GUÍA N 7 CÁLCULO I. cuando x tiende al valor a y expresamos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GUÍA N 7 CÁLCULO I. cuando x tiende al valor a y expresamos"

Transcripción

1 UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 7 CÁLCULO I Profesor: Carlos Ruz Leiva LÍMITE DE FUNCIONES Considere una función f () que esté definida para todos los valores de próimos a un punto a en el eje X pero no necesariamente en el punto a Suponga que eiste un número real L con la propiedad de que f () se acerca cada vez más a L cuando se acerca cada vez más a a Se dice que L es el límite de f () cuando tiende al valor a y epresamos esto simbólicamente como f ( ) L a En los gráficos siguientes mostramos el concepto del límite de una función (a) La gráfica muestra que f ( ) L a

2 (b) La gráfica muestra que f ( ) A y f ( ) B a + a En este caso se dice que f ( ) a no eiste si A B Definición: Se dice que f ( ) L es equivalente a decir que ε > 0 δ > 0 tal que si a 0 < a < δ f ( ) L < ε Ejemplos: Demuestre que 3 5 Solución: Tenemos que probar que para cualquier número positivo ε, debe eistir otro número positivo δ, tal que si 0 < < δ, entonces ( 3 5) < ε Cálculo de δ De f ( ) L ( 3 5) 3 6 3( ) 3 < 3δ ε, obtenemos que δ ε / 3

3 Por lo tanto, para todo valor positivo de ε, eiste un número real positivo δ ε / 3, tal que si 0 < < δ entonces ( 3 5) < ε Es decir, Demuestre que Solución: Por demostrar que para cualquier ε > 0 eiste un δ > 0 tal que si 0 < < δ ( + 3 ) 8 < ε Cálculo de δ De ( + 3 ) 8 ( + 5)( ) < + 5δ < 8 δ ε, obtenemos δ ε / 8 En efecto, como 0 < < δ δ < < δ, δ < < + δ, 7 δ < + 5 < 7 + δ, Si, por ejemplo, δ, obtendríamos 6 < + 5 < < 8 Con mayor razón + 5 < 8, si δ < Luego, ε > 0, δ ε / 8 tal que si 0 < < δ ( + 3 ) 8 < + 5δ < 8 δ 8( ε / 8) ε Es decir, Para entender la relación que eiste entre ε y δ, en el ejemplo anterior, usamos Maple Epresamos ( + 3 ) 8 < ε con ε > ec:-+3*+^; > abs(ec-8)<000 and >0; < 000 and < 0

4 Resolvemos esta desigualdad para determinar los valores de, próimos al valor, cuya imagen f () están a una distancia menor que > solve(%,); RealRange ( Open( ), Open( )) Es decir si, pertenece a este intervalo, se tiene entonces que f ( ) 8 < ε Gráfica de esta situación > plot({ec,[t,8,t0],[,t,t08]}, ,y ); Ejemplos, de límites de funciones, usando Maple Calcular > f:->3*+4; f : 3 + 4

5 > Limit(f(),);# Esta forma no calcula > it(f(),);# Esta forma calcula 0 > plot({f,[,t,t00],[t,0,t0]},-4);# Comprobación gráfica Calcular 0 > Limit(/abs(),0); 0 > Limit(/abs(),0,left);# Tomando valores de <0 0- > it(/abs(),0,left);# Se tiene el siguiente valor: - > Limit(/abs(),0,right);# Para >0 se tiene:

6 0+ > it(/abs(),0,right);# Su valor es: > plot(/abs(),-,disconttrue);# El gráfico muestra que el límite de la función en 0, no eiste Por lo tanto: > it(/abs(),0); 3 Calcular 0 > it(/,0); > it(/,0,left); > it(/,0,right); undefined undefined

7 > plot(/,-,y-00,disconttrue); 4 Calcular 0 > it(/^,0); > it(/^,0,left); > it(/^,0,right); > plot(/^,-,y-0);

8 5 Calcular 0 sen > Limit(sin()/,0); > it(sin()/,0); Este límite es muy importante 0 sin( ) > plot(sin()/,-55); cos 6 Calcular 0 > f:->(-cos())/; > it(f(),0); f : 0 cos( ) > plot(f,-);

9 Propiedades de los límites Sean f ( ) A y g( ) B a a Entonces: (a) (b) ( f + g)( ) A + B a ( fg)( ) AB a Demostración: (a) Como (i) f A (c) ( ), si A 0 a g B f ( ) A ε > 0 δ > 0 tal que si 0 < a < δ a f ( ) A < ε / y (ii) g( ) B ε > 0 δ > 0 tal que si 0 < a < δ a g ( ) B < ε / Luego, ( f ( ) + g( )) ( A + B) ( f ( ) A) + ( g( ) B) f ( ) A + g( ) B < ε / + ε / ε siempre que 0 < a < δ con δ min{ δ, δ } Es decir, ( f + g)( ) A + B a Demuestre las otras propiedades

10 Aplicación de estas propiedades Ejemplos: Evaluar, si eiste, Solución: Aplicando propiedad de la división de límites, tenemos: ( 3 5 ( + 3) 5 ) 5 3 (5) + 3(5) Evaluar, si eiste, Solución: Escribiendo ( + 3) 3 ( + 3) Evaluar, si eiste, Solución: Epresamos ( 3) ( + 3) ( 3)( + 3) 3 ( 3) (3) (0) 5

11 sen5θ 4 Calcular θ 0 θ Solución: Sea u 5θ Como θ 0, entonces u 0, en forma equivalente sen5θ sen( u) 5sen( u) Por lo tanto, θ 0 θ u 0 u / 5 u 0 u sen( u) 5 u 0 u 5 Ya que sen( u) u 0 u 5 Calcular 0 cos Solución: 3 0 cos 3 ( cos )( + cos + cos 0 ) ( + cos ) ( cos )( + cos )( + cos + cos 0 ) ( + cos ) ( cos )( + cos + cos 0 ) ( + cos ) sen ( + cos + cos 0 ) ( + cos ) 0 sen ( ) ( + cos + cos ) + cos 0 + cos + cos + cos(0) + cos(0) + cos (0) 3 sen Observe que ( ) 0

12 Ejercicios: Algunos de los siguientes límites eisten, y otros no Evaluar los que eistan (7 6), , 6, , 3, ( + )( + 3), 8, + 0, a + 6 5, Si f ( ) 4, g( ) y h( ) 0, evaluar los siguientes límites: a a (a) [ f ( ) g( ) ], (b) [ g( ) ] a a, (c) f ( ), (d) a g ( ) h( ), a f ( ) (e) f ( ), (f) a h ( ) [ f ( ) g( ) ] a + Evaluar los siguientes límites: 00 (a), (b) +, (c) 3 Evaluar los siguientes límites: 5 + 3, (d) 7 sen5θ senθ (a), (b), (c) sen, (d) θ 0 θ θ 0 θ sen sen (f), (g) sen , (e) sen, (e) 500 cos, 4 Evaluar los siguientes límites: (a) sen, (b) 0 3 sen, (c) 0 0 cos, (d) θ, (e) θ 0 cosθ 3 + sen, 0 (f) θ senθ, (g) θ 0 θ sen

13 5 Hallar el valor del límite indicado tg tg sen3 (a), (b), (c), (d) tg 3 cosec 6, (e) sen, 0 0 sen 0 sen5 0 π + cos (f) 3 tg, (g), (h) sen3 ctg5, (i) 0 sen 0 / π π / En los problemas siguientes debe usar calculadora o Maple 6 Consideremos el límite cosθ θ θ 0 (a) Usar una calculadora para construir una tabla de valores de la función para valores pequeños de θ, y de ahí elaborar una conjetura acerca del valor del límite (b) Probar la conjetura 7 Usando la identidad trigonométrica con cos α sen α con α θ, y la aproimación sen θ θ para θ pequeño, probar que para estos de θ tenemos cosθ θ Usar una calculadora para comprobar esta aproimación para (a) θ 0, (b) θ 0 0, (c) θ Consideremos el límite + 0 (a) Usar una calculadora para construir una tabla de valores de para, 09, 08, 07, 06, 05, 04, 03, 0, 0, 005, 00, 0005, 000 Usar esta evidencia para formar una conjetura acerca del valor del límite (b) Usar la información de (a) para dibujar la gráfica de Estimar la localización del punto más bajo y para 0 < <

14 9 Estimar el valor del límite ( + 0 ) / con cinco cifras decimales usando una calculadora para hallar el valor de la función para, 0, 00, 000, 0000, 00000, , , Ejercicios: Evaluar los siguientes límites: 5, +, ( ), 4, , , 7 3, 8 + 6, , ,, , 5 / / 0 +, a, 3, a a , 7, , 9 ( + ), 0 + La solución de cada uno de los límites dados, puede obtenerse usando Maple, como por ejemplo, en la comprobación del último límite Comprobar que + > ec:(^-^(-))/(^+^(-)); ec : ( ) + ( ) > Limit(ec,infinity); ( ) + ( )

15 > it(ec,infinity); Gráfica de la función dada: > plot({ec,},0infinity,y05); Ejercicios: Evaluar los siguientes límites (a) + n n n, (b) + n 3n + 3n+, (c) + n n n, (d) + n n n, (e) n n +, (f) n + n n + 3n+ n Verifique, usando Maple, que n, y luego calcule los siguientes límites: n (a) ( ) n /, (b) ( ) n ln n n / n ln n n 3 Compruebe, usando Maple, que:, (c) ln n n n / n, (d) n n e n / n / a, (b) ln a 0 0 (a) ( + ) e, > 0 a, (c) n( n a ) ln a n

CONCAVIDAD Y PUNTOS DE INFLEXIÓN

CONCAVIDAD Y PUNTOS DE INFLEXIÓN UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 4 CÁLCULO I Profesor: Carlos Ruz Leiva CONCAVIDAD Y PUNTOS DE INFLEXIÓN Definición: La gráfica de una

Más detalles

Guía Semana 3 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 3 1. RESUMEN. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08- Ingeniería Matemática Guía Semana 3 Diferenciabilidad y derivadas. Sean Ω

Más detalles

x+3 3. f(x) = x 2 -x-2 x-2 x f(x) = 22. f(x) = tag(x+1) 23. f(x) = cos(x+1) x+2 x+2, x< f(x) =

x+3 3. f(x) = x 2 -x-2 x-2 x f(x) = 22. f(x) = tag(x+1) 23. f(x) = cos(x+1) x+2 x+2, x< f(x) = . Hallar el dominio de la función:. f() = +. f() = - + +. f() = -- + 4. f() = 4 +8 +- 5. f() = + 6. f() = - 7. f() = ++ 8. f() = -- 9. f() = +4 0. f() = + - -. f() = +4+. f() = - -4. f() = - + 6. f() =

Más detalles

GUÍA N 9 CÁLCULO I. , mientras h que la pendiente de la recta tangente a la curva y = f (x)

GUÍA N 9 CÁLCULO I. , mientras h que la pendiente de la recta tangente a la curva y = f (x) UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 9 CÁLCULO I Proesor: Carlos Ruz Leiva DERIVADAS Representación ráica de la derivada La pendiente de

Más detalles

Práctica 2: Funciones de R n en R m

Práctica 2: Funciones de R n en R m Análisis I Matemática Análisis II (C) Análisis Matemático I (Q) er. Cuatrimestre - 207 Práctica 2: Funciones de R n en R m. Describir y gracar el dominio de denición para cada una de las siguientes funciones:

Más detalles

Práctica 2: Funciones de R n en R m

Práctica 2: Funciones de R n en R m Análisis I Matemática I Análisis II C) Análisis Matemático I Q) Primer Cuatrimestre - 208 Práctica 2: Funciones de R n en R m. Dar el dominio de denición para cada una de las siguientes funciones y gracarlo:

Más detalles

Funciones de R m R n

Funciones de R m R n Funciones de R n R m Funciones de R m R n Una funcion f : R n R m es una función cuyo dominio es un subconjunto Ω R n. Denotada por f : Ω R m donde a cada x R n f le asigna un vector f(x) R m. Ejemplo.-

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 3 CÁLCULO I. Profesor: Carlos Ruz Leiva FUNCIONES REALES

UNIVERSIDAD DIEGO PORTALES GUÍA N 3 CÁLCULO I. Profesor: Carlos Ruz Leiva FUNCIONES REALES UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva FUNCIONES REALES Ej Determine el dominio de la función f ( ) =

Más detalles

PRACTICO: : LÍMITES DE FUNCIONES

PRACTICO: : LÍMITES DE FUNCIONES APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 16 Introducción

Más detalles

PRACTICO: : LÍMITES DE FUNCIONES

PRACTICO: : LÍMITES DE FUNCIONES APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 15 Introducción

Más detalles

CÁLCULO I (2006/2007). Problemas Encontrar todos los reales x para los que: a) x 2 e) 1

CÁLCULO I (2006/2007). Problemas Encontrar todos los reales x para los que: a) x 2 e) 1 CÁLCULO I (26/27). Problemas -6.. Encontrar todos los reales para los que: a) 2 +2 b) 3 < 5 c) 5π 4π d) 4 7 = 4 2 e) 2 f) 3 + 2 > 2 g) 2 < h) + 3 5 2. Precisar si los siguientes subconjuntos de R tienen

Más detalles

******* Enunciados de Problemas *******

******* Enunciados de Problemas ******* ******* Enunciados de Problemas ******* CÁLCULO ESCUELA SUPERIOR DE LA MARINA CIVIL DIPLOMADO EN MÁQUINAS NAVALES DIPLOMADO EN NAVEGACIÓN MARÍTIMA ISIDORO PONTE ESMC EL NÚMERO REAL Sea o un número racional

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº Cátedra de Matemática

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº Cátedra de Matemática Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 6-0- TRABAJO PRÁCTICO Nº 6 Parte I Intervalos. Límite de una función: definición, teoremas, límites laterales, límites infinitos, límites al infinito.

Más detalles

Mostrará la convergencia o divergencia de funciones mediante el criterio de límite de una función en un punto.

Mostrará la convergencia o divergencia de funciones mediante el criterio de límite de una función en un punto. Un i d a d Lí m i t e s Objetivos Al inalizar la unidad, el alumno: Mostrará la convergencia o divergencia de funciones mediante el criterio de límite de una función en un punto. Calculará límites de funciones

Más detalles

Álgebra Enero Laboratorio #1 Ecuaciones Cuadráticas I. I.- Resolver las ecuaciones siguientes usando el método Factorización.

Álgebra Enero Laboratorio #1 Ecuaciones Cuadráticas I. I.- Resolver las ecuaciones siguientes usando el método Factorización. Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes usando el método Factorización. 6x 2 + 11x = 10 4y 2 + 30 = 29y 8x 2 + 19x 27 = 0 60y 2 35 = 85y II.- Resolver las ecuaciones

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

(Soluc: a) 1/x b) x 6 /36 c)

(Soluc: a) 1/x b) x 6 /36 c) INTEGRAL INDEFINIDA EJERCICIOS. Calcular las siguientes integrales potenciales: d b d c d d d e t t dt f d g t dt h d i t d j d m d n d o d p d k ( t dt l d (Soluc: / b / c i j d e t / f k t 7 /7 l m g

Más detalles

Instituto Tecnológico Autónomo de México. Departamento de Matemáticas Cálculo Diferencial e Integral I

Instituto Tecnológico Autónomo de México. Departamento de Matemáticas Cálculo Diferencial e Integral I Instituto Tecnológico Autónomo de Méico Departamento de Matemáticas Cálculo Diferencial e Integral I MAT400) Lista de Ejercicios Límites Cálculo Diferencial e Integral I. Límites. Límites Antes de hacer

Más detalles

x 1 3 f) x e lim x lim + 2 lim lim log x lim x 1 (x 1)(x 4) lim x 1 (x 2)(x 5) (x 2)(x 3) 1. Calcular los siguientes límites no indeterminados 1 :

x 1 3 f) x e lim x lim + 2 lim lim log x lim x 1 (x 1)(x 4) lim x 1 (x 2)(x 5) (x 2)(x 3) 1. Calcular los siguientes límites no indeterminados 1 : + ln 4 + f + 5 EJERCICIOS de LÍMITES DE FUNCIONES y CONTINUIDAD. Calcular los siguientes límites no indeterminados : 4 + + 4 f) e log g) 0, + 4 i) 0+ + 4 e) j) 4. Dada la gráfica de la figura, indicar

Más detalles

Matemática I (BUC) - Cálculo I

Matemática I (BUC) - Cálculo I Matemática I (BUC) - Cálculo I Práctica 5: DERIVADAS Matemática I (BUC) / Cálculo I.. Calcular la derivada en el punto indicado, aplicando la definición: + 5 en ln( + ) en - + 7 en en. Calcular la recta

Más detalles

Límites y continuidad

Límites y continuidad 9 Matemáticas I : Cálculo diferencial en IR Tema 9 Límites y continuidad 9. Límite y continuidad de una función en un punto Definición 9.- Un punto IR se dice punto de acumulación de un conjunto A si,

Más detalles

presentan las definiciones básicas, se analizan los resultados más importantes y se discuten

presentan las definiciones básicas, se analizan los resultados más importantes y se discuten 1 Conceptos Básicos 1.1 Introducción En este capítulo hacemos una revisión del método de epansiones asintóticas. Se presentan las definiciones básicas, se analizan los resultados más importantes y se discuten

Más detalles

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1 1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada

Más detalles

x 1,9 1,99 1,999 2,001 2,01 2,1 f(x) i) lim j) lim k) lim l) lim m) lim n) lim o) lim p) lim

x 1,9 1,99 1,999 2,001 2,01 2,1 f(x) i) lim j) lim k) lim l) lim m) lim n) lim o) lim p) lim GUÍA DE ESTUDIO UNIDAD ACADÉMICA UNIDAD TEMÁTICA DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: CALCULO DIFERENCIAL LÍMITES Y CONTINUIDAD DE FUNCIONES COMPETENCIA Deducir resultados mediante procesos de

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva MÁXIMOS Y MÍNIMOS Criterio de la segunda derivada Supongamos que

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3 Ana María Albornoz R. Ejercicios resueltos. Calcular los siguientes ites algebraicos + + 5 + + + 0 0 + pero + 0 0 0, pero 0 + + + 4 que es una forma indeterminada. Pero + + + + + + + + + + + + + + + +

Más detalles

ANÁLISIS MATEMÁTICO I (2012)

ANÁLISIS MATEMÁTICO I (2012) ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a   El mayor portal de recursos educativos a tu servicio! Este documento es de distribución gratuita y llega gracias a Ciencia Matemática www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! UNIVERSIDAD DIEGO PORTALES CALCULO I Límites

Más detalles

Problemas Tema 4 Enunciados de problemas de Repaso y Ampliación de la primera evaluación

Problemas Tema 4 Enunciados de problemas de Repaso y Ampliación de la primera evaluación página 1/15 Problemas Tema 4 Enunciados de problemas de Repaso y Ampliación de la primera evaluación Hoja 1 1. Estudia y representa f ()=ln(tg ) 2. Estudia y representa f ()= 52 2+1 4 +6 3. Estudia y representa

Más detalles

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I Unidad Límites y continuidad Una vista preinar Qué es el cálculo? Los dos problemas fundamentales El área del conocimiento que llamamos Cálculo gira en torno a dos problemas geométricos fundamentales que

Más detalles

1. Idea de aproximación Qué se entiende por aproximación de una cantidad a otra?

1. Idea de aproximación Qué se entiende por aproximación de una cantidad a otra? LÍMITES. Idea de aproimación Qué se entiende por aproimación de una cantidad a otra? Si, por ejemplo, solicitamos un número próimo a,3, podríamos obtener por respuesta,9, pero alguien podría objetar y

Más detalles

GUÍA N 2 CÁLCULO I. Desigualdades. 1, la expresión anterior, (note el cambio del operador <). 6

GUÍA N 2 CÁLCULO I. Desigualdades. 1, la expresión anterior, (note el cambio del operador <). 6 UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva Desigualdades. Ej. Resuelva la desigualdad x < 9x + 4. Sumar 9x,

Más detalles

1 CALCULO AVANZADO EN ESPACIOS DE VARIABLES REALES Y COMPLEJAS. (1.1_CvR_T_061, Revisión: , C1-C2)

1 CALCULO AVANZADO EN ESPACIOS DE VARIABLES REALES Y COMPLEJAS. (1.1_CvR_T_061, Revisión: , C1-C2) CALCULO AVANZADO EN ESPACIOS DE VARIABLES REALES Y COMPLEJAS. (._CvR_T_6, Revisión: 9-8-6, C-C). FUNCIONES, LIMITES Y CONTINUIDAD.. DEFINICIONES BÁSICAS. FUNCIÓN: - Regla que asigna un valor () para cada

Más detalles

Métodos Numéricos: Ejercicios Resueltos Tema 1: Preliminares

Métodos Numéricos: Ejercicios Resueltos Tema 1: Preliminares Métodos Numéricos: Ejercicios Resueltos Tema : Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07 Febrero 2007, versión.

Más detalles

ANÁLISIS MATEMÁTICO I TEMA II : LÍMITE Hoja 1

ANÁLISIS MATEMÁTICO I TEMA II : LÍMITE Hoja 1 ANÁLISIS MATEMÁTICO I TEMA II : LÍMITE Hoja A) A) Usar la gráfica dada de f para determinar un número δ tal que < 0. 6 siempre que 5 < δ A) Con la siguiente gráfica de f()/, hallar un número δ tal que

Más detalles

Derivadas de orden superior

Derivadas de orden superior Tema 6 Derivadas de orden superior 6 Polinomios de Taylor Nuestro objetivo es aproimar una función dada mediante funciones polinómicas Resulta conveniente estudiar las funciones polinómicas con más detenimiento

Más detalles

Cálculo Diferencial e Integral - Límite y continuidad. Farith J. Briceño N.

Cálculo Diferencial e Integral - Límite y continuidad. Farith J. Briceño N. Cálculo Diferencial e Integral - Límite y continuidad. Farith J. Briceño N. Objetivos a cubrir Código : MAT-CDI.5 Límites laterales. Cálculo de límites. Límites en el infinito. Límites infinitos Límites

Más detalles

Derivadas laterales. Derivabilidad y continuidad en un punto. Derivabilidad y continuidad en un intervalo

Derivadas laterales. Derivabilidad y continuidad en un punto. Derivabilidad y continuidad en un intervalo Derivadas laterales Se define la derivada por la izquierda de f(x) en el punto x = a : Se define la derivada por la derecha de f(x) en el punto x = a : A ambas derivadas se les llama derivadas laterales.

Más detalles

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior Cálculo infinitesimal Grado en Matemáticas Curso 2004/5 Clave de soluciones n o 6 Derivadas de orden superior 70. Hallar los polinomios de Taylor del grado indicado y en el punto indicado para las siguientes

Más detalles

LÍMITES. REGLA DE L HOPITAL

LÍMITES. REGLA DE L HOPITAL LÍMITES. REGLA DE L HOPITAL EJERCICIOS RESUELTOS Calcula los valores de k de modo que sean ciertas las siguientes igualdades: k 7 5 k k a) b) 4 7 3 3 a) El límite de una función racional, cuando tiende

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 6 CÁLCULO I

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 6 CÁLCULO I UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 6 CÁLCULO I Profesor: Carlos Ruz Leiva ÁLGEBRA DE LAS FUNCIONES Supongamos que f y g son funciones

Más detalles

Cálculo Integral Enero 2016

Cálculo Integral Enero 2016 Cálculo Integral Enero 6 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) ( + + ) ) ( + ) ( ) ) ( w + ) (w ) dw ) ( + ) 5) (y ) dy 6) ( +)( 5) 6 7) + 8) ( +) 5 y+ dy ) (y+5

Más detalles

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística Cálculo diferencial de una variable. Calcula el dominio máimo de las siguientes funciones. Determina en cada caso

Más detalles

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Departamento de Ingeniería Eléctrica Academia de Matemáticas

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Departamento de Ingeniería Eléctrica Academia de Matemáticas Escuela Superior de Ingeniería Mecánica Eléctrica. Efectúe las operaciones grafique.. ( - i ( i. ( i ( - i Guía para el E.T.S. de Fundamentos de Álgebra Números Complejos. Efectúe cada una de las operaciones

Más detalles

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo?

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo? Análisis I (A y B) febrero9 Consideremos f() = sen() arctg( 3 Calcular el límite de f cuando tiende a Sea la sucesión ) a n = cosn Es convergente? Determinar el límite, si eiste, de la sucesión {f(a n

Más detalles

TRABAJO PRÁCTICO 5. 4) Un edificio de 100 m de altura proyecta una sombra de 120 m de longitud. Encontrar el ángulo de elevación del sol.

TRABAJO PRÁCTICO 5. 4) Un edificio de 100 m de altura proyecta una sombra de 120 m de longitud. Encontrar el ángulo de elevación del sol. TRABAJO PRÁCTICO 5 Matemática Preuniversitaria 01 Módulo. Trigonometría. Triángulos rectángulos. Relaciones trigonométricas. Resolución de triángulos. Algunas identidades trigonométricas. Teorema del seno

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de variable real. Domingo Pestana Galván José Manuel Rodríguez García

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de variable real. Domingo Pestana Galván José Manuel Rodríguez García EJERCICIOS DE CÁLCULO I Para Grados en Ingeniería Capítulo : Funciones de variable real Domingo Pestana Galván José Manuel Rodríguez García Índice. Funciones de variable real... La recta real.........................................

Más detalles

Cálculo Infinitesimal: grupo piloto

Cálculo Infinitesimal: grupo piloto Tema : La derivada. Cálculo Infinitesimal: grupo piloto Curso 6/7 A. Objetivos. Al finalizar el tema, los estudiantes deberán ser capaces de: Calcular la derivada de una función utilizando la definición

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Límite de una función Funciones continuas

Límite de una función Funciones continuas Límite de una función Funciones continuas Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 2014-2015 1 LÍMITE CUANDO LA VARIABLE TIENDE A INFINITO. 3 1. Límite cuando la variable tiende

Más detalles

Problemas Tema 2 Enunciados de problemas de Límite y Continuidad

Problemas Tema 2 Enunciados de problemas de Límite y Continuidad página /2 Problemas Tema 2 Enunciados de problemas de Límite y Continuidad Hoja. Estudiar la continuidad y derivabilidad de la función f ()=. solución: continua en toda la recta real. Punto anguloso en

Más detalles

TALLERES DE METODOS NUMERICOS SOLUCION NUMERICA DE ECUACIONES NO LINEALES

TALLERES DE METODOS NUMERICOS SOLUCION NUMERICA DE ECUACIONES NO LINEALES TALLERES DE METODOS NUMERICOS SOLUCION NUMERICA DE ECUACIONES NO LINEALES. Usar un procedimiento iterativo para calcular una aproimación a la menor raíz positiva de la ecuación : sen π = 0 Calcular tres

Más detalles

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Trigonometría (2) Matemáticas I 1º Bachillerato

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Trigonometría (2) Matemáticas I 1º Bachillerato 0. Trigonometría () Matemáticas I º Bachillerato. Epresa en grados seagesimales los siguientes ángulos dados en radianes. 5 7 9 b) c) d) e) f),5 h), i) 5 j),75 6 6. Pasa a radianes los siguientes ángulos

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES 0 Derivadas 0.I. Dada la función f() + : ACTIVIDADES INICIALES a) Calcula las rectas secantes que pasan por los puntos A(, ) y B(5, ), y por A y C(4, 5), respectivamente. Cuáles son sus pendientes? f(

Más detalles

2senx sen x. + = c) ( ) sen x sen( 90º x) = tgx

2senx sen x. + = c) ( ) sen x sen( 90º x) = tgx REPASO DE TRIGONOMETRÍA.- Calcula las demás razones trigonométricas del ángulo α utilizando las relaciones fundamentales: (sin calcular el valor del ángulo α y trabajando con valores eactos) a) sen α,

Más detalles

PRÁCTICA DE LAS SEMANAS 5 Y 6

PRÁCTICA DE LAS SEMANAS 5 Y 6 UNIVERSIDAD SIMÓN BOLÍVAR Trimestre: Ene-Mar DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS MATEMÁTICA I (MA-) Fecha de publicación: de febrero de. Contenido para el parcial: II PRÁCTICA DE LAS SEMANAS

Más detalles

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo. SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico

Más detalles

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) :

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) : Resumen Tema 2: Funciones Concepto de función. Gráficas Definición. Se llama función (real de variable real) a toda aplicación f : R R que a cada número le hace corresponder otro valor f(). f() Definición

Más detalles

1. Método de bisección

1. Método de bisección Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla 1 Tema 1: resolución de ecuaciones. Ejercicios y Problemas Nota: Abreviación usual en estos ejercicios: C.D.E.

Más detalles

FUNCIONES DERIVABLES. PROPIEDADES.

FUNCIONES DERIVABLES. PROPIEDADES. FUNCIONES DERIVABLES. PROPIEDADES. TASA DE VARIACION MEDIA. Dada una unción y se llama TASA DE VARIACIÓN o INCREMENTO de a la variación que eperimenta cuando la variable independiente pasa de "a" a "a

Más detalles

Universidad Diego Portales

Universidad Diego Portales Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo II LABORATORIO Nº 0 Longitud de arco y Volumen de sólido de revolución Contenido: Longitud de arco en

Más detalles

Propiedades de las funciones en un intervalo

Propiedades de las funciones en un intervalo Propiedades de las funciones en un intervalo Teorema de Rolle: si una función es continua y derivable en un intervalo y toma valores iguales en sus etremos, eiste un punto donde la derivada primera se

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 11. Trigonometría (2) Matemáticas I 1º Bachillerato ; e) ; f)

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 11. Trigonometría (2) Matemáticas I 1º Bachillerato ; e) ; f) . Trigonometría () Matemáticas I º Bachillerato. Epresa en grados seagesimales los siguientes ángulos dados en radianes. b) c) d) e) 7 f) 9, h), i) j),7. Pasa a radianes los siguientes ángulos dados en

Más detalles

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Trigonometría () Matemáticas I 1º Bachillerato 1. Epresa en grados seagesimales los siguientes ángulos dados en radianes. 5 7 9 a) b) c) d) e) f) 1,5 h), i) 5 j),75 6 6. Pasa a radianes los siguientes

Más detalles

Unidad 9. Límites, continuidad y asíntotas

Unidad 9. Límites, continuidad y asíntotas Unidad 9. Límites, continuidad y asíntotas. Límite de una función en un punto Piensa y calcula Halla mentalmente y completa la tabla siguiente:,9,99,,00,0, f () =,9,99,,00,0, f () =,9,99 3, 3 3,00 3,0

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257 TEMA. LÍMITES Y CONTINUIDAD SOLUCIONES DE LAS ACTIVIDADES Págs. 9 a 7 Página 9 Página. a) f() 0. a) f() 0, 0,0 0,00 0,000 f(),,9,99,999,9,99,999,9999 f() 00 0.000 0 6 0 8 b) f() 0 0, 0,0 0,00 0,000 f(),,0,00,000

Más detalles

Álgebra Agosto I.-Resolver las ecuaciones siguientes usando el método de factorización.

Álgebra Agosto I.-Resolver las ecuaciones siguientes usando el método de factorización. Laboratorio # 1 Ecuaciones Cuadráticas I I.-Resolver las ecuaciones siguientes usando el método de factorización. 1) x 2 40 = 3x 5) x 2 11x + 12 = 4x 2) 15x 10 = 3x 2 2x 6) 8x 2 6x + 3 = 0 3) x 3 2x 2

Más detalles

UNIDAD DOS ANÁLISIS DE LÍMITES Y CONTINUIDAD

UNIDAD DOS ANÁLISIS DE LÍMITES Y CONTINUIDAD UNIDAD DOS ANÁLISIS DE LÍMITES Y CONTINUIDAD CONTENIDO DIDÁCTICO DEL CURSO: CÁLCULO DIFERENCIAL CAPÍTULO TRES: GENERALIDADES SOBRE LÍMITES Lección No 9: Conceptualización Intuitiva de Límite: Definamos

Más detalles

Competencias a Lograr:

Competencias a Lograr: Competencias a Lograr:. Define el concepto de límite de una función.. Calcula el límite de una función aplicando las propiedades que correspondan.. Calcula los límites laterales, al infinito y en el infinito

Más detalles

x f(x) ?

x f(x) ? Idea intuitiva de ite: Sea c R y una función f definida cerca de c aunque no necesariamente en el mismo c. El número L es el ite de f cuando se aproima a c, y se escribe f() = L si y sólo si los valores

Más detalles

= en los puntos (0;1) y (1;0,5) Determine la razón de cambio promedio de la función en cada intervalo: x

= en los puntos (0;1) y (1;0,5) Determine la razón de cambio promedio de la función en cada intervalo: x Trabajo Práctico N : DERIVADA Y DIFERENCIAL Ejercicio : Halle la pendiente de la gráfica de la función en los puntos dados aplicando la definición de derivada de una función en un punto. Después halle

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS Profesor: Carlos Ruz Leiva GUÍA N CÁLCULO I DERIVADAS Derivaas e oren superior Ejemplos Hallar las siguientes

Más detalles

Funciones trigonométricas (en la circunferencia)

Funciones trigonométricas (en la circunferencia) Funciones trigonométricas (en la circunferencia) Funciones trigonométricas (en la circunferencia) Sea una circunferencia en un Sistema de Ejes Cartesianos: Funciones trigonométricas (en la circunferencia)

Más detalles

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES Universidad Simón Bolívar Departamento de Matemáticas Puras Aplicadas Enero-Abril 4 EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES.- Compruebe que la función indicada sea una solución

Más detalles

IES Fernando de Herrera Curso 2013/14 Primer Examen 2ª evaluación 4º ESO 5 de febrero de 2014 NOMBRE

IES Fernando de Herrera Curso 2013/14 Primer Examen 2ª evaluación 4º ESO 5 de febrero de 2014 NOMBRE IES Fernando de Herrera Curso 0/4 Primer Eamen ª evaluación 4º ESO de febrero de 04 NOMBRE ) Resolver: 4 (, puntos) ) Resolver: 4 + + (, puntos) ) Resolver: log log ( + 4) (, puntos) 8 ( 4) 4) Resuelva

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMAS, CÁLCULO I, er CURSO. FUNCIONES DE VARIABLE REAL GRADO EN INGENIERÍA EN: SISTEMAS AUDIOVISUALES

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

U.P.N.A. SELECTIVIDAD MATEMÁTICAS II JUNIO 2000

U.P.N.A. SELECTIVIDAD MATEMÁTICAS II JUNIO 2000 U.P.N.A. SELECTIVIDAD MATEMÁTICAS II JUNIO 000 Grupo Opción c) c) Calcula y epresa lo más simplificadamente posible la derivada de las siguientes funciones: + tag ( ) e ( puntos) c) Utilizando el cambio

Más detalles

ejerciciosyexamenes.com

ejerciciosyexamenes.com ejerciciosyeamenes.com Eamen de derivadas 1. Razona la verdad o falsedad de las siguientes afirmaciones: a) f() toma todos los valores entre f(a) y f(b), es continua? b) Si f'() > 0 y g'() > 0 en [a,b]

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas)

Análisis Matemático I (Lic. en Cs. Biológicas) Análisis Matemático I (Lic. en Cs. Biológicas) Segundo cuatrimestre 7 Práctica 6: Integración Ejercicio. Hallar en cada caso una función g : R R que cumpla (i) g () = (ii) g () = (iii) g () = sen (iv)

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 1. Funciones de varias variables 1.1. Definiciones básicas Definición 1.1. Consideremos una función f : U R n R m. Diremos que: 1. f es una

Más detalles

Sea f una función numérica cualquiera, definida en un intervalo abierto (a,b) que contiene al punto x. y x, se define como

Sea f una función numérica cualquiera, definida en un intervalo abierto (a,b) que contiene al punto x. y x, se define como Modulo 3 La derivada 1. Variación promedio Sea f una función numérica cualquiera, definida en un intervalo abierto (a,b) que contiene al punto. Consideremos un pequeño incremento,, de la variable independiente,

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

FUNCIONES DE VARIABLE COMPLEJA

FUNCIONES DE VARIABLE COMPLEJA Análisis Matemático C T.P. Nº7 TRABAJO PRÁCTICO Nº 7 FUNCIONES DE VARIABLE COMPLEJA FUNCIONES ANALÍTICAS ) Identificar los puntos del plano compleo que satisfagan las siguientes relaciones en forma analítica

Más detalles

FUNCIONES ANALITICAS (Curso 2011) Práctica 7. Clase 1 - Desarrollo de Laurent - Clasificación de singularidades aisladas

FUNCIONES ANALITICAS (Curso 2011) Práctica 7. Clase 1 - Desarrollo de Laurent - Clasificación de singularidades aisladas FUNCIONES ANALITICAS (Curso 2) Práctica 7 Clase - Desarrollo de Laurent - Clasificación de singularidades aisladas. Hallar los desarrollos de Laurent de + en > en las distintas coronas alrededor del origen

Más detalles

Derivada de una función MATEMÁTICAS II 1

Derivada de una función MATEMÁTICAS II 1 Derivada de una función MATEMÁTICAS II TASA DE VARIACIÓN MEDIA La tasa de variación media de una función nos da una idea de la rapidez con que crece o decrece en un intervalo. Sea y = f() una función que

Más detalles

1 Consideramos la gráfica siguiente:

1 Consideramos la gráfica siguiente: Conderamos la gráfica guiente: Determina, a la vista de la gráfica, el dominio de definición, metrías, el recorrido, la eistencia de asíntotas, los intervalos de crecimiento y decrecimiento. Justifica,

Más detalles

1 f x = Sen x y = tg x y = x Sec 1) ( ) 2) (4 ) 3) 4) ( ) y Sec x f w a Cos w b Sen w y Cos x. xlnx

1 f x = Sen x y = tg x y = x Sec 1) ( ) 2) (4 ) 3) 4) ( ) y Sec x f w a Cos w b Sen w y Cos x. xlnx Guía #I I Parte: Derivar Simplificar las siguientes epresiones. Sec f = Sen = tg = Sec f = tg 5 ) ) (4 ) ) 4) Sen + Cos 5) = 6) f = Cos Cos 7) f = 8) f = + Sen Sec + Ctg / 5 π 9) = 0) = ( π ) + ( π ) )

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

3.3. TEOREMAS DE VALOR MEDIO Y APLICACIONES

3.3. TEOREMAS DE VALOR MEDIO Y APLICACIONES Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 1 3. DERIVACIÓN DE FUNCIONES DE UNA VARIABLE 3.3. TEOREMAS DE VALOR MEDIO Y APLICACIONES 3.3.1. Teorema de Rolle Si f es continua en [a,

Más detalles