PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES"

Transcripción

1 PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva 3, Ejercicio, Opción A Reserva 3, Ejercicio, Opción B Reserva 4, Ejercicio, Opción A Reserva 4, Ejercicio, Opción B Septiembre, Ejercicio, Opción A Septiembre, Ejercicio, Opción B

2 x e a) Calcule la unción derivada de ( x) ( x ) b) Se sabe que la expresión que representa el número medio de clientes N() t que acuden un día a una cadena de almacenes, en unción del número de horas t que llevan abiertos, es N() t a t b t, 0 t 8, a, b. Sabiendo que el máximo de clientes que han acudido ese día ha sido de 160 y que se ha producido a las 4 horas de abrir, calcule a y b. SOCIALES II JUNIO. EJERCICIO. OPCIÓN A a) x x x x e ( x ) ( x)( x ) e e ( x ) ( x) e ' ( x) 4 3 ( x ) ( x ) 3 3 ( x ) ( x ) x x e ( x x) e ( x x ) b) El problema nos dice que la unción tiene un máximo en el punto (4,160), con lo cual se veriica que: N(4) a 4b 160 N '(4) 0 8a b 0 Resolviendo el sistema obtenemos que: a 10 ; b 80

3 Las unciones I( t) t 51t y G( t) t 3t 96 con 0t 8 representan, respectivamente, los ingresos y gastos de una empresa, en miles de euros, en unción de los años, t, transcurridos desde su inicio y en los últimos 18 años. a) Para qué valores de t, desde su entrada en uncionamiento, los ingresos coincidieron con los gastos? b) Determine la unción que releje los beneicios (ingresos menos gastos) en unción de t y represéntela gráicamente. c) Al cabo de cuántos años, desde su entrada en uncionamiento,los beneicios ueron máximos?. Calcule el valor de ese beneicio. SOCIALES II JUNIO. EJERCICIO. OPCIÓN B a) b) I t G t t t t t t t t y t ( ) ( ) B I t G t t t t t t t ( ) ( ) c) Calculamos el máximo. B ' 6t 54 0 t 9 El máximo corresponde a los 9 años y el beneicio obtenido es: B(9)

4 x 4 si x 4 Sea la unción ( x) si x 4 x x 4x 1 si x 4 a) Estudie la continuidad y la derivabilidad de. b) Determine los extremos locales de. c) Calcule la ecuación de la recta tangente a la gráica de la unción en el punto de abscisa x 3. SOCIALES II RESERVA 1. EJERCICIO. OPCIÓN A a) La unción x 4 es continua y derivable para todos los valores; la unción 4 x es continua y derivable para todos los valores excepto en x 0 ; la unción x 4x 1 es continua y derivable para todos los valores. Vamos a estudiar si la unción ( x ) es continua y derivable en x y x 4. lim( x 4) x 4 () lim ( x) Continua en x x lim x x 4 lim 1 x4 x (4) lim ( x) 1 Continua en x 4 x4 lim( x 4x 1) 1 x4 1 si x 4 Calculamos la unción derivada: '( x) si x 4 y como: x x 4 si x 4 '( ) 1 '( ) '( ) '( ) 1 1 '(4 ) 4 '(4 ) '(4 ) '(4 ) 4 Luego la unción (x) es continua en y derivable en 4 Derivable en x No derivable en x 4 b) La unción ( x) x 4 es la ecuación de una recta de pendiente 1, por lo tanto, es 4 decreciente en el intervalo (, ). La unción ( x) es una hipérbola, que es decreciente en el x intervalo,4. La unción ( x) x 4x 1 es una parábola y en el intervalo 4, es creciente. Por lo tanto, la unción tiene un mínimo relativo en el punto (4,1). 4 4 c) La ecuación de la tangente es: y (3) '(3) ( x 3) y ( x 3) 4x 9y

5 Calcule las derivadas de las siguientes unciones: x x ( x) ; 3 x 1 5 g( x) x 1 ln e 4 ; hx ( ) x 3x x SOCIALES II RESERVA 1. EJERCICIO. OPCIÓN B ( ln x) x 1 ( x ) x ln x x ( xln 1) x '( x) x x x x x x x x 3x 3x 3e 3x g '( x) x 1 x ln e 4 3 x 1 x 1 4x ln e 4 x 3x e 4 e 4 3 x5 1 10x h'( x) (3 x) ( x ) 3 x ( x ) 3x 3e x 1

6 Tras un test realizado a un nuevo modelo de automóvil, se ha observado que el consumo de gasolina, cx ( ), expresado en litros, viene dado por la unción c( x) x x siendo x la velocidad en Km/h y 5 x 175 a) Determine el consumo de gasolina a las velocidades de 50 Km/h y 150 Km/h. b) Estudie el crecimiento y decrecimiento de la unción cx. ( ) c) A qué velocidades de ese intervalo se obtiene el mínimo consumo y el máximo consumo y cuáles son éstos?. SOCIALES II RESERVA. EJERCICIO. OPCIÓN A a) c (50) 7'5 0' ' '65 L c (150) 7'5 0' ' '65 L b) Calculamos la derivada y la igualamos a cero. c '( x) 0' x 0 x 100 (5,100) (100,175) Signo c'( x ) + Función D C Mínimo (100,5) c) c (5) 7'5 0'05 5 0' '4065 L c (100) 7'5 0' ' L c (175) 7'5 0' ' '4065 L El consumo máximo es litros y se alcanza a las velocidades de 35 Km/h y 175 Km/h. El consumo mínimo es 5 litros y se alcanza a la velocidad de 100 Km/h.

7 si x 0 x Se considera la unción dada por ( x) si x 0 x a) Estudie la continuidad y la derivabilidad de. b) Halle las ecuaciones de las asíntotas de esta unción. SOCIALES II RESERVA. EJERCICIO. OPCIÓN B a) La unción x. La unción es x. Por lo tanto, debemos estudiar la continuidad y es continua en y derivable en continua en y derivable en derivabilidad en x 0. lim 1 x0 x (0) lim ( x) 1 Continua en x 0 x0 lim 1 x0 x si x 0 ( x ) Calculamos la unción derivada: '( x) y como: si x 0 ( x ) 1 '(0 ) '(0 ) '(0 ) No derivable en x 0 1 '(0 ) Luego la unción (x) es continua en, y derivable en 0,, b) La recta x es una asíntota vertical, ya que: La recta x es una asíntota vertical, ya que: La recta y 0 es una asíntota horizontal, ya que: lim x x lim x x lim lim 0 x x x x

8 Un banco lanza al mercado un plan de inversión cuya rentabilidad Rx, ( ) en miles de euros, viene dada en unción de la cantidad, x, que se invierte, también en miles de euros, por la siguiente expresión: R( x) 0.001x 0.4x 3.5 con x 10 a) Calcula la rentabilidad para una inversión de euros. b) Deduzca y razone qué cantidad habría que invertir para obtener la máxima rentabilidad. c) Qué rentabilidad máxima se obtendría?. SOCIALES II RESERVA 3. EJERCICIO. OPCIÓN A a) Como la unción está dada en miles de euros, entonces x 100 R(100) 0' '4100 3'5 33' b y c) Calculamos la derivada y la igualamos a cero, para hallar el vértice de la parábola. R '( x) 0'00x 0'4 0 x 00 La máxima rentabilidad estará en el vértice de la parábola o en el extremo x 10 R(10) 0' '410 3'5 7' R(00) 0' '400 3'5 43' Luego, la máxima rentabilidad es de y se obtiene con una inversión de

9 Sea la unción x x ax si x 1 x si x 1 ( ) x 8x 15 si x 3 a) Calcule el valor de a para que sea continua en x 1. b) Para a estudie la continuidad y la derivabilidad de. SOCIALES II RESERVA 3. EJERCICIO. OPCIÓN B a) Como es continua en x 1, se cumple que: 5 lim lim 1 4 a a lim x ax 3 4 a x1 x1 lim 1 x 1 x1 x1 b) La unción que tenemos es: x x x si x 1 x si x 1 ( ) x 8x 15 si x 3 En x 1 la unción no es continua, ya que el valor de a era 5 a. Estudiamos en x 3 lim x 4x 3 0 x3 (3) lim ( ) 0 x Es continua x3 lim x 8x15 0 x3 En x 1 la unción no es derivable ya que no es continua. Estudiamos la derivabilidad en x 3 4x si x 1 Calculamos la unción derivada: '( x) x 4 si 1 x 3 y como: x 8 si x 3 '(3 ) '(3 ) '(3 ) Derivable en x 3 '(0 ) Luego la unción (x) es continua en 1 y derivable en 1

10 El beneicio, en miles de euros, alcanzado en una tienda de ropa el pasado año, viene dado por la unción Bt () expresada a continuación 1 t t 5 si 0 t 6 8 Bt (), t es el tiempo transcurrido en meses t 1 si 6 t 1 a) Estudie la derivabilidad de la unción al cabo de 6 meses. b) Cuándo ue mínimo el beneicio?. Cuál ue dicho beneicio?. c) Represente gráicamente la unción Bt (). Cuándo ue máximo el beneicio?. A cuánto ascendió?. SOCIALES II RESERVA 4. EJERCICIO. OPCIÓN A a) Estudiamos primero la continuidad en t 6: 1 7 lim t t 5 t6 8 7 B(6) lim B( t) Es continua t 1 7 t6 lim t6 Estudiamos la derivabilidad en t 6 t 1 si 0 x 6 4 Calculamos la unción derivada: B'( t) y como: 1 si 0 x 1 1 B '(6 ) B'(6 ) B'(6 ) Derivable en t 6 1 B '(6 ) b) El mínimo pueden estar en los extremos del intervalo t 0 y t 1, y también en las soluciones de B'( t) 0. t B(0) 5 ; B(1) 6'5 ; B '( t) 1 0 t 4 B(4) 3 4 Luego, el mínimo beneicio ue de 3000 y corresponde a t 4 c) El máximo beneicio ue de 6500 y corresponde a t 1. La representación gráica de la unción es:

11 a) La gráica de la unción derivada,, de una unción es una parábola que corta al eje OX en los puntos ( 1,0) y (3,0), y tiene su vértice en (1, 4). Estudie, a partir de ella, la monotonía de la unción e indique la abscisa de cada extremo relativo. 3 b) Halle la ecuación de la recta tangente a la gráica de la unción g( x) e x en el punto de abscisa x 0 SOCIALES II RESERVA 4. EJERCICIO. OPCIÓN B a) Hacemos la representación gráica de la unción derivada. Vemos que '( x ) es positiva en el intervalo (, 1) (3, ), luego en ese intervalo ( x ) será creciente. Vemos que '( x ) es negativa en el intervalo ( 1,3), luego en ese intervalo ( x ) será decreciente. (, 1) ( 1,3) (3, ) Signo ' + + Función C D C b) La recta tangente en x 0 es y g(0) g '(0) ( x 0) Máximo x 1 mínimo x 3 g(0) g x e g 3 '( ) 6 x '(0) 6 Sustituyendo en la ecuación, tenemos, y 6 ( x 0) y 6x

12 4x a) Halle el dominio, los puntos de corte con los ejes, y las asíntotas de la unción ( x) x 1 b) Halle los intervalos de monotonía, los extremos relativos, los intervalos de curvatura y los 3 puntos de inlexión de la unción g( x) x 3x 3x. SOCIALES II SEPTIEMBRE. EJERCICIO. OPCIÓN A a) El dominio de la unción (x) es Asíntotas Verticales: 1 x. 1 4x 4 Asíntotas Horizontales: lim ( x) lim y x x x 1 Asíntota Oblicua: No tiene Corte eje X y 0 4x 0 x 0 (0, 0) Corte eje Y x 0 y 0 (0, 0) b) Calculamos la primera derivada y la igualamos a cero. g x x x x '( ) (, 1) ( 1, ) Signo g ' + + Función C C La unción es creciente en su dominio. No tiene máximos ni mínimos. Calculamos la segunda derivada y la igualamos a cero. g ''( x) 6x 6 0 x 1 (, 1) ( 1, ) Signo g + Función Cn Cx La unción es cóncava en (, 1) y convexa en ( 1, ). Su punto de inlexión es ( 1, 1)

13 x x si x 3 4 Sea la unción ( x) a 4 si x x a) Halle el valor de a para que dicha unción sea continua y estudie la derivabilidad de para ese valor de a. b) Para a 1, existe alguna asíntota vertical de esa unción? Y horizontal?. Razone las respuestas y calcule, en caso airmativo, dichas asíntotas. SOCIALES II SEPTIEMBRE. EJERCICIO. OPCIÓN B a) a lim ( x) lim ( x) 4 a 4 a a x x lim x 3x 4 x lim 4 4 x x Calculamos la unción derivada: x 3 si x '( x) 4 si x x y como: '( ) 1 '( ) '( ) Es derivable en x '( ) 1 Luego, la unción es derivable en. 1 b) La unción x 3x 4 es polinómica, por lo tanto, no tiene asíntotas. La unción 4, tendría x una asíntota vertical en x 0, pero está uera de su dominio. Tiene una asíntota horizontal Asíntota Horizontal: 1 1 lim ( x) lim y 4 x x x

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009 0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PRUEBAS DE SELECTIVIDAD. Función real de variable real. Continuidad.

PRUEBAS DE SELECTIVIDAD. Función real de variable real. Continuidad. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Salvador Serrano - DtoMatemáticas (Daniel García) 01 / 13 PRUEBAS DE SELECTIVIDAD Función real de variable real Continuidad EJERCICIO 1- Se sabe que

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 009 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES.

EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES. IES Padre Poveda (Guadi) EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES 1 (001-M1;Sept-A-) Las ganancias de una empresa, en millones de pesetas, se ajustan a la 50 100 función

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 006 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

1.- Concepto de derivada de una función

1.- Concepto de derivada de una función º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4 . Calcula la derivada de las siguientes funciones:. y = 2-2 +2 2. y = 2-2 2 +2. y = 2 -ln +e 4. y = 2 e 2 5. y = e 6. y = 2 ln 2 7. y = 2-8. y = e. y = 2 + 4. y = ln 2-5. y = 2 2 2 6. y = 2-9. y = e 2

Más detalles

Representación de funciones

Representación de funciones Representación de funciones 1) Sea la función Calcule: a) Los intervalos de crecimiento y decrecimiento. Sol: La función es creciente en (0,4) y decreciente en (,0) (4, ). b) Las coordenadas de sus extremos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PRUEBAS DE SELECTIVIDAD.

PRUEBAS DE SELECTIVIDAD. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Salvador Serrano - DtoMatemáticas (Daniel García) 01 / 1 PRUEBAS DE SELECTIVIDAD Función real de variable real Derivabilidad y Rectas tangentes EJERCICIO

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

EJERCICIOS DE SELECTIVIDAD FUNCIONES

EJERCICIOS DE SELECTIVIDAD FUNCIONES EJERCICIOS DE SELECTIVIDAD FUNCIONES Representación gráfica Monotonía Curvatura - Asíntotas 1. Dadas las funciones siguientes, 6 + 1 a) b) = c) = 1 + d) + 4 1 = e) = f) = 1 g) + 1 + 1 = h) = i) =, 1 +

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración). representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

REPRESENTACION GRÁFICA DE FUNCIONES

REPRESENTACION GRÁFICA DE FUNCIONES REPRESENTACION GRÁFICA DE FUNCIONES 1 REPRESENTACION GRÁFICA DE FUNCIONES UNIDADES Pag. 1. DEFINICIÓN DE DOMINIO UNA FUNCIÓN.3 2. CORTES CON LOS EJES...5 3. SIMETRÍA..7 4. PERIODICIDAD 9 5. FUNCIONES INVERSAS....10

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos. Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada

Más detalles

Qué estudiaremos? Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A. Funciones lineales

Qué estudiaremos? Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A. Funciones lineales Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A Qué estudiaremos? Repasamos las funciones lineales. La función cuadrática. Estudio general

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

x 2-3x+4 si x 2 4. [ANDA] [SEP-B] Sea la función f(x) = 4 - a x si x > 2

x 2-3x+4 si x 2 4. [ANDA] [SEP-B] Sea la función f(x) = 4 - a x si x > 2 e -2x 1. [ANDA] [JUN-A] a) Calcule la función derivada de f(x) = -x 2 +2 2 b) Se sabe que la expresión que representa el número medio de clientes N(t) que acude a una cadena de almacenes, en función del

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

Ejercicios resueltos de cálculo Febrero de 2016

Ejercicios resueltos de cálculo Febrero de 2016 Ejercicios resueltos de cálculo Febrero de 016 Ejercicio 1. Calcula los siguientes ites: x 5x 1. x + x + 1 x 1 x. x x. x + x + 1 x x 4. x 0 x cos x sen x x Solución: 1. Indeterminación del tipo. Tenemos:

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y) Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad Limites, asíntotas y continuidad Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 3: Un inversor

Más detalles

TEMA 11 REPRESENTACIÓN DE FUNCIONES

TEMA 11 REPRESENTACIÓN DE FUNCIONES Tema Representación de unciones Matemáticas II º Bachillerato TEMA REPRESENTACIÓN DE FUNCIONES EJERCICIO : Representa gráicamente la unción: Dominio R 8 respecto al origen. 8 Simetrías:. No es par ni impar:

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente: U.D.4: DERIVADAS 4.1 Ecuaciones de una recta. Pendiente de una recta La pendiente de una recta es una medida de la inclinación de la recta. Es el cociente del crecimiento en vertical entre el crecimiento

Más detalles

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un Selectividad Andalucía Matemáticas Aplicadas a las Ciencias Sociales Bloque Funciones EJERCICIOS DE EXÁMENES DE SELECTIVIDAD ANDALUCÍABLOQUE FUNCIONES 1 JUNIO 014 OPCIÓN A La función de beneficios f en

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS TEMA 5 APLICACIONES DE LAS DERIVADAS Contenidos Criterios de Evaluación 1. Recta tangente a una curva en un punto.. Monotonía. 3. Extremos. 4. Curvatura. Puntos de inflexión. 5. Representación gráfica.

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

Continuidad de las funciones. Derivadas

Continuidad de las funciones. Derivadas Matemáticas II. Curso 008/009 Continuidad de las funciones. Derivadas 1. Estudiar en x = 0 y x = la continuidad y derivabilidad de la función cos x si x 0 x f (x) = si 0 < x < sen x si x (Junio 1997) f

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

5. [2013] [EXT-A] En una empresa de montajes el número de montajes diarios realizados por un trabajador depende de los días

5. [2013] [EXT-A] En una empresa de montajes el número de montajes diarios realizados por un trabajador depende de los días . [204] [ET-A] Una empresa ha realizado un estudio sobre los beneficios, en miles de euros, que ha obtenido en los últimos 0 años. La función a la que se ajustan dichos beneficios viene dada por B(t) =

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

Aplicaciones de la derivada Ecuación de la recta tangente

Aplicaciones de la derivada Ecuación de la recta tangente Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto

Más detalles

el blog de mate de aida CS II: Representación de funciones y optimización.

el blog de mate de aida CS II: Representación de funciones y optimización. Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva

Más detalles

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

La concentración de ozono contaminante, en microgramos por metro cúbico, en una ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA Supongamos que tenemos una función. Consideramos la recta que corta a la gráfica en los puntos A y B. Esta recta se llama secante

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL 6.1. TASAS DE VARIACIÓN MEDIA E INSTANTÁNEA 6.1.1. Tasa de variación media La tasa de variación media de una unción en un intervalo a, b es el cociente: b a TVM,

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

Ejercicios de integración

Ejercicios de integración 1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

Conocer las posibles asíntotas de una función nos ayudará en su representación gráfica. Vamos a distinguir tres tipos distintos de asíntotas:

Conocer las posibles asíntotas de una función nos ayudará en su representación gráfica. Vamos a distinguir tres tipos distintos de asíntotas: 1. Dominio, periodicidad y paridad de una función A la hora de representar una función lo primero que se ha de determinar es dónde está definida, es decir, para qué valores tiene sentido hablar de f(x).

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12. 7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

a) (1.7 puntos) Halle las coordenadas de sus extremos relativos y de su punto de inflexión, si existen.

a) (1.7 puntos) Halle las coordenadas de sus extremos relativos y de su punto de inflexión, si existen. Puntos de corte - Monotonía y Curvatura funciones simples Septiembre 2015 - Opción B Sea la función f() = 3 9 2 + 8 a) (1.7 puntos) Halle las coordenadas de sus etremos relativos y de su punto de infleión,

Más detalles