TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA"

Transcripción

1 UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 1.1 Modelo de transporte Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA El problema de transporte es un tipo especial de programación lineal que, aun cuando se puede resolver por el método símplex, sus propiedades especiales ofrecen un procedimiento de solución más sencillo. Las técnicas de transporte tratan de encontrar los caminos para trasladar mercancía desde varías plantas (orígenes) a diferentes centros de almacenamiento (destinos), de tal manera que se minimice el costo de transporte. Para que los problemas puedan resolverse por el método de transporte, se deben cumplir los siguientes requisitos: a. La función objetivo y las restricciones deben ser lineales. b. Las mercancías (o recursos) a distribuir deben ser uniformes y no se pueden cambiar entre sí. c. Los coeficientes de las variables en las restricciones deben ser cero o uno. d. La suma de la capacidad de todos los orígenes debe ser igual que la capacidad de los destinos, es decir, la demanda total debe ser igual a la oferta total Método simplex para el modelo de transporte Se tiene m centros de oferta (orígenes) y n centros de demanda (destinos), a i es el número de unidades disponibles en cada centro de oferta i, y b j es el número requerido de

2 : unidades de mercancía en el centro de demanda j. Si se considera C ij como el costo unitario de transporte en la ruta del centro de oferta i al centro de demanda j, el objetivo entonces es determinar el número de unidades de mercancía que debe transportarse desde las fuentes i a los destinos j, de tal forma que se minimice el costo total de transporte. Si X ij es la cantidad transportada del centro de oferta i al centro de demanda j, entonces el modelo será: Min Z = C 11 X 11 + C 12 X C 1n X 1n + C 21 X 21 + C m1 X n1 + + C mn X mn Sujeto a: Capacidad disponible (oferta) X 11 + X X 1n a 1 X 21 + X X 2n a 2 : : : : X m1 + X m2 + + X mn a m Demanda X 11 + X X m1 b 1 X 12 + X X m2 b 2 : : : : X 1n + X 2n + + X mn b n X ij 0 i = 1, 2, 3,,n j = 1, 2, 3, m X ij : Número de unidades transportadas de origen i al destino j. C ij : Costo de transportar una unidad desde el origen i hasta el destino j. a i : Capacidad de la planta i. b j : Número de unidades requeridas por el almacén j Modelo tabular del problema de transporte n Oferta X 11 X 12 X 13 : X 1n a 1 X 21 X 22 X 23 : X 2n a 2 X 31 X 32 X 33 : X 3n a 3 : : : : : : X m1 X m2 X m3 : X mn a m Demanda b 1 b 2 b 3 b n Condiciones para resolver el modelo de transporte 1. ΣOferta = ΣDemanda 2. ΣOferta ΣDemanda: cuando esto sucede, pueden presentarse dos casos:

3 a. Cuando la oferta es mayor que la demanda (ΣOferta > ΣDemanda) En este caso, se adiciona una demanda ficticia, se le agrega esa demanda ficticia al modelo tabular, cuya demanda ficticia va a ser igual a ΣOferta - ΣDemanda y los coeficientes de los costos serán cero para cada una de las casillas. b. Cuando la oferta es menor que la demanda (ΣOferta < ΣDemanda) En este caso, se adiciona una oferta ficticia, se le agrega esa oferta ficticia al modelo tabular, cuya oferta ficticia va a ser igual a ΣDemanda - ΣOferta y los coeficientes de los costos serán cero para cada una de las casillas Métodos para la solución del problema de transporte Método de la esquina noroeste: consiste en embarcar la cantidad máxima a través de la esquina noroeste de la matriz; se analizan entonces los máximos embarques a través de las celdas restantes, moviéndose hacia la derecha y hacia abajo en la matriz, hasta que se cubran todos los renglones y columnas. Este método tiene la desventaja que la solución puede resultar bastante costosa, pues no se presta atención a los valores de los costos Método del costo mínimo: este método trata de asignar tanto como sea posible al centro de distribución que tenga el costo unitario de transporte más bajo. En el caso de que existan dos o más iguales, la elección es arbitraria. Al completarse la demanda, esta se va ajustando a las cantidades que están disponibles, a la par que se disminuye la oferta; así quedarán eliminados del problema las columnas o renglones saturados y se continúa el procedimiento de escoge el costo más pequeño, dentro del área no saturada. Si se satura el renglón y la columna simultáneamente, hay que eliminarlos los dos Método de aproximaciones de Vogel: se inicia calculando la diferencia entre el costo más bajo y el costo inmediato superior en cada renglón o columna (costos de oportunidad). El renglón o columna con la diferencia de costo más elevada (penalizaciones) se selecciona entonces para el embarque. Se embarca tanto como sea posible a través de la celda de costo mínimo en el renglón o columna seleccionados. Entonces el renglón o columna que se llena, deja de considerarse y se repite el método. Debido a la eliminación del renglón o columna, al menos una de las diferencias de renglón y columna debe calcularse nuevamente en cada paso. Si se agota la oferta y la demanda simultáneamente, se elimina uno sólo a la vez y al otro se le coloca cero. 1.2 Modelo de asignación Es una forma de programación lineal que busca asignar trabajos o trabajadores a máquinas, nuevos productos a planes de producción, etc. Los métodos de asignación como los de transporte se basan en tablas y el problema puede solucionarse con una serie de operaciones repetitivas (sumar o restar) para maximizar o minimizar). El método de asignación requiere que a cada trabajador se le asigne un y sólo un trabajo, planteando una matriz cuadrada, donde el número de renglones o filas es igual al número de columnas. El proceso de solución no es factible si se asigna un trabajador a dos o más actividades. Si el número de filas no es igual al número de columnas, se adicionan variables ficticias para obtener una tabla balanceada.

4 1.2.1 Aplicación del método húngaro para la solución del modelo de asignación La estructura especial del modelo de asignación hace posible crear un método de solución bastante eficiente llamado método húngaro, el cual se describe a continuación: a. Para encontrar los costos de oportunidad para cada columna se resta el costo mínimo de cada una, de los demás costos de la misma columna. b. Se resta el costo mínimo de cada renglón a los costos de la columna correspondiente. También se puede cambiar el orden, primero renglones y luego columnas. c. Trazar una línea recta en cada columna o renglón que tenga valor cero. Se debe trazar el mínimo de líneas rectas para cubrir todos los valores cero de renglón y columna. Si el mínimo de líneas rectas es igual al número de columnas o renglones, la solución es óptima. d. Asignar cada renglón y columna donde haya sólo un valor cero. e. Si se necesitan menos de m líneas, encuentre el menor elemento no cero, llámelo k, en la matriz de costos reducidos, que no está cubierto por las líneas dibujadas, ahora reste k, de cada elemento no cubierto de la matriz de costos reducidos y sume k a cada elemento de la matriz de costos reducidos cubierto por dos líneas, regrese al paso 3 (trazar las líneas). 1.3 Modelo de transbordo El modelo de transbordo consiste en enviar bienes (cantidades) desde un punto i a únicamente destinos finales j. El envío no se produce entre orígenes o entre destinos, tampoco entre destinos a orígenes. El modelo de trasbordo nos demuestra que resulta mas económico (minimizar costos) enviar a través de nodos intermedios o transitorios antes de llegar al punto de destino final Clases de nodos a. Nodos de oferta pura: Solo actúan como origen o envían. b. Nodos de demanda pura: Solo actúan como destino o reciben. c. Nodos de transbordo: Actúan como origen y destino a la vez, o reciben y envían. Nota importante: en el modelo de transbordo, la cantidad de flujo saliente debe ser exactamente igual a la cantidad de flujo entrante (equilibrar oferta y demanda).

5 1.4 Ejercicios para resolver en clase: Modelo de transporte 1. Una empresa producirá tres productos nuevos. En este momento, cinco de sus plantas tienen exceso de capacidad de producción. El costo unitario respectivo de fabricación del primer producto será de $31, $29, $32, $28 y $29, en las plantas 1, 2, 3, 4 y 5. El costo unitario de fabricación del segundo producto será de $45, $41, $46, $42 y $43 en las plantas respectivas 1, 2, 3, 4 y 5; y para el tercer producto será de $38, $35 y $40 en las plantas respectivas 1, 2 y 3, pero las plantas 4 y 5 no pueden fabricar este producto. Los pronósticos de ventas indican que la producción diaria debe ser 600, 1000 y 800 unidades de los productos 1, 2 y 3, respectivamente. Las plantas 1, 2, 3, 4 y 5 tienen capacidades para producir 400, 600, 400, 600 y 1000 unidades diarias, sin importar el producto o combinación de productos. Suponga que cualquier planta que tiene capacidad y posibilidad de fabricarlos podrá producir cualquier combinación de productos en cualquier cantidad. La gerencia desea asignar los nuevos productos a las plantas con el mínimo costo total de fabricación. a. Formule este problema como un problema de transporte construyendo la tabla de parámetros adecuada. b. Obtenga una solución óptima para este problema, empleando los métodos vistos en clase. 2. Una empresa produce motores eléctricos pequeños para cuatro fabricantes de instrumentos, en cada una de sus tres plantas. Los costos de producción por unidad varían según las ubicaciones debido a diferencias en el equipo de producción y en el rendimiento de los obreros. Los costos de producción por unidad y la capacidad mensual de producción se indican en la siguiente tabla: Planta Costo de producción Capacidad mensual de por unidad producción (unidades) A $ B $ C $ Los pedidos de clientes que deben producirse el siguiente mes se muestran en la tabla que se muestra a continuación: Cliente Demanda (unidades) El costo de abastecimiento de estos clientes varía de una planta a otra. El costo de transporte por unidad aparece en la tabla adjunta:

6 Hacia Desde A $3 $2 $5 $7 B $6 $4 $8 $3 C $9 $1 $5 $4 La gerencia de la empresa debe decidir cuantas unidades se debe producir en cada planta y qué porción de la demanda de cada cliente se surtirá desde cada una de ellas. Se desea minimizar el costo total de producir y transportar los motores para los clientes. a. Formule este problema como un problema de transporte construyendo la tabla de parámetros adecuada. b. Obtenga una solución óptima para este problema, empleando los métodos vistos en clase. 3. Suponga que Inglaterra, Francia y España producen todo el trigo, cebada y avena en el mundo. La demanda mundial de trigo requiere 125 millones de acres (tierra) a la producción de este cereal. De igual manera, se necesitan 60 millones de acres para cebada y 75 millones de acres para avena. La cantidad total de tierra disponible en Inglaterra, Francia, y España es 70, 110 y 80 millones de acres. El número de horas de mano de obra necesarias para producir un acre de trigo en los respectivos países es 18, 13 y 16 horas. La producción de un acre de cebada requiere 15, 12 y 12 horas de mano de obra y la producción de un acre de avena requiere 12, 10 y 16 horas de mano de obra en Inglaterra, Francia y España. El costo de mano de obra por hora en cada país es de $9.00, $7.20 y $9.90 para la producción de trigo, $8.10, $9.00 y $8.40 para la de cebada y $6.90, $7.50 y $6.30 para la avena. El problema es asignar de la tierra en cada país de manera que se cumpla con los requerimientos de alimentación en el mundo y se minimice el costo total de mano de obra. a. Formule este problema como un problema de transporte, construyendo la tabla de parámetros adecuada. b. Obtenga una solución óptima para este problema, empleando cualquiera de los métodos vistos en clase. Modelo de asignación 1. Una empresa adquirió cuatro máquinas nuevas de diferentes tipos. Existen cinco sitios disponibles dentro del taller en donde se podría instalar una máquina. Algunos de ellos son más adecuados que otros para ciertas máquinas en particular por su cercanía a los centros de trabajo que tendrían un flujo intenso de trabajo hacia y desde estas máquinas. Cabe destacar que no habrá flujo de trabajos entre las nuevas máquinas. Por lo tanto, el objetivo es asignar las nuevas máquinas a los lugares disponibles de manera que se minimice el costo total del manejo de materiales, partiendo de la tabla que se muestra a continuación, la cual recoge los costos estimados por unidad de tiempo del manejo de materiales en cuestión, con cada una de las máquinas en los sitios respectivos.

7 Máquinas Localidades Aplique el método húngaro para asignar de forma óptima las máquinas a las respectivas localidades. 2. Considere el problema de asignar cuatro operadores a cuatro máquinas. En la tabla que se muestra seguidamente se dan los costos de asignación en unidades monetarias: Máquinas Localidades El operador 1 no puede ser asignado a la máquina 3. Asimismo, el operador 3 no puede ser asignado a la máquina 4. Obtenga la solución óptima empleando el método húngaro. 3. Se usarán cuatro barcos cargueros para transportar bienes de un puerto a otros cuatro puertos (numerados 1, 2, 3 y 4). Se puede usar cualquier barco para hacer cualquiera de los cuatro viajes. Sin embargo, dadas algunas diferencias entre los barcos y las cargas, el costo total de carga, transporte y descarga de bienes para las distintas combinaciones de barcos y puertos varía mucho. Estos costos se muestran en la siguiente tabla: Barco Puerto $500 $400 $600 $700 2 $600 $600 $700 $500 3 $700 $500 $700 $600 4 $500 $400 $600 $600 El objetivo es asignar los barcos a los puertos en una correspondencia uno a uno de manera que se minimice el costo total de los cuatro envíos. Por lo tanto, formule este problema como un problema de asignación y obtenga la solución óptima. Modelo de transbordo La siguiente red representa las rutas de transporte desde los nodos 1 y 2 a los nodos 5, 6 y 7, pasando por los nodos 3 y 4. Los costos unitarios de transporte se muestran sobre los arcos respectivos:

8 a. Escriba el modelo de programación lineal asociado. b. Escriba el modelo de transbordo asociado, especificando el tamaño del amortiguamiento y las cantidades de oferta y demanda. c. Obtenga una solución óptima para la red, mediante la aplicación del método de aproximaciones de Vogel. d. Replantee la red con los resultados obtenidos y determine cuál es la ruta más óptima. e. Convierta el modelo de transbordo de la parte b en un modelo regular de transporte, exactamente con dos fuentes y tres destinos. f. Demuestre cómo la solución de la parte e proporciona una solución factible a la red original.

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías Modelos de Transporte: Problemas de asignación M. En C. Eduardo Bustos Farías as Problemas de Asignación Problemas de Asignación: Son problemas balanceados de transporte en los cuales todas las ofertas

Más detalles

TRANSPORTE Y TRANSBORDO

TRANSPORTE Y TRANSBORDO TRANSPORTE Y TRANSBORDO En ésta semana estudiaremos un modelo particular de problema de programación lineal, uno en el cual su resolución a través del método simplex es dispendioso, pero que debido a sus

Más detalles

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES I TAREA Problemas de Transporte, transbordo y asignación Prof. :

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Problema 1. Oferta /15/ /20/0 5 40/30/0. Demanda 45/30/10/0 20/0 30/0 30/

Problema 1. Oferta /15/ /20/0 5 40/30/0. Demanda 45/30/10/0 20/0 30/0 30/ Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas

Más detalles

Programación Lineal Modelo de transporte Asignación

Programación Lineal Modelo de transporte Asignación Programación Lineal Modelo de transporte Asignación Curso: Investigación de Operaciones Ing. Javier Villatoro MODELO DE ASIGNACIÓN Modelo de Asignación Consiste en asignar al mínimo costo los requerimientos

Más detalles

Investigación de Operaciones I. Problemas de Asignación

Investigación de Operaciones I. Problemas de Asignación Investigación de Operaciones I Problemas de Asignación MSc. Ing. Julio Rito Vargas II cuatrimestre Introducción Los problemas de asignación incluyen aplicaciones tales como asignar personas a tareas. Aunque

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Dirección de Operaciones

Dirección de Operaciones Dirección de Operaciones 1 Sesión No. 9 Nombre: Problemas de transporte y asignación. Primera parte. Objetivo Al finalizar la sesión, el alumno será capaz de Contextualización Cuál es el valor de estudiar

Más detalles

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés.

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. Universidad Nacional de Ingeniería Sede: UNI-Norte II Semestre 2008 Investigación de Operaciones I El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. martes, 21 de octubre de 2008 El Problema

Más detalles

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI Carrera: Ingeniería de Sistemas Nombre de la asignatura: Investigación de Operaciones I Año académico: Tercer año Semestre: Sexto - Contenido I-

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías

Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías Modelos de Transporte: método de la esquina noroeste M. En C. Eduardo Bustos Farías as LA REGLA DE LA ESQUINA NOROESTE 2 Esta regla nos permite encontrar una solución n factible básica b inicial (SFBI),

Más detalles

EL PROBLEMA DE TRANSPORTE

EL PROBLEMA DE TRANSPORTE 1 EL PROBLEMA DE TRANSPORTE La TÉCNICA DE TRANSPORTE se puede aplicar a todo problema físico compatible con el siguiente esquema: FUENTES DESTINOS TRANSPORTE DE UNIDADES Donde transporte de unidades puede

Más detalles

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación

Más detalles

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura UNIDAD III. ANÁLISIS DE REDES OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Modelos de transporte

Más detalles

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION.

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION. UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA DE LA PRODUCCIÓN INGENIERÍA INDUSTRIAL SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

Unidad 6 Método de transporte

Unidad 6 Método de transporte Unidad 6 Método de transporte Como ya se vio en la unidad 3, los problemas de transporte son problemas de programación lineal (pl), pero con una estructura muy particular de la matriz de los coeficientes

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

1 $10 $0 $20 $11 15 2 $12 $7 $9 $20 25 3 $0 $14 $16 $18 10 Total demanda

1 $10 $0 $20 $11 15 2 $12 $7 $9 $20 25 3 $0 $14 $16 $18 10 Total demanda UNIDAD V. ALGORITMOS ESPECIALES 5.4. Métodos de aproximación para obtener una solución básica inicial Para resolver problemas de transporte se debe crear una solución básica inicial, la obtención de esta

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1 Un fabricante desea encontrar la producción semanal óptima de los artículos A, B y C para maximizar sus beneficios. Las ganancias por unidad de estos artículos son:

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

El Problema del Transporte

El Problema del Transporte ASIGNATURA PROGRAMACIÓN LINEAL El Problema del Transporte Maestro Ing. Julio Rito Vargas Avilés Octubre 2014 1 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para

Más detalles

Fundamentos de Investigación de Operaciones Modelos de Grafos

Fundamentos de Investigación de Operaciones Modelos de Grafos Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

UNIDAD 5. Problema de Transporte

UNIDAD 5. Problema de Transporte UNIDAD 5 Problema de Transporte En matemáticas y economía, un problema de transporte es un caso particular de problema de programación lineal en el cual se debe minimizar el coste del abastecimiento a

Más detalles

IN34A - Optimización

IN34A - Optimización IN34A - Optimización Modelos de Programación Lineal Leonardo López H. lelopez@ing.uchile.cl Primavera 2008 1 / 24 Contenidos Programación Lineal Continua Problema de Transporte Problema de Localización

Más detalles

Problemas de transporte, asignación y trasbordo

Problemas de transporte, asignación y trasbordo Problemas de transporte, asignación y trasbordo 1. Plantear un problema de transporte Tiene como objetivo encontrar el mejor plan de distribución, generalmente minimizando el coste. Un problema está equilibrado

Más detalles

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos:

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: Solución óptima a los problemas de transporte La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: a) Calcular los

Más detalles

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles

Métodos de distribución

Métodos de distribución Métodos de distribución Ejercicios: 1)Que es una red de distribución. Describa sus componentes. 2)Enuncie las condiciones que debe satisfacer una solución inicial factible básica. 3)Detalle el procedimiento

Más detalles

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3.

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3. UNIVERSIDAD DE MANAGUA CURSO: PROGRAMACIÓN LINEAL TAREA # 2 Problemas de Transporte, transbordo y asignación Prof. : MSc. Julio Rito Vargas Avilés III C 2015 1. Considerar el problema de transporte definido

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

UNIDAD II. PROGRAMACIÓN LINEAL

UNIDAD II. PROGRAMACIÓN LINEAL UNIDAD II. PROGRAMACIÓN LINEAL OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Introducción

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr Nombre: UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS METODOS CUANTITATIVOS II EXAMEN PARCIAL I /3/7 Sección # Cuenta: Catedrático: Desarrolle en forma clara y ordenada lo que a continuación se le pide:.-

Más detalles

INVESTIGACION DE OPERACIONES:

INVESTIGACION DE OPERACIONES: METODO SIMPLEX El algoritmo símplex fue descubierto por el matemático norteamericano George Bernard Dantzig en 1947, es una técnica para dar soluciones numéricas a problema de programación lineal Un problema

Más detalles

PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I

PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I PROBLEMAS RESUELTOS DE ASIGNACIÓN POR EL MÉTODO HUNGARO INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Julio Rito Vargas Avilés. Método Húngaro: Los problemas de asignación incluyen aplicaciones tales como

Más detalles

Modelos de Redes: Problema del flujo máximom. M. En C. Eduardo Bustos Farías

Modelos de Redes: Problema del flujo máximom. M. En C. Eduardo Bustos Farías Modelos de Redes: Problema del flujo máimom M. En C. Eduardo Bustos Farías as Problema del flujo máimom Problema del flujo máimom Este modelo se utiliza para reducir los embotellamientos entre ciertos

Más detalles

Práctica N 6 Modelos de Programación Lineal Entera

Práctica N 6 Modelos de Programación Lineal Entera Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes

Más detalles

Unidad 4 Análisis de dualidad

Unidad 4 Análisis de dualidad Unidad 4 Análisis de dualidad Objetivos Al nalizar la unidad, el alumno: Identi cará el tipo de problemas que se resuelven con el método dual-símple. Utilizará el método dual-símple para resolver modelos

Más detalles

FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA PROBLEMAS DE REDES

FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA PROBLEMAS DE REDES 19 de Marzo de 2015 FORMULACIÓN DE MODELOS DE PROGRAMACIÓN ENTERA PROBLEMAS DE REDES Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación Entera

Más detalles

Fundamentos de Investigación de Operaciones El Problema de Transporte

Fundamentos de Investigación de Operaciones El Problema de Transporte Fundamentos de Investigación de Operaciones El Problema de Transporte Septiembre 2002 El Problema de Transporte corresponde a un tipo particular de un problema de programación lineal. Si bien este tipo

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE PROBLEMA DE FLUJO DE COSTO MINIMO. 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

CAPITULO III. Determinación de Rutas de Entregas

CAPITULO III. Determinación de Rutas de Entregas CAPITULO III Determinación de Rutas de Entregas Un importante aspecto en la logística de la cadena de abastecimiento (supply chain), es el movimiento eficiente de sus productos desde un lugar a otro. El

Más detalles

FUNDACION UNIVERSITARIA LOS LIBERTADORES DEPARTAMENTO DE CIENCIAS GUÍA INVESTIGACIÓN DE OPERACIONES

FUNDACION UNIVERSITARIA LOS LIBERTADORES DEPARTAMENTO DE CIENCIAS GUÍA INVESTIGACIÓN DE OPERACIONES FUNDACION UNIVERSITARIA LOS LIBERTADORES DEPARTAMENTO DE CIENCIAS GUÍA INVESTIGACIÓN DE OPERACIONES AUTOR: Arturo Yesid Córdoba Berrio Ing. Industrial Administrador de Empresas Especialización en Transporte

Más detalles

Ejercicios Propuestos

Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 1 Modelación Matemática. Programación

Más detalles

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250 Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1 Ejercicios de Dualidad y Análisis de Sensibilidad 1. Radioco fabrica dos tipos de radios. El único recurso escaso que se necesita para producir los radios es la mano de obra. Actualmente, la compañía tiene

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Programación Lineal Encuentro #9 Tema: PROBLEMA DE ASIGNACIÓN Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /201 Objetivos: Resolver problemas de asignación

Más detalles

Problemas de PL con varias variables Análisis de Sensibilidad

Problemas de PL con varias variables Análisis de Sensibilidad UNIVERSIDAD NACIONAL DE INGENIERIA UN-NORTE SEDE-ESTELI Asignatura: Investigación de Operaciones I Problemas de PL con varias variables Análisis de Sensibilidad M.C. Ing. Julio Rito Vargas Avilés 1 P.

Más detalles

UNIDAD 7 MODELO DE TRANSPORTE

UNIDAD 7 MODELO DE TRANSPORTE UNIDAD 7 MODELO DE TRANSPORTE Obtendrá el modelo de transporte asociado a un problema. Construirá el esquema y la tabla inicial asociada al modelo de transporte. Resolverá problemas de transporte utilizando

Más detalles

MODELOS DE TRANSPORTE

MODELOS DE TRANSPORTE Universidad Mariano Gálvez de Guatemala Centro Universitario de Escuintla Facultad de Ciencias de la Administración Maestría en Dirección y Gestión del Recurso Humano Curso Modelos para la toma de decisiones

Más detalles

Ejemplo: ubicación de estación de bomberos

Ejemplo: ubicación de estación de bomberos 15.053 Jueves, 11 de abril Más aplicaciones de la programación entera. Técnicas de plano de corte para obtener mejores cotas. Ejemplo: ubicación de estación de bomberos Considere la ubicación de estaciones

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

Fundamentos de Investigación de Operaciones Certamen # 1

Fundamentos de Investigación de Operaciones Certamen # 1 Instrucciones: Fundamentos de Investigación de Operaciones Certamen # Profesores: Carlos Castro & Esteban Sáez 30 de abril de 2004 Responda cada pregunta en una hoja separada identificada con nombre y

Más detalles

OPTIMIZACION DETERMINISTICA

OPTIMIZACION DETERMINISTICA OPTIMIZACION DETERMINISTICA 1 PROBLEMA GENERAL Además de analizar los flujos de caja de las las alternativas de inversión, también se debe analizar la forma como se asignan recursos limitados entre actividades

Más detalles

3.1 Por inspección del tablero óptimo genere las respuestas a los numerales dados. X 1 = Cantidad de tarjetas de invitación a producir semanalmente en Kimberly Colpapel y X 2 = Cantidad de tarjetas de

Más detalles

Unidad 2. Matrices Conceptos básicos 2.2. Operaciones con matrices 2.3. Matriz Inversa 2.4. El método de Gauss-Jordan 2.5.

Unidad 2. Matrices Conceptos básicos 2.2. Operaciones con matrices 2.3. Matriz Inversa 2.4. El método de Gauss-Jordan 2.5. Unidad. Matrices.. Conceptos básicos.. Operaciones con matrices.. Matriz Inversa.. El método de Gauss-Jordan.. Aplicaciones Objetivos particulares de la unidad Al culminar el aprendizaje de la unidad,

Más detalles

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN Asignatura: Investigación de Operaciones 1 Periodo Académico: Julio - Diciembre de 2009 TALLER MÉTODO GRÁFICO 1. PROBLEMA DE PLANEACIÓN DE

Más detalles

Matemáticas Aplicadas a los Negocios

Matemáticas Aplicadas a los Negocios LICENCIATURA EN NEGOCIOS INTERNACIONALES Matemáticas Aplicadas a los Negocios Unidad 4. Aplicación de Matrices OBJETIVOS PARTICULARES DE LA UNIDAD Al finalizar esta unidad, el estudiante será capaz de:

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN. Asignación y Transporte

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN. Asignación y Transporte Asignación y Transporte Objetivo: Utilizar modelos matemáticos para la solución de problemas que contemplen la asignación y transporte. Introducción: La metodología de asignación y transporte está relacionada

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

PROBLEMA 1 PROBLEMA 2

PROBLEMA 1 PROBLEMA 2 PROBLEMA 1 Dos compañías de taxis atienden a una comunidad. Cada empresa posee dos taxis y se sabe que ambas compañías comparten el mercado al 50%. Las llamadas que llegan a cada una de las respectivas

Más detalles

Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones:

Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones: MÉTODO DE TRANSPORTE Es un método de programación lineal para la asignación de artículos de un conjunto de origines a un conjunto de destinos de tal manera que se optimice la función objetivo. Esta técnica

Más detalles

PROBLEMAS DE PROGRAMACIÓN ENTERA I

PROBLEMAS DE PROGRAMACIÓN ENTERA I Problemas de Programación Entera I 1 PROBLEMAS DE PROGRAMACIÓN ENTERA I 1. Un departamento ha dispuesto 2 millones de pesetas de su presupuesto general para la compra de material informático, con el que

Más detalles

Problema 1. Problema 1. Problema 1. Problema 1. Problema 1. Modelos Lineales

Problema 1. Problema 1. Problema 1. Problema 1. Problema 1. Modelos Lineales Modelos Lineales ANALISIS DE SENSIBILIDAD PROTAC Inc. produce dos líneas de maquinaria pesada. Una de sus líneas de productos, llamada equipo de excavación, se utiliza de manera primordial en aplicaciones

Más detalles

AlumnosA N AlumnosB AlumnosC

AlumnosA N AlumnosB AlumnosC Ejercicios de matrices como expresiones de tablas y grafos: Ejemplo. Sean los grafos siguientes: a) Escriba la matriz de adyacencia asociada a los grafos y de la figura anterior. b) Si las matrices y D

Más detalles

2) Existen limitaciones o restricciones sobre las variables de la función objetivo.

2) Existen limitaciones o restricciones sobre las variables de la función objetivo. 1 Introducción La programación lineal es un método de resolución de problemas que se ha desarrollado para ayudar a profesionales de distintos ambitos a tomar mejores decisiones Desde su aparición a finales

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

UNIDAD 4 Programación Lineal

UNIDAD 4 Programación Lineal MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250 EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 3, 0 y 40 millones

Más detalles

SECUENCIA PARA LOS MODELOS DE ACTIVIDADES

SECUENCIA PARA LOS MODELOS DE ACTIVIDADES SECUENCIA PARA LOS MODELOS DE ACTIVIDADES Dividir las actividades en pasos individuales Clasificar los pasos por tipo Determinar el flujo lógico Identificar las actividades que no agregan valor 1 MAPEO

Más detalles

Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I)

Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I) Ingeniería de Telecomunicación Planificación Avanzada de Redes de Comunicaciones Curso 2006-2007 Pablo Pavón Mariño Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I) Objetivos

Más detalles

Introducción. Vestimos, usamos, respiramos y manejamos productos fabricados en las líneas de montaje

Introducción. Vestimos, usamos, respiramos y manejamos productos fabricados en las líneas de montaje BALANCEO DE LINEA Introducción Tal vez no lo sepamos, pero las líneas de montaje tuvieron una repercusión importante en nuestras vidas, al reducir costos y elaborar productos a precios más razonables.

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÍA DE SISTEMAS ASIGNATURA

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÍA DE SISTEMAS ASIGNATURA PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÍA DE SISTEMAS SEMESTRE ASIGNATURA 5to INVESTIGACION DE OPERACIONES CÓDIGO HORAS

Más detalles

Optimización de redes

Optimización de redes UNIVERSIDAD DE MANAGUA Al más alto nivel Optimización de redes Problema de la Ruta más corta Problema del Árbol de expansión mínima Problema del Flujo máximo Problema de Flujo de costo mínimo Maestro Ing.

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

Modelos de Redes: Árbol. M. En C. Eduardo Bustos Farías

Modelos de Redes: Árbol. M. En C. Eduardo Bustos Farías Modelos de Redes: Árbol de expansión n mínimam M. En C. Eduardo Bustos Farías as Objetivos Conceptos y definiciones de redes. Importancia de los modelos de redes Modelos de programación n lineal, representación

Más detalles

La lección de hoy de febrero de Notación. Solución factible básica

La lección de hoy de febrero de Notación. Solución factible básica 1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso

Más detalles

Capítulo 4 Método Algebraico

Capítulo 4 Método Algebraico Capítulo 4 Método Algebraico Introducción En la necesidad de desarrollar un método para resolver problemas de programación lineal de más de dos variables, los matemáticos implementaron el método algebraico,

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Problemas resueltos con el método gráfico 4 de junio de 2014 1. Resuelva el siguiente PL por el método gráfico Max z = x 1 + x 2 x 1 + x 2 4 x 1 x 2 5 En la figura 1

Más detalles

HERRAMIENTAS DE PLANIFICACIÓN

HERRAMIENTAS DE PLANIFICACIÓN ADMINISTRACIÓN GENERAL I HERRAMIENTAS DE PLANIFICACIÓN Dr. Alfredo Rébori Se han desarrollado distintas técnicas para ayudar a los gerentes en uno de los aspectos más desafiantes de la planificación estratégica:

Más detalles

Conocido el concepto de determinante, necesitamos conocer el concepto de Matriz Adjunta para poder calcular la inversa:

Conocido el concepto de determinante, necesitamos conocer el concepto de Matriz Adjunta para poder calcular la inversa: TEMA : MATRICES: Resumen de Teoría 2 3 CÁLCULO DE LA INVERSA MEDIANTE EL DETERMINANTE Y LA ADJUNTA: Existe otro método para calcular la inversa y que sólo usaremos para matrices cuadradas de orden 3. Para

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Departamento de Matemáticas, CCIR/ITESM 3 de junio de 2014 Problemas Resueltos 1. El granjero Jones debe determinar cuántos acres de maíz y trigo debe plantar este año.

Más detalles

Técnicas de Planeación y Control

Técnicas de Planeación y Control Técnicas de Planeación y Control 1 Sesión No. 7 Nombre: Control de actividades de producción Contextualización La producción es uno de los puntos medulares de las empresas, ya que de ella dependen los

Más detalles

OPTIMIZACIÓN DE LA PRODUCCIÓN

OPTIMIZACIÓN DE LA PRODUCCIÓN DEFINICION KANBAN Es un sistema que controla el flujo de recursos en procesos de producción a través de tarjetas, las cuales son utilizadas para indicar abastecimiento de material o producción de piezas,

Más detalles

Formulando con modelos lineales enteros

Formulando con modelos lineales enteros Universidad de Chile 19 de marzo de 2012 Contenidos 1 Forma de un problema Lineal Entero 2 Modelando con variables binarias 3 Tipos de Problemas Forma General de un MILP Problema de optimización lineal

Más detalles

2 = 1 0,5 + = 0,5 c) 3 + = = 2

2 = 1 0,5 + = 0,5 c) 3 + = = 2 Trabajo Práctico N : SISTEMAS DE ECUACIONES LINEALES Ejercicio : Resuelva los siguientes sistemas de ecuaciones lineales empleando cuando sea posible: i) Método matricial. ii) Regla de Cramer. Interprete

Más detalles