Tema 4 - FUNDAMENTOS DE LA MECÁNICA ESTADÍSTICA CLÁSICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 4 - FUNDAMENTOS DE LA MECÁNICA ESTADÍSTICA CLÁSICA"

Transcripción

1 ma 4 - FUDAMOS D LA MCÁICA SADÍSICA CLÁSICA Cocptos stadístcos lmtals. Mcáca stadístca d sstmas mcroscópcos. Los colctvos mcrocaóco caóco y gracaóco. La fucó d partcó y las fucos trmodámcas. l gas dal y la paradoa d Gbbs. alors mdos y fluctuacos. [HUA-67; RI-7; CAL-5679; AGU-78; HIL-46; KUB-6]

2 Colctvos stadístcos. Itroduccó al formalsmo d los colctvos d Gbbs. Colctvo caóco. Colctvos macrocaóco y mcrocaóco Aplcacó dl colctvo caóco: gas dal mooatómco. arabls trmodámcas. Fluctuacos d rgía: colctvo caóco. Fluctuacos dl úmro d partículas: colctvo macrocaóco.

3 Itroduccó al formalsmo d los colctvos d Gbbs.

4 Obtvo d la Físca stadístca: Dducr las propdads d u sstma macroscópco a partr dl coocmto d sus costtuyts mcroscópcos. Implcaría coocr al dtall todas las moléculas dl sstma poscos vlocdads traccos La Físca stadístca prmt coocr ua sr d varabls dl sstma como la prsó rgía volum magtzacó úmro d partículas. Otras varabls como la tmpratura tropía rgía lbr potcal químco s db obtr co ayuda d la rmodámca. Opcos: Aálss dtallado d todas y cada ua d las moléculas Método d los colctvos d Gbbs fudado postulados qu rlacoa la mda tmporal d ua varabl co l promdo al colctvo d sa varabl. 4

5 Colctvo: couto d gra úmro d sstmas cada uo d los cuals s ua réplca a vl macroscópco dl sstma trmodámco cuyas propdads qurmos studar. rmr postulado hpótss rgódca: La mda tmporal d ua varabl M u sstma trmodámco s gual al promdo dl colctvo d M l límt d smpr qu los sstmas dl colctvo rproduzca l stado trmodámco y l toro d dcho sstma. Sgudo postulado prcpo d gual probabldad a pror: u colctvo co rprstatvo d u sstma trmodámco aslado los sstmas dl colctvo stá dstrbudos uformmt s dcr co gual probabldad o frcuca sobr los posbls stados cuátcos cosstts co los valors spcfcados. Hpótss rgódca cuátca: l sstma cosdrado pasa l msmo tmpo cada uo d los stados accsbls. Sstma dfdo por s uo d los vls d rgía dl sstma. Ω º d stados cuátcos asocados a la rgía dgracó dl vl. Ω s l º d stados accsbls. 5

6 Sgú los trs toros trmodámcos más mportats dfmos los trs colctvos prcpals: Sstma aslado: fos: colctvo mcrocaóco Sstma crrado sotrmo: fos: colctvo caóco Sstma abrto sotrmo: µ fos: colctvo gracaóco 6

7 Colctvos mcrocaóco caóco y gra caóco Dpd d cómo agrupmos los sstmas qu compo l colctvo. D qué propdads tga las pards d las cldas. Colctvo mcrocaóco Sstma aslado adabátco fos Colctvo caóco Sstma crrado sotrmo: fos : total ct!!

8 Colctvo gra caóco Sstma abrto sotrmo: µ fos: total y total cts!! µ µ...µ 8

9 Colctvo caóco. 9

10 Colctvo caóco Sstma co y fos cotacto co u foco térmco a tmpratura. os farmos u sstma dl colctvo y los rstats - hac d foco térmco. cuáls so las varabls trmodámcas dl sstma? Aplcamos los postulados: las propdads dl sstma so las propdads dl colctvo odos los sstmas tdrá los msmos vls d rgía. Sstma crrado sotrmo: fos : total ct!!

11 Colctvo caóco total rgía dl colctvo º d sstmas co rgía otal Dstrbucó: couto d úmros qu dc cuátos sstmas dl colctvo hay co cada rgía {...} Ωt º d stados dl colctvo cosstt co ua dstrbucó dada º d formas posbls d tr sstmas co co tc. Ω t !!...!!! robabldad d obsrvar u stado co rgía Ω t Ω Sumamos a todas las posbls dstrbucos t

12 Colctvo caóco Ω t Ω t Qurmos trabaar co ua xprsó más sclla para la probabldad D todas las dstrbucos compatbls co total buscamos la más probabl * * Ω Ω qu srá la qu tga u máxmo valor d S s grad: gausaa ctrada *. S : dlta d Drac. t * t * * * * Ωt Ω t º d sstmas co la dstrbucó más probabl co total Ahora cstamos sabr cual s s qu hac máxmo l úmro d stados y lo harmos por l método d los multplcadors dtrmados.

13 Método d los multplcadors dtrmados Maxmzar Ω t s gual qu maxmzar lω t Buscamos los qu hac máxmo lω t pro sólo val los qu cumpla S hay dos codcos G y G qu s db cumplr para maxmzar F tocs db hacrs: 0 x G x G x F α D ahí obtmos x 0 α y α y s obt susttuydo x 0 G y G or tato harmos: 0 l Ω t α Colctvo caóco

14 4 0 l Ω t α Ω t!!!! x x x x! l l Aprox. Strlg! l l! Ω t l l l l l l t Ω Al dfrcar sólo quda térmos qu dpd d [ ] 0 l l * + + α α * Buscamos la dstrbucó más probabl: Colctvo caóco

15 5 α * Hmos obtdo: Usado las codcos: α α Y la probabldad s: * Dfmos la fucó d partcó: Colctvo caóco

16 Colctvo caóco y trmodámca cómo calculamos las varabls dl sstma? d d + d l + l d + d Smplfcamos usado: Rsulta: d d d 0 - prsó d l + p d l Y por rmodámca d + p d ds l d ds d l 6

17 Colctvo caóco y trmodámca ds d l La tropía s adtva la probabldad o. ro s sumatoro sí. S + AB S A S B AB A B l l + l l + AB AB A B A B AB A A B AB B l B A l l + AB A A A B B l B or tato dos sstmas cotacto térmco dbrá tr l msmo y so db sr ua costat k : tmpratura absoluta k : costat d Boltzma k.8 0 J/K /K S k l 7

18 8 Colctvo caóco y trmodámca k S l k S l + rmodámca: S F l F k F rgía lbr d Hlmholtz + α α α µ d pd Sd df tc S H G p H + k k F S l l + k F p l k F l / k F α α µ l

19 Colctvo caóco odmos tratar d stados o d vls d rgía: Ω stados vls dgracó vl Ω stado Ω vl 0 : : 0 Dstrbucó uform l pso rlatvo dsaparc. S 9

20 Colctvos macrocaóco y mcrocaóco 0

21 Colctvo macrocaóco stá formado por sstmas d volum u baño térmco global a tmpratura y potcal químco µ. Sstma abrto sotrmo: µ fos: total y total cts!! 4 qulbro las dstrbucos váldas db cumplr: úmro d sstmas co moléculas y qu admás stá u stado co rgía µ µ...µ

22 Colctvo macrocaóco Dstrbucó: couto d úmros qu dc cuátos sstmas dl colctvo hay co cada rgía y co qué úmro d partículas { m m...} º d sstmas co rgía y co m partículas. Ωt º d stados posbls Ω t! Harmos como para l caóco: D todas las dstrbucos compatbls co total buscamos la más probabl * * Ω Ω qu srá la qu tga u máxmo valor d t t

23 γ α * La dstrbucó más probabl s: Colctvo macrocaóco Usado las codcos: γ α γ γ γ ' ' * γ Dfmos la gra fucó d partcó: total total

24 4 Colctvo macrocaóco Falta obtr y γ. γ γ d d d d d d l l γ - prsó + + l d d p d d γ Rsulta: Y por rmodámca ds d p d d + µ

25 5 Colctvo macrocaóco Falta obtr y γ. l d ds or los msmos argumtos qu l caóco: k γ µ k l k S / / k k µ µ k k / / µ µ µ / k µ µ µ / k µ µ

26 Colctvo macrocaóco y trmodámca S µ + k l p s la fc trmodámca caractrístca d las varabls y µ. rmodámca: S µ + p d p Sd + dµ + pd S p k k l + k l µ l l k µ l k µ 6

27 Colctvo macrocaóco y caóco Hay casos los qu cov aplcar l colctvo macrocaóco vz dl caóco: - Hacdo l sumatoro s vta la complcacó matmátca d matr ct l caóco - Covrtr u problma d muchos curpos problmas a...curpos. µ 0 + µ / k µ / k + µ / k +... λ k µ / Fugacdad o actvdad absoluta. 7

28 Colctvo mcrocaóco Sstma aslado adabátco fos Al s fa y o habr varacos d la rgía srá dfcl rlacoar co la trmodámca como ats. Habría qu troducr u uvo postulado para stablcr sa rlacó: S k l Ω 4 Ω Dgracó dl vl ro sto o srá csaro s obtmos las propdads dl colctvo mcrocaóco a partr d uo d los atrors dl caóco. 8

29 Rlacó tr los colctvos mcrocaóco y caóco Colctvo mcrocaóco Sstma aslado adabátco fos Colctvo caóco Sstma crrado sotrmo: fos : total ct!! Dl caóco tomamos los sstmas co la rgía dsada. Los sparamos y aslamos térmcamt y tmos los sstmas dl mcrocaóco. 9

30 ropdads dl colctvo mcrocaóco Dl caóco tomamos los sstmas co la rgía dsada. Los sparamos y aslamos térmcamt y tmos los sstmas dl mcrocaóco. Caóco: / k Como todos los sstmas o stados qu hmos tomado t la msma tdrá la msma probabldad: Ω stados Ω Caóco: S k l S k Ω l k l Ω Ω Ω rmodámca: S µ + p ds d + p d α µ α d α l Ω k p k l Ω µ k l Ω α 0

31 Aplcacó dl colctvo caóco: gas dal mooatómco. arabls trmodámcas. aradoa d Gbbs.

32 Aplcacó dl colctvo caóco: gas dal mooatómco. Gas dal gas dluído: - traccos molculars dsprcabls - moléculas dpdts tr sí. sto prmt faros ua sola molécula. total molécula!! : º d prmutacos d moléculas dstgubls. Ua partícula ua caa d lado L L ε / k π ε x + y + z x y z : m L tros postvos stados Ω vls dgracó ara l paso cstamos pasar d úmro d stados a dsdad d stados

33 Aplcacó dl colctvo caóco: gas dal mooatómco. y R x + y + z L L m R m π π / z R x Γ 4 π 8 π L 6 π R m º d stados co rgía mor qu / Dsdad d stados: d Γ ω d d d m 4π / / d total molécula! º d stados >> º d partículas <<k

34 Aplcacó dl colctvo caóco: gas dal mooatómco. º d stados >> º d partículas <<k Γ 4 π 8 π L 6 π R m / / π m k Γ >> Γ k >> h Λ h << Λ π m k / : ratamos gass dludos. val para l líqudo su puto d bullcó? Hlo Hdrógo o Argo K Λ / R L x + y + z m k π h O / m k h / / O m Λ O / Λ / << 4 O 0 / 4

35 Aplcacó dl colctvo caóco: gas dal mooatómco. y R x + y + z L L m R m π π / z R x Γ 4 8 π L 6 π π R m º d stados co rgía mor qu / Dsdad d stados: d Γ ω d d d m 4π / / d Fucó d partcó d ua sola molécula: / k π 8m k u m k d u / π ω du 4 h h 0 Λ h Λ π m k / / 0 / Fucó d partcó total: otal!! Λ 5

36 Aplcacó dl colctvo caóco: gas dal mooatómco. ropdads trmodámcas. cstamos: l otal l + l π m k l h / otal! mπ k h! Λ / p k l k l k p k F k l k mπ k l h / k l k l k l / k C k p k 6

37 Aplcacó dl colctvo caóco: gas dal mooatómco. ropdads trmodámcas. S l k + k l F S k mπ k l h / 5 / k mπ k l h / k p 5 / xpasó sotrma d u gas: S S p S p k l p p otcal químco y rgía lbr d Gbbs: G µ F + p µ G k l l k µ k mπ k l h / k mπ k l h / k p 7

38 Aplcacó dl colctvo caóco: gas dal mooatómco. La paradoa d Gbbs Hmos trabaado co: cotado corrctamt otal!! Λ mπ k h / Y obtmos ua xprsó para la tropía qu sí s xtsva: S k mπ k l h / 5 / k mπ k l h / k p 5 / Qué pasa s o cotamos co s!? dríamos: S k l / + cost. s xtsva? O!!! sto da lugar a la paradoa d Gbbs. 8

39 La paradoa d Gbbs S usamos: S k + / l cost. Stuacó A: Stuacó B: parts guals: gas co y cada ua. fa. S total? Qutamos la pard. fa. U solo rcto gas co y. S total? S A y S B dbría sr guals. ro o s así: S S k l A B or tato S db sr corrgda cotado corrctamt l! qué pasaría s pomos partículas dstta masa cada ua d las caas la stuacó cal? 9

40 Fluctuacos d rgía: colctvo caóco. Fluctuacos dl úmro d partículas: colctvo macrocaóco. 40

41 4 Fluctuacos Colctvo caóco: fluctuacos d rgía Dsvacó stádar: σ Las fluctuacos stá rlacoadas co y C k / k / + k k / [ ] / / k k U k k C k σ C k C k σ σ

42 4 Fluctuacos Colctvo gra caóco: fluctuacos dl úmro d partículas Dsvacó stádar: σ + k k k k / / µ µ µ µ k µ σ k σ σ µ k k / / µ µ

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

9 Momentos y funciones generatrices de Momentos

9 Momentos y funciones generatrices de Momentos 9 omos y fucos grarcs d omos Edgar Acua ESA 400 Edgar Acua 9. omos Sa ua varabl alaora s df su smo momo co rspco al org como μ E[ ], smpr qu l caso dscro y qu p < f d < l caso couo. Obvam, μμ..tamb, s

Más detalles

APUNTE Y PROBLEMAS DE FÍSICA III

APUNTE Y PROBLEMAS DE FÍSICA III APUE Y PROBLEMAS DE FÍSICA III CARRERA: LICECIAURA E QUÍMICA PROFESOR Mg. CARLOS A. CAAEO AUILIAR Lc. ERIQUE M. BIASOI COEIDOS: Mcáca Clásca: Mcáca Cuátca: Mcáca Estadístca: Problmas: Cmátca Dámca Prcpos

Más detalles

Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares.

Fisicoquímica II-Módulo de Estructura y Propiedades Moleculares. Fscouímca II-Módulo d Estructura y Propdads Molculars. Bollla 4. Coctado las dscrpcos mcro/macroscópcas: Trmodámca Estadístca 4. La coxó tr la dscrpcó cuátca y las propdads trmodámcas. Hmos vsto como dscrbr

Más detalles

MODELO DE REGRESIÓN LINEAL MÚLTIPLE

MODELO DE REGRESIÓN LINEAL MÚLTIPLE Modlo d Rgrsó Lal Múltpl MODELO DE REGRESIÓN LINEAL MÚLTIPLE Autors: Ratas Kzys (rzys@uoc.du), Ágl A. Jua (ajuap@uoc.du). ESQUEMA DE CONTENIDOS Hpótss sobr l térmo d prturbacó Hpótss sobr varabls xplcatvas

Más detalles

5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES

5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES ma 5 MCÁICA SADÍSICA CUÁICA D GASS IDALS stadística d rmi-dirac y stadística d Bos-isti. l límit clásico. Gas idal d rmi: lctros mtals. Gas idal d Bos: fotos y 4H líquido. Codsació d Bos-isti. [RI-9; HUA-8;

Más detalles

PRÁCTICA 9: PROPIEDADES DESEABLES DE LOS ESTIMADORES

PRÁCTICA 9: PROPIEDADES DESEABLES DE LOS ESTIMADORES PRÁCTICA 9: PROPIEDADES DESEABLES DE LOS ESTIMADORES EJERCICIO Rcordmos prmro la sgut dfcó: U stmador T s dc ssgado rspcto a u parámtro μ ET μ a E T laldad d la spraza [ EX + EX ] + [ EX3 + EX ] 6 3 μ

Más detalles

Tema 5. Contraste de hipótesis (II)

Tema 5. Contraste de hipótesis (II) Tma 5. Cotrast d hpótss (II CA UNED d Hulva, "Profsor Dr. José Carlos Vílchz Martí" Itroduccó Bvda Objtvos pdagógcos: Aprdr a obtr la fucó d potca d u cotrast y la rprstar la curva d potca d u cotrast.

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

Sistema binario. Disoluciones de dos componentes.

Sistema binario. Disoluciones de dos componentes. . Itroduccó ermodámca. ema Dsolucoes Ideales Ua dsolucó es ua mezcla homogéea, o sea u sstema costtudo por ua sola fase que cotee más de u compoete. La fase puede ser: sólda (aleacoes,..), líquda (agua

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UIDAD.- Estadístca. Tablas y grácos (tma dl lbro). ESTADÍSTICA: CLASES Y COCEPTOS BÁSICOS E sus orígs hstórcos, la Estadístca stuvo lgada a custos d Estado (rcutos, csos, tc.) y d ahí prov su ombr. Hoy

Más detalles

RIESGO MORAL. Comportamiento (acciones) del A no observable para el P (o, simplemente, no verificable). P. ej.:

RIESGO MORAL. Comportamiento (acciones) del A no observable para el P (o, simplemente, no verificable). P. ej.: RIESGO MORA Comportamto accos dl A o obsrvabl para l o, smplmt, o vrfcabl.. j.: s A pd jrcr dsttos vls d sfrzo, co RM l o sab cál d llos llva a cabo. acr sfrzo spo dstldad para l A Úca varabl cotratabl:

Más detalles

3. Cálculo y dimensionado

3. Cálculo y dimensionado Documto Básco HE Ahorro d Ergía. Codsacos 1 Las codsacos suprfcals los crramtos y partcos trors qu compo la volvt térmca dl dfco, s lmtará d forma qu s vt la formacó d mohos su suprfc tror. Para llo, aqullas

Más detalles

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l

Un forward sobre commodities como el oro sufre una pequeña variación ya que se incluye la tasa de interés del oro (lease rate) con la variable l El Forward U corao fuuro o a plazo, s odo aqul cuya lqudacó o slm dfr hasa ua fcha posror spulada l msmo, s dcr s dos pas acurda hacr la rasaccó hasa u prodo fuuro dígas por jmplo 6 mss, so s u corao forward.

Más detalles

10 REGRESIÓN LINEAL SIMPLE

10 REGRESIÓN LINEAL SIMPLE Part stadístca Prof. María B. Ptarll GIÓN LINAL IMPL. Itroduccó muchos problmas st ua rlacó tr dos o más varabls, rsulta d trés studar la aturalza d sa rlacó. l aálss d rgrsó s la técca stadístca para

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles

I. MEDIDAS DE TENDENCIA CENTRAL

I. MEDIDAS DE TENDENCIA CENTRAL I. MEDIDAS DE TENDENCIA CENTRAL 1. La MEDIA ARITMETICA o PROMEDIO o smplmnt LA MEDIA Es la mdda d tndnca cntral más utlzada, la cual s rprsnta mdant l símbolo X y corrspond al promdo d todos los valors

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

MODELO DE REGRESIÓN LINEAL MÚLTIPLE

MODELO DE REGRESIÓN LINEAL MÚLTIPLE Modlo d Rgrsó Lal Múltpl MODELO DE REGRESIÓN LINEAL MÚLTIPLE Autors: Ratas Kzys (rzys@uoc.du), Ágl A. Jua (ajuap@uoc.du). ESQUEMA DE CONTENIDOS Hpótss sobr l térmo d prturbacó Hpótss sobr varabls xplcatvas

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TMS D MTMÁTICS Ooscos d Scudara TM 65 DISTRIBUCIOS D PROBBILIDD D VRIBL DISCRT. CRCTRÍSTICS Y TRTMITO. LS DISTRIBUCIOS BIOMIL Y D POISSO. PLICCIOS.. Itroduccó.. Fucos d Cuatía.. Dstrbucos Multvarats..

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

Procesamiento Digital de Señales de Voz

Procesamiento Digital de Señales de Voz Procsamto Dgtal d Sñals d Voz Trasparcas: Procsamto d Sñals y Métodos d Aálss para rcoocmto d Voz Autor: Dr. Jua Carlos Gómz Basado : Rabr, L. ad Juag, B-H.. Fudamtals of Spch Rcogto, Prtc Hall,.J., 993.

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2008

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2008 Solucó del exame de Ivestgacó Operatva de Sstemas de septembre de 008 Problema : (3 putos) E Vllafresca uca hace sol dos días segudos. S u día hace sol, hay las msmas probabldades de que el día sguete

Más detalles

6 Cinemática de rotaciones finitas

6 Cinemática de rotaciones finitas 6 Cmátca d otacos ftas 6. Momto sféco Dfcó: Cpo ígdo: s sstma d patíclas tal q las dstacas t las dsttas patíclas o aía sta codcó s dal, po la mayoía d los casos los sóldos pd dspcas los pqños cambos d

Más detalles

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3 Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más

Más detalles

Administración de inventarios. Ejercicio práctico.

Administración de inventarios. Ejercicio práctico. Admnstracón d nvntaros. Ejrcco práctco. La Cía. GOMA REDONDA S.A. llva n nvntaro un crto tpo d numátcos, con las sgunts caractrístcas: Vntas promdo anuals: 5000 numátcos Costo d ordnar: $ 40/ ordn Costo

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

mecánica estadística Estadísticas Cuánticas Capítulo 5

mecánica estadística Estadísticas Cuánticas Capítulo 5 mecáca estadístca Estadístcas Cuátcas Capítulo 5 Gas Ideal Mooatómco e el Límte Clásco Cosderemos u as deal s teraccó etre moléculas mooatómco e u volume V a temperatura T. Además supoemos que la separacó

Más detalles

Tema 2: Semiconductores intrínsecos y extrínsecos

Tema 2: Semiconductores intrínsecos y extrínsecos lectróca de dsostvos Dr.. Reg 5/6 Tea : Secoductores trísecos y extrísecos a. : K. Kao Itroduccó Desdad de stados (De) ucó de dstrbucó de er-drac Desdad de ortadores e secoductores trísecos. vel de er

Más detalles

Prueba de bondad de ajuste Prueba de independencia Prueba de homogeneidad.

Prueba de bondad de ajuste Prueba de independencia Prueba de homogeneidad. 5.4 PRUEBS CHI-CUDRDO CONTENIDOS: OBJETIVOS: 5.4.1. Pruba d bodad d aust. 5.4. Pruba d dpdca. 5.3.3 Pruba d hoogdad. Platar hpótss para dfrts propóstos. Dtrar los pasos a sgur al ralzar ua pruba ch-cuadrado.

Más detalles

TEMA 1: CALCULO DIRECTO DE LÍMITES

TEMA 1: CALCULO DIRECTO DE LÍMITES INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Tema IV: Ruidos e Interferencias: Técnicas de reducción.

Tema IV: Ruidos e Interferencias: Técnicas de reducción. SCUA TÉCNICA SUPIO D INGNIOS INDUSTIAS Y D TCOMUNICACIÓN UNIVSIDAD D CANTABIA INSTUMNTACIÓN CTÓNICA D COMUNICACIONS (5º Curso Igría d Tlcomucacó) Tma IV: udos Itrrcas: Téccas d rduccó. José María Drak

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

q q q q q q n r r r qq k r q q q q

q q q q q q n r r r qq k r q q q q urso: FISIA II B 30 00 I Profesor: JOAQIN SALEDO jsalcedo@u.edu.pe Eergía potecal electrostátca. S traemos ua carga desde ua dstaca fta el trabajo ecesaro es ulo. 0 trate ua fumadta, grats,, te vto S luego

Más detalles

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: MADRID

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: MADRID C/ Gal. Auda, 6 Tléf.: 9 5 8 4-9 55 9 800 MADRID ORMULARIO DE ESTADÍSTICA. DISTRIBUCIONES UNIDIMENSIONALES. Esaza atátca. Sdo ua vaabl alatoa g ( ua fucó d la sa, dfos: E ( g ( ( g Caso dscto g ( f ( Caso

Más detalles

Estadística Teórica II

Estadística Teórica II Tablas d Cotgca Estadístca Tórca II TABLAS DE CONTINGENCIA Satago d la Fut Frádz 89 CONTRASTE NO PARAMÉTRICO DE BONDAD DE AJUSTE Tablas d Cotgca.- Para comprobar s los opraros cotraba dfcultads co ua prsa

Más detalles

B o l e t í n d e J u r i s p r u d e n c i a d e l T r i b u n a l A d m i n i s t r a t i v o d e

B o l e t í n d e J u r i s p r u d e n c i a d e l T r i b u n a l A d m i n i s t r a t i v o d e B o l e t í n d e J u r i s p r u d e n c i a d e l T r i b u n a l A d m i n i s t r a t i v o d e A t e n a s T R I B U N A L A D M I N I S T R A T I V O D E A T E N A S B O L E T I N D E J U R I S P

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...

Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,... TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN S llama sucsió a u cojuto d úmros dados ordadamt d modo qu s puda umrar: primro, sgudo, trcro,... Los lmtos d la sucsió s llama térmios y s

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar

Más detalles

1. Propiedades molares y propiedades molares parciales

1. Propiedades molares y propiedades molares parciales erodáca. ea 9 Ssteas abertos y ssteas cerrados de coposcó varable. ropedades olares y propedades olares parcales Ua agtud olar se dee coo: Sepre está asocada a u sstea terodáco de u úco copoete (sstea

Más detalles

LA VARIABLE LATENTE CALIDAD MEDIDA A TRAVÉS DEL MODELO DE RASCH

LA VARIABLE LATENTE CALIDAD MEDIDA A TRAVÉS DEL MODELO DE RASCH A VARIABE ATENTE CAIDAD MEDIDA A TRAVÉS DE MODEO DE RASCH Álvarz Martíz, Pdro Blaco Sadía, Mª d los Ágls Gurrro Mazao, Mª dl Mar a obtcó d acts d olva d caldad rqur uos cudados spcals todas y cada ua d

Más detalles

Gestión de operaciones

Gestión de operaciones Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez pedro.sachez@upcomllas.es Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos

Más detalles

Capitulo IV. Síntesis dimensional de mecanismos

Capitulo IV. Síntesis dimensional de mecanismos Captulo IV Síntss dmnsonal d mcansmos Capítulo IV Síntss dmnsonal d mcansmos IV. Síntss dmnsonal d mcansmos. Gnracón d funcons. IV. Gnracón d trayctoras.. Introduccón a la síntss d gnracón d trayctoras..

Más detalles

Cap. II: Principios Fundamentales del Flujo de Tránsito

Cap. II: Principios Fundamentales del Flujo de Tránsito Cap. II: Pricipios Fudamtals dl Flujo d Trásito Diagrama Espacio-Timpo Distacia 1 2 Itralo (i) 3 4 5 6 Espaciamito () Timpo Flujo, q Dsidad, Vlocidad, Tasa horaria quialt a la cual trasita los hículos

Más detalles

Cadenas de Markov de tiempo continuo

Cadenas de Markov de tiempo continuo Cocpts foamtals d xarxs d computadors. U focamt aalítc. Cadas d Markov d tmpo cotuo Qué propdads db cumplr u procso stocástco para sr ua MC d tmpo cotuo? Los stados db formar u couto umrabl E caso cotraro

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal

Disoluciones. Disolución ideal. Disolución ideal. Disolución ideal. Disolución ideal Dsolucones TEM. Dsolucones reales. otencal químco en dsolucones reales. Concepto de actvdad. Una dsolucón es una mezcla homogénea de un componente llamado dsolvente () que se encuentra en mayor proporcón

Más detalles

TEMA 4: REGRESIÓN Y CORRELACIÓN.

TEMA 4: REGRESIÓN Y CORRELACIÓN. TEMA 4: REGREIÓN Y CORRELACIÓN. 4.. Rgrsó corrlacó lal smpl... 4.. El método d los mímos cuadrados las cuacos ormals.... 3 4.3. Rgrsó lal: rcta d rgrsó (mímos cuadrados)... 4 4.3.. Propdads d las rctas

Más detalles

Momento lineal: Momento lineal: p = mv Principio de conservación del momento lineal: pi = p

Momento lineal: Momento lineal: p = mv Principio de conservación del momento lineal: pi = p Julá oeo este www.julweb.es tlf. 69886 Chuletao de físca º de Bachlleato y 4º de ESO Cemátca: ( t) + vt v ( t) v v v a( ) Cemátca del movmeto ccula: θ θ () t θ + ωt+ αt ω() t ω + αt ω ω α( θ θ) π π v f

Más detalles

5. Estimación puntual. Curso Estadística

5. Estimación puntual. Curso Estadística 5. stmacó utual Cuso - stadístca Poblacó % DFCTUOSA Pobabldad Coocdo cuato vale? Muesta Nº Defectuosa Coocdo cuato vale? Ifeeca stmacó utual N Paámetos? MUSTRA... Datos Coocdos? stmacó utual 3 sesoes de

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

EL MÉTODO DEL CUBO: APLICACIONES DEL MUESTREO EQUILIBRADO EN LA ORGANIZACIÓN ESTADISTICA VASCA. Aritz Adin Urtasun

EL MÉTODO DEL CUBO: APLICACIONES DEL MUESTREO EQUILIBRADO EN LA ORGANIZACIÓN ESTADISTICA VASCA. Aritz Adin Urtasun EL MÉTODO DEL CUBO: APLICACIOES DEL MUESTREO EQUILIBRADO E LA ORGAIZACIÓ ESTADISTICA VASCA Artz Ad Urtasu EUSKAL ESTATISTIKA ERAKUDEA ISTITUTO VASCO DE ESTADISTICA Doosta-Sa Sbastá, VITORIA-GASTEIZ Tl.:

Más detalles

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros .8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadístca Matemátcas B º E.S.O. TEM 9 ESTDÍSTIC TBLS DE FRECUENCIS Y REPRESENTCIONES GRÁFICS EN VRIBLES DISCRETS EJERCICIO : l pregutar a 0 dvduos sobre el úmero de lbros que ha leído e el últmo

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS

Más detalles

Práctica número 12. Capacitor, resistor e inductor equivalentes

Práctica número 12. Capacitor, resistor e inductor equivalentes Práctca úmero 2 Capactor, resstor e ductor equvaletes Lab. de Prcpos de Termodámca y Electromagetsmo Objetvos a) Idetfcar el fucoameto de u resstor e los crcutos eléctrcos y obteer el resstor equvalete

Más detalles

TEMA 3. X X. Equilibrio de fases en sistemas multicomponentes Eutécticos. cticos. Azeótropos. tropos. vapor. Equilibrio líquido l.

TEMA 3. X X. Equilibrio de fases en sistemas multicomponentes Eutécticos. cticos. Azeótropos. tropos. vapor. Equilibrio líquido l. TEMA 3. Equbro de fases e sstemas mutcompoetes Eutéctcos ctcos. Azeótropos tropos. 3.1.Sstemas de dos compoetes EQUIIRIO ÍQUIO -AOR soucoes dudas soucoes reaes Azeótropos EQUIIRIO ÍQUIO- ÍQUIO EQUIIRIO

Más detalles

Multicupón no garantizado 07/09 1

Multicupón no garantizado 07/09 1 ANEXO AL CONTRATO FINANCIERO DENOMINADO MULTICUPÓN NO GARANTIZADO OBRE UPUETO DE AJUTE O UPUETO EPECIALE DE AJUTE. UPUETO DE AJUTE: E caso d qu s produzca cualqura d las stuacos qu a cotuacó s dca l Baco

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AVANZADA Udad I: Prpedade y Leye de la ermdámca Prce reverble e tema cerrad Vlume de ctrl Cted Etrpía Degualdad de Clauu Defcó La ercera Ley de la ermdámca Prce ermdámc Dagrama -S Vlume de

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

Comprobación de limitación de condensaciones superficiales e intersticiales en los cerramientos

Comprobación de limitación de condensaciones superficiales e intersticiales en los cerramientos Mnstro d Fomnto Scrtaría d Estado d Infrastructuras, Transport y Vvnda Drccón Gnral d Arqutctura, Vvnda y Sulo Documnto d Apoyo al Documnto Básco DB-HE Ahorro d nrgía Códgo Técnco d la Edfcacón DA DB-HE

Más detalles

Academia de Física. Turno: Vespertino. Dirección General del Bachillerato Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza

Academia de Física. Turno: Vespertino. Dirección General del Bachillerato Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Acadma d ísca. Turo: sprto Drccó Gral dl Bachllrato Ctro d Estudos d Bachllrato 4/ Mastro Mosés Sáz Garza Ára: Ccas Naturals Acadma d ísca Turo: sprto Guía d ísca Atrévt a Explorar l Uvrso. Elaborada por:

Más detalles

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos

Más detalles

Tema 2. Termodinámica Estadística. Problemas

Tema 2. Termodinámica Estadística. Problemas ma. rmodnámca Estadístca Problmas jrccos. La apromacón d trlng (ln! ln - ) prmt valuar l logartmo d factorals d númros grands con un rror puño. Calcula y rprsnta l rror rlatvo (n %) obtndo al utlzar la

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas 5º Curso-Tratameto Dgtal de Señal Trasformada Z Defcó y Propedades Trasformada Iversa Fucó de Trasfereca Dscreta Aálss de Sstemas 7//99 Capítulo 7: Trasformada Z Defcó y Propedades 5º Curso-Tratameto Dgtal

Más detalles

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r. (Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar

Más detalles

1.9. ESTÁTICA CON ROZAMIENTO

1.9. ESTÁTICA CON ROZAMIENTO Fudametos y Teorías Físcas ETS Arqutectura.9. ESTÁTICA CON ROZAMIENTO Hemos estudado el equlbro de los cuerpos stuados lbremete e el espaco, o cuado estaba udos medate elaces a otros cuerpos o a bases

Más detalles

1. Introducción 1.1. Análisis de la Relación

1. Introducción 1.1. Análisis de la Relación . Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado

Más detalles

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; = CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos Capíulo. La fucó d pacó ) Spaacó d la fucó d pacó S ha dmosado aom - / k [.] La ía dl l s ual a: k [.] + + + [.] + S los ados d lbad o accoa [.4] - / k - / k... [.5] ) Fucó d pacó lcóca omado como l d

Más detalles

APLICACI ONES DE LA FUNCI ÓN

APLICACI ONES DE LA FUNCI ÓN APLICACI ONES DE LA FUNCI ÓN GENERADORA DE MOMENTOS Adrés Camlo Ramírz Gaa adrs.camlo.ramrz@gmal.com Trabajo d Grado para Opar por l Tulo d Mamáco Drcor: Bgo Lozao Rojas Esadísco Uvrsdad Nacoal d Colomba

Más detalles

1. Actividad y Coeficientes de actividad

1. Actividad y Coeficientes de actividad ermodnámca. ema Dsolucones Reales. Actvdad y Coecentes de actvdad Se dene el coecente de actvdad,, de manera que: ( ( ln Actvdad ( Esta epresón es análoga a la de las dsolucones deales. Sn embargo, es

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgral dfinida: (º) Aplicación:

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO académicas FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la

Más detalles

Cuando un sistema se encuentra en un estado cuántico dado, podemos considerar que se encuentra parcialmente en otros 2 ó + estados.

Cuando un sistema se encuentra en un estado cuántico dado, podemos considerar que se encuentra parcialmente en otros 2 ó + estados. Estado cuátco: Prcpo de superposcó de los estados: Cualquer movmeto o perturbado que esté restrgdo por tatas codcoes como sea posble teórcamete s que exsta terferecas o cotradccoes etre ellas. Estado e

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior. Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...

Más detalles