DE VIGA DE EULER ERNOULLI LIRES DE ROACIÓN La toría d vgas d Eur-rnou s robabmnt uno d os robmas modo más sms d a formuacón rstrngda d a astcdad na. La rstrccón

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

EXISTENCIA DE UNA FUNCIÓN NO LINEAL, CONTINUA Y BIYECTIVA EN l CON INVERSA DISCONTINUA EN TODO PUNTO

EXISTENCIA DE UNA FUNCIÓN NO LINEAL, CONTINUA Y BIYECTIVA EN l CON INVERSA DISCONTINUA EN TODO PUNTO EXISTECIA DE UA FUCIÓ O LIEAL, COTIUA Y BIYECTIVA E l CO IVERSA DISCOTIUA E TODO PUTO Jorge E Herádez U, Temístocles Zeballos M Uversdad de Paamá, Cetro Regoal Uverstaro de Veraguas, Departameto de Matemátca

Más detalles

TEMA IV INTEGRALES INDEFINIDAS

TEMA IV INTEGRALES INDEFINIDAS Tema IV-Itegrales Ideiidas TEMA IV INTEGRALES INDEFINIDAS Dada ua ució ( ) deiida e u cierto domiio D, os plateamos si eiste ua ució F( ) deiida e el mismo domiio, tal que su derivada coicida co la ució

Más detalles

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL FORMULAS Y EJEMLOS ARA EL CÁLCULO DE NERESES DE UN DEÓSO A LAZO FJO CONVENCONAL 1. GLOSARO DE ÉRMNOS a. Depósito a plazo fijo: roducto e el que el cliete podrá depositar ua catidad de diero a ua tiempo

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

6. FAST FOURIER TRANSFORM (FFT)

6. FAST FOURIER TRANSFORM (FFT) 6. FAS FOURIER RASFORM FF Las rasformadas Rápidas d Fourir so algoritmos spcializados qu prmit a u procsador digital acr l cálculo d la rasformada Discrta d Fourir d ua forma ficit, lo qu rspcta a carga

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior. Tema 2.1 : Definiciones y Terminología

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior. Tema 2.1 : Definiciones y Terminología 7 Unidad : Euaions Dirnials inals d Ordn Surior Tma. : Diniions Trminología a Euaión Dirnial inal d o rdn No Homogéna tin la orma: a d d d d a a g uaión EDN H a Euaión Dirnial inal d o rdn Homogéna Asoiada

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A PRIMERA PRUEBA DE TÉCICAS CUATITATIVAS III. 14-Abrl-015. Grupo A OMBRE: DI: 1. Se quere hacer u estudo sobre gasto e ropa e ua comarca dode el 41% de los habtates so mujeres. (1 puto) Se decde tomar ua

Más detalles

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Oió Ejiio.- S s ué. Clul d od lido ls oidds duds l lo d los siguits dtits: B B IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Ejiio..- Hll l uió dl

Más detalles

TEMA 3. Superficies Adicionales. Aletas.

TEMA 3. Superficies Adicionales. Aletas. TEMA 3. Suprficis Adicionals. Altas. Introducción Alta rcta d spsor uniform y alta d aguja d scción transvrsal constant La alta anular d spsor constant La alta d prfil triangular Efctividad d la alta Las

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

4.2. Ejemplo de aplicación.

4.2. Ejemplo de aplicación. HEB 8 Dsarrollo dl método d los dsplazamintos 45 4.. Ejmplo d aplicación. ontinuando con l pórtico dscrito n l apartado (3.8), s van a calcular las cargas y, postriormnt, sguir con l cálculo matricial,

Más detalles

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura T 4: grsos lls o lls TEMA 4. EGEIONE LINEALE LINEALE Y NO.. 3. Itroduccó 4. Nocltur 5. Llzcó Ajust grsó ll ll d últpl cucos 6. 7. 8. grsos EUMEN Progrcó o lls Mtlb Cálculo uérco Igrí T 4: grsos lls o lls.

Más detalles

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V

Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V Área Académca de: Químca Líea de Ivestgacó: Fscoquímca de Almetos Programa Educatvo: Lcecatura e Químca Nombre de la Asgatura: Químca Aalítca V Tema: Represetacoes gráfcas de las relacoes propedadcocetracó

Más detalles

PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251

PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251 No. DE EMPLEADO: SEMANA: 5 NO. DE ALUMNOS: O PROPOSITO GENERAL DE LA 1. Teorema fundamental del cálculo. - Contextualizar el concepto de - Visualizar la relación entre cálculo diferencial y el cálculo

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

A C T I N O M IC O S I S Ó r g a n o : M u c o s a b u c a l T é c n i ca : H / E M i c r o s c o p í a: L o s c o r t e s h i s t o l ó g i c oms u e

A C T I N O M IC O S I S Ó r g a n o : M u c o s a b u c a l T é c n i ca : H / E M i c r o s c o p í a: L o s c o r t e s h i s t o l ó g i c oms u e T R A B A J O P R Á C T I C O N º 4 I N F L A M A C I Ó N E S P E C Í F I C A. P A T O L O G Í A R E G I O N A L P r e -r e q u i s i t o s : H i s t o l o g ída e l t e j i d oc o n e c t i v o( c é l

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 211 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS Juio, Ejercicio 4, Oció A Reserva 1, Ejercicio 4, Oció A Reserva 2, Ejercicio

Más detalles

( ) ( ) ( ) RESOLUCIÓN Dato: NºDiag.= 4(Nº s internos) RESOLUCIÓN RESOLUCIÓN SEMANA 4 POLÍGONOS Y CUADRILÁTEROS 11( 11 1) RPTA.: E RPTA.

( ) ( ) ( ) RESOLUCIÓN Dato: NºDiag.= 4(Nº s internos) RESOLUCIÓN RESOLUCIÓN SEMANA 4 POLÍGONOS Y CUADRILÁTEROS 11( 11 1) RPTA.: E RPTA. SEMN 4 OLÍGONOS Y URILÁTEROS 1. lcul l úmro d digols mdis d u polígoo, dod l úmro d digols s l cuádrupl dl úmro d águlos itros. ) 0 ) 7 ) ) 44 E) to: Nºig.= 4(Nº s itros) id: Nºig.Mdis= ( 1 ) =? Rmplzdo

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Transformada de Laplace

Transformada de Laplace Tranformada d alac CIPQ Marga Marco, Itzar Caban, Eva Portllo, 6 Tranformada d alac f(t funcón tmoral f(t f(t ara t < [ f (t] F( f (t t σ jω varabl comlja d alac t f(t g(t [ f (t] [ g(t ] F( G( Cambo d

Más detalles

Tema IV: Ruidos e Interferencias: Técnicas de reducción.

Tema IV: Ruidos e Interferencias: Técnicas de reducción. SCUA TÉCNICA SUPIO D INGNIOS INDUSTIAS Y D TCOMUNICACIÓN UNIVSIDAD D CANTABIA INSTUMNTACIÓN CTÓNICA D COMUNICACIONS (5º Curso Igría d Tlcomucacó) Tma IV: udos Itrrcas: Téccas d rduccó. José María Drak

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

Radicales. Un r a d i c a l e s u n a e x p r e s i ó n d e l a f o r m a, e n l a q u e n y a ; c o n t a l

Radicales. Un r a d i c a l e s u n a e x p r e s i ó n d e l a f o r m a, e n l a q u e n y a ; c o n t a l Radicales Un r a d i c a l e s u n a e x p r e s i ó n d e l a f o r m a, e n l a q u e n y a ; c o n t a l q u e c u a n d o a s ea n e ga t i v o, n h a d e s e r i m pa r. P o t e n c i a s y r a d

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

REPASO EXAMEN SEMESTRAL MATEMÁTICAS II. 2) EJERCICIOS - Determina el valor de (x) y de (y) en las siguientes construcciones geométricas: x 4x.

REPASO EXAMEN SEMESTRAL MATEMÁTICAS II. 2) EJERCICIOS - Determina el valor de (x) y de (y) en las siguientes construcciones geométricas: x 4x. RESO EXMEN SEMESTRL MTEMÁTICS II TEM: ÁNGULOS Y TRIÁNGULOS 1) TEORÍ S abora: - Clasfaó: águlos aguos, obtusos y rtos, t - arjas águlos: omplmtaros, suplmtaros, ojugaos, opustos por l vért, ayats - E rtas

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones SISEMAS LIEALES ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s ( s) ( s) Lilidd + b ( ) ( s) b ( s) Dsplmio l impo ( ) Dsplmio l domiio s

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s

Más detalles