3 INVESTIGACIONES 10%

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3 INVESTIGACIONES 10%"

Transcripción

1 Práctica Vibración de sisteas PARTICIPACION 5% de un grado de PRESENTACIÓN 10% libertad con 3 INVESTIGACIONES 10% aortiguaiento CÁLCULOS Y DIAGRAMAS 15% NOMBRE RESULTADOS 30% MATRICULA CONCLUSIONES 5% GRUPO DE LAB COMENTARIOS Y OBSERVACIONES 5% PROFESOR INSTRUCTOR TOTAL 100% OBJETIVO El aluno deterinará experientalente los paráetros para representar el coportaiento de un sistea oscilatorio aortiguado de un grado de libertad. FUNDAMENTOS En la vida real es posible apreciar que las vibraciones libres no son infinitas. Este fenóeno puede verificarse con facilidad observando que las vibraciones libres en realidad disinuyen su aplitud de oscilación con respecto al tiepo. La ecuación diferencial utilizada para representar un sistea asa resorte coo el que se uestra en la figura 1 es F = a x + kx = 0 (1) (a) Fig. 1.- (a) Sistea asa resorte de un grado de libertad. (b) Diagraa de cuerpo libre de dicho sistea. (b) La solución de la Ec. (1), coo se discutió en la práctica anterior, tiene la fora ( ) ω n 1 x t Ce C e i t i ωn = + t () donde C 1 y C son constantes que se definen a partir de las condiciones iniciales del sistea oscilatorio y a través del uso de la identidad ± iαt e = cosαt+ sinαt (3) 1

2 la Ec. () puede escribirse coo ( ) cosω 1 n 1 x t = A t+ A sinω t (4) Es posible apreciar a partir de la Ec. (4) que el desplazaiento es periódico (dada la naturaleza de las funciones seno y coseno) en el tiepo e infinito. Sin ebargo, esto no concuerda con la ayoría de los sisteas vibratorios a nuestro alcance, los cuales oscilando libreente se detienen confore transcurre el tiepo. Lo anterior sugiere entonces la existencia de foras de disipación de energía (conocidas tabién coo ecanisos de aortiguaiento) en los sisteas vibratorios las cuales producen el fin de los oviientos oscilatorios de dichos sisteas. Durante el aortiguaiento la energía del sistea vibratorio es disipada coo fricción, calor o sonido. Los ecanisos de aortiguaiento existen de varias foras, por ejeplo: Aortiguaiento de Coulob o de fricción seca.- En este caso la fuerza aortiguadora la fuerza es constante. Aortiguaiento sólido o de histéresis.- Este es causado por la fricción interna de un sólido al oponerse a entrar en vibración. Aortiguaiento turbulento.- En este caso la fuerza de aortiguaiento es proporcional al cuadrado de la velocidad proedio. Aortiguaiento en fluido viscoso.- En este caso la fuerza de aortiguaiento es proporcional a la velocidad. El ecaniso de aortiguaiento ás utilizado es el aortiguaiento viscoso, en el cual la fuerza de aortiguaiento es proporcional a la velocidad de oviiento. Este tipo de fenóenos de aortiguaiento se presentan estrictaente cuando se tiene un flujo lainar de un fluido viscoso a través de una ranura coo por ejeplo: un absorbedor de ipacto, el aortiguaiento que acontece alrededor de un pistón en un cilindro, el ecaniso de aortiguaiento de puertas abatentes de cierre autoático, los aortiguadores de autoóviles, etc. Aortiguaiento n con: Un sistea vibratorio básico coo el que se uestra en la figura cuenta esencialente Masa (), la cual se encuentra relacionada directaente con la energía cinética del sistea. Resorte (k), cuya función es alacenar energía potencial. Aortiguador (c).- cuya función es disipar la energía vibratoria del sistea. A partir de un análisis del diagraa de cuerpo libre ostrado en la figura es posible obtener la ecuación de oviiento ( ) x + cx + kx = f t (5) la Ec. (5) es una ecuación diferencial de segundo orden no hoogénea, por lo que su solución contiene dos partes. La priera, que se refiere al caso de una vibración libre, es cuando f(t)=0 es obtenida para resolver una ecuación diferencial hoogénea de segundo orden, la cual corresponde físicaente a el caso de un sistea vibratorio aortiguado (fig. ) el cual podrá representar ejor las oscilaciones que tradicionalente apreciaos en la vida real.

3 (a) Fig..- (a) Sistea asa resorte aortiguador de un grado de libertad. (b) Diagraa de cuerpo libre de dicho sistea. (b) por La ecuación diferencial hoogénea que debeos resolver para esta práctica está dada x + cx + kx = 0 (6) Una aproxiación tradicional para resolver la ecuación diferencial (6) es asuir que la solución tiene la fora con x rt = e (7) x = re x = re rt rt (8) donde r es una constante. Al sustituir las Ecs. (7) y (8) en la ecuación diferencial (6) se obtiene ( ) rt e r + cr+ k = 0 (9) La Ec. (9) es satisfecha para todos los valores de t cuando la ecuación característica es igual a cero, esto es La Ec. (10) tiene las raíces r + c k r 0 + = (10) r 1, c c k = ± (11) de tal anera que es posible encontrar la siguiente solución general para el desplazaiento X = e Ce + C e c c k c k t t t 1 (1) 3

4 donde C 1 y C son constantes que dependen de las condiciones iniciales del oviiento, ientras que los térinos dentro del radical de la Ec. (1) nos indicará tres casos distintos de aortiguaiento con sus respectivas curvas características, las cuales se discutirán a continuación. 1. CASO SOBREAMORTIGUADO: c k > En este caso el radical es real y las raíces r 1, expresadas en la Ec. (11) serán reales y distintas. El oviiento del sistea es doinado por el aortiguaiento. Esto significa que el sistea se acercará a su posición de equilibrio en fora exponencial sin que se presente oscilación alguna y jaás regresará a su posición original (a partir de la cual se produjo el oviiento). Ejeplos de este tipo de aortiguaiento pueden observarse en los ecanisos que sirven para el cerrado autoático de puertas. Este oviiento es expresado por la Ec. (1) y puede apreciarse gráficaente en la figura 3(a).. CASO CRÍTICAMENTE AMORTIGUADO: c k = En este caso el radical es igual a cero y las raíces r 1, serán reales e iguales. En este caso se dice que el sistea se encuentra críticaente aortiguado. A este valor de la constante de aortiguaiento se le conoce coo constante crítica de aortiguaiento c cr y su valor depende exclusivaente de k y. = 4k ccr c = 4k = ω cr A la relación entre el aortiguaiento del sistea y su constante crítica de aortiguaiento se le conoce coo razón de aortiguaiento y se le denoina por la letra griega ζ cr n (13) c ζ = (14) c la cual es un paráetro adiensional. En una oscilación críticaente aortiguada, el sistea aortiguado es llevado a su posición de equilibrio en fora exponencial en un tiepo ínio sin que se presente oscilación. En este caso, el desplazaiento será representado tabién por la ecuación (1), la cual puede escribirse coo la Ec. (15) recordando que el radical es igual a cero ( ) X = C + C e 1 c t (15) El oviiento de un sistea oscilatorio críticaente aortiguado puede apreciarse en la figura 3(b). 4

5 3. CASO SUB AMORTIGUADO: c k < En este caso se presentará un oviiento oscilatorio harónico alrededor de una posición de equilibrio en el cual la aplitud disinuirá con el tiepo en cada oscilación. En este caso, dado que el radical es negativo, las raíces r 1, son coplejas y conjugadas teniendo la fora donde r1, = α ± iβ (16) c α = (17a) β = k c 4 (17b) y la solución en este caso tendrá la fora αt iβt iβt X = e Ce 1 + Ce 1 (18) que tabién puede escribirse - utilizando la Ec. (3) - coo c t ( ω ) sen ( ω ) X = e Acos dt + B dt (19) donde ω β k c d 4 ω ζ = = = 1 n (0) Fig. 3.- Respuesta de un sistea oscilatorio ante distintas condiciones de aortiguaiento []. 5

6 Péndulo Torsional Si un cuerpo rígido oscila alrededor de un eje específico de referencia se dice que el oviiento resultante es una vibración torsional. En este caso, el desplazaiento del cuerpo es edido en térinos de una coordenada angular denotada porθ. En este tipo de vibración, el oento restaurativo puede deberse a la torsión de un cuerpo elástico o al desbalance de una fuerza. (a) Fig. 4.- (a) Péndulo torsional no aortiguado. (b) Diagraa de cuerpo libre de dicho sistea [1]. (b) En la figura 4 se uestra un disco con oento de inercia de asa J 0 ontado al final de una flecha circular sólida, la cual se encuentra epotrada en el otro extreo. Si el oviiento del disco es angular y está descrito por la coordenada θ, a partir de la teoría de torsión de flechas circulares es posible obtener la relación M t GJ l barra = (1) donde M t es un par que produce el la rotación θ, G es ódulo de corte, l es la longitud de la flecha y J barra es el oento polar de inercia de la sección transversal de la barra, el cual está dado por 4 π d Jbarra = () 3 d es el diáetro de la flecha. Si el disco es desplazado un ángulo θ a partir de su posición de equilibrio, la flecha presenta un par de restauración (seejante a la fuerza restauradora de un resorte) de agnitud M t. En consecuencia, la constante de rigidez para un resorte torsional coo la barra de la figura 4 es k t 4 Mt GJbarra πgd = = = (3) θ l 3l La ecuación de oviiento de un péndulo torsional se obtiene a través de la segunda ley de Newton o a través de algún étodo energético. Considerando el diagraa de cuerpo libre ostrado en la figura 4(b) para un péndulo torsional con aortiguaiento se tiene J c k (4) 0θ + tθ + tθ = 0 6

7 y escribiendo la Ec. (4) coo θ ct kt + 0 J θ + J θ = (5) 0 0 donde el oento de inercia del disco J 0 es J 0 4 ρhπd WD = = (6) 3 8g a partir de la Ec. (5) se obtiene la frecuencia natural de oscilación y finalente k t ω n = (7) J0 ct ct ct ζ = = = (8) c J ω kj tc 0 n t 0 MATERIAL Y EQUIPO A UTILIZAR Sistea asa resorte. Péndulo torsional. Analizador de vibraciones. Calibrador Vernier. Aceite. PROCEDIMIENTO A. Sistea asa resorte aortiguador 1. Deterine analíticaente la frecuencia natural de oscilación del sistea (ω n ). No olvide para ello encontrar el valor de la constante de rigidez del resorte utilizando cualquiera de los étodos vistos en la práctica 1.. Deterine experientalente el valor de la frecuencia natural de oscilación (ω n ) utilizando el analizador de vibraciones y copárelo con el valor teórico esperado. 3. Deterine experientalente el valor de la frecuencia aortiguada de oscilación (ω d ) con la ayuda del analizador de vibraciones. Para ello utilice un recipiente con aceite en el cual las aletas de la asa estén totalente en contacto con el aceite. 4. Deterine el valor de la razón de aortiguaiento (ζ). 5. Deterine analíticaente el valor de la constante crítica de aortiguaiento (c cr ). 6. Deterine el valor de la constante de aortiguaiento proporcionada por el aceite (c). B. Péndulo torsional 1. Deterine analíticaente la frecuencia natural de oscilación del sistea. Utilice las Ecs. () y (3) para deterinar el valor de la constante torsional de rigidez (k t ). 7

8 REPORTE Laboratorio de Vibraciones Mecánicas. Deterine experientalente el valor de la frecuencia natural de oscilación (ω n ) utilizando el analizador de vibraciones y copárelo con el valor teórico esperado. 3. Deterine experientalente el valor de la frecuencia aortiguada de oscilación (ω d ) con la ayuda del analizador de vibraciones. Para ello utilice un recipiente con aceite en el cual el disco se encuentre suergido en aceite. 4. Deterine el valor de la razón de aortiguaiento (ζ). 5. Deterine analíticaente el valor de la constante crítica de aortiguaiento torsional (c ct ). 6. Deterine el valor de la constante de aortiguaiento torsional proporcionada por el aceite (c t ). 1. Una vez que haya seguido el procediiento reporte los siguientes valores Masa- Resorte- Aortiguador Experiental Working Model MATLAB vs. Exp. vs. W.M. % Error vs. MATLAB ω n [rad/s] ω d [rad/s] c cr [N s/] c [N s/] ζ Péndulo Torsional Experiental Working Model MATLAB vs. Exp. vs. W.M. % Error vs. MATLAB ω n [rad/s] ω d [rad/s] c ct [N s] c t [N s] ζ INVESTIGACIÓN 1. Problea de diseño. Si bien a diario encontraos un gran núero de ejeplos de aortiguaiento, uno de los ás ilustrativos es el del autoóvil. Para nuestro caso, el autoóvil que vaos a estudiar tiene una asa de 150 kg y está soportado por sus cuatro resortes y cuatro aortiguadores. Si la elongación estática de los resortes debida al peso propio del autoóvil es de 0.0, Cóo deterinaría la constante de aortiguaiento requerida en cada aortiguador para obtener el caso de aortiguaiento crítico?. 8

9 Asua que el auto tiene solo un grado de libertad. Antes de deterinar la constante crítica de aortiguaiento (c cr ), encione cuáles son las suposiciones que toó en cuenta para llegar a su resultado.. Copare sus resultados con el Working Model y MATLAB. Haga coentarios. REFERENCIAS [1] Rao, Singiresu S. Mechanical Vibrations, Fourth Edition, Pearson. USA 003. [] Steidel, Robert F. An introduction to echanical vibrations, Third Edition, John Wiley, USA [3] Thoson, Willia T. Theory of vibrations: applications. Second Edition, Prentice Hall, USA 198. [4] Kelly, Graha S. Fundaentals of echanical vibrations. Second Edition. McGraw Hill. USA [5] Stile, Hidgon. Ingeniería Mecánica, too II: Dináica Vectorial. Prentice Hall, 9

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE A: JUSTIFICACIÓN Al observar la Naturaleza nos daos cuenta de que uchos eventos físicos (por ejeplo el oviiento de rotación y traslación de los planetas) son repetitivos, sucediendo

Más detalles

CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE

CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE 1. INTRODUCCIÓN CINEMÁTICA Y DINÁMICA PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE La ley de Hooe describe fenóenos elásticos coo los que exhiben los resortes. Esta ley afira

Más detalles

Factor de forma para conducción bidimensional

Factor de forma para conducción bidimensional Factor de fora para conducción bidiensional En la literatura es frecuente encontrar soluciones analíticas a soluciones de interés práctico en ingeniería. En particular, el factor de fora perite calcular

Más detalles

Átomo de hidrógeno. z = r cos θ B = A = r sen θ x = A cos φ = r sen θ cos φ y = A sen φ = r sen θ sen φ

Átomo de hidrógeno. z = r cos θ B = A = r sen θ x = A cos φ = r sen θ cos φ y = A sen φ = r sen θ sen φ Coordenadas esféricas polares La ecuación de Schroedinger para el átoo de hidrógeno debe resolverse en coordenadas esféricas polares (r θφ) que guardan la siguiente relación con las coordenadas cartesianas

Más detalles

Intensidad horaria semanal TAD: 6 TI: 6 C: 4

Intensidad horaria semanal TAD: 6 TI: 6 C: 4 UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE CIENCIAS Escuela de Física Prograa: Ciclo de Ciencias Básicas de Ingeniería Nobre de la asignatura: FÍSICA III CÓDIGO: 956, 3648 SEMESTRE: IV Requisitos:

Más detalles

Movimiento armónico simple

Movimiento armónico simple UNIDAD Moviiento arónico siple Un trapolín ejerce una fuerza de restauración sobre la persona que salta directaente proporcional a la fuerza edia necesaria para desplazar la colchoneta. El oviiento hacia

Más detalles

GUÍA DE PROBLEMAS F 10º

GUÍA DE PROBLEMAS F 10º Unidad 3: Dináica de la partícula GUÍ DE PROBLEMS 1)-Una partícula de asa igual a kg esta tirada hacia arriba por una plano inclinado liso ediante una fuerza de 14,7 N. Deterinar la fuerza de reacción

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

Tienen resistencia los conductores eléctricos?

Tienen resistencia los conductores eléctricos? Tienen resistencia los conductores eléctricos? Dr. Guillero Becerra Córdova Universidad Autónoa Chapingo Dpto. de Preparatoria Agrícola Área de Física Profesor-Investigador 59595500 ext. 539 E-ail: gllrbecerra@yahoo.co

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Problemas. 1. Un barco se balancea arriba y abajo y su desplazamiento vertical viene dado por la ecuación y = 1,2 cos

Problemas. 1. Un barco se balancea arriba y abajo y su desplazamiento vertical viene dado por la ecuación y = 1,2 cos Probleas. Un barco se balancea arriba y abajo y su desplazaiento vertical viene dado por t π la ecuación y, cos +. Deterinar la aplitud, frecuencia angular, 6 constante de fase, frecuencia y periodo del

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE 4 MOVIMIENO ARMÓNICO SIMPLE 4.. MOVIMIENOS PERIÓDICOS. Conocido el período de rotación de la Luna alrededor de la ierra, y sabiendo que la Luna no eite luz propia, sino que refleja la que recibe del Sol,

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de prier orden 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión

Más detalles

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE Capítulo II CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE 7. INTRODUCCIÓN Todo cuerpo que se halla en las inediaciones de la tierra interactúa con ella coo resultado de esta interacción actúa sore el cuerpo

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS GUIAS ÚNICAS DE LABORAORIO DE ÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANIAGO DE CALI UNIVERSIDAD SANIAGO DE CALI DEPARAMENO DE LABORAORIOS MÁQUINAS SIMPLES - POLEAS 1. INRODUCCIÓN. Una áquina siple

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

Nombre de la asignatura: Carrera: Clave de la asignatura: Participantes

Nombre de la asignatura: Carrera: Clave de la asignatura: Participantes 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Vibraciones Mecánicas Ingeniería Mecánica MCT - 0542 2 3 7 2.- HISTORIA DEL PROGRAMA

Más detalles

CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones propuestas, sólo hay que desarrollar una opción copleta. Cada problea correcto vale por tres puntos. Cada cuestión correcta vale por un punto. Probleas OPCIÓN A.- Un cuerpo A de asa

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

TEMA I: Modelación Experimental de Procesos

TEMA I: Modelación Experimental de Procesos TEMA I: Modelación Experiental de Procesos Métodos Clásicos para Modelación o Identificación de Procesos. Introducción La puesta en funcionaiento de un deterinado proceso que opera en lazo cerrado, requiere

Más detalles

CAPÍTULO II BASES TEÓRICAS

CAPÍTULO II BASES TEÓRICAS 7 CAPÍTULO II BASES TEÓRICAS 2.1 Sistemas vibratorios Se entiende por sistema vibratorio todo aquel que posee un movimiento oscilatorio que puede o no ser armónico y que tiene la capacidad de almacenar

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA 1. Una cáara de niebla es un dispositivo para observar trayectorias de partículas cargadas. Al aplicar un capo agnético unifore, se observa que las trayectorias seguidas por un protón y un electrón son

Más detalles

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones.

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones. Guía de Ejercicios Vectores y algunas plicaciones. 1 Notabene : Todas las agnitudes vectoriales se presentan en esta guía con negrita y cursiva. Por distracción, puede haberse oitido tal cosa en algún

Más detalles

Capítulo 3: transporte de energía por medio de calor, trabajo y masa

Capítulo 3: transporte de energía por medio de calor, trabajo y masa Capítulo : transporte de energía por edio de calor, trabajo y asa En este capítulo se aprenderá cóo aplicar la priera ley de la terodináica coo expresión del principio de conservación de la energía. Sin

Más detalles

PROBLEMAS DE VIBRACIONES Y ONDAS

PROBLEMAS DE VIBRACIONES Y ONDAS PROBLEMAS DE VBRACONES Y ONDAS º PROBLEMAS DE M.A.S. PROBLEMAS RESUELTOS º Una partícula que realiza un M.A.S. recorre una distancia total de 0 c en cada vibración copleta y su áxia aceleración es de 50

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

II Evaluación. Física 11. Sección 01. Semestre A-2004.

II Evaluación. Física 11. Sección 01. Semestre A-2004. II Ealuación. Física. Sección. Seestre A-4..- Un náurago de 7 [N] que lota en el ar, es rescatado por edio de una guaya, desde un helicóptero que se encuentra estacionario a 5 [] sobre el agua. Toando

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

PROBLEMAS RESUELTOS DE INDUCCIÓN ELECTROMAGNÉTICA

PROBLEMAS RESUELTOS DE INDUCCIÓN ELECTROMAGNÉTICA 0 PROLEMAS RESUELTOS DE INDUCCIÓN ELECTROMAGNÉTICA PROLEMAS DEL CURSO Un rotor de 100 espiras gira dentro de un capo agnético constante de 0,1 T con una elocidad angular de 50 rad/s. Sabiendo que la superficie

Más detalles

Cap Desviación de fase, el índice de modulación y la desviación de frecuencia

Cap Desviación de fase, el índice de modulación y la desviación de frecuencia Cap. 6-2.- Desviación de fase, el índice de odulación y la desviación de frecuencia Coparar las expresiones (c), (d) y (e) para la portadora con odulación angular, en la tabla 6-1, uestra que la fórula

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

Capítulo 6 Momentum lineal y colisiones

Capítulo 6 Momentum lineal y colisiones Capítulo 6 Moentu lineal y colisiones 10 Probleas de selección - página 87 (soluciones en la página 124) 9 Probleas de desarrollo - página 92 (soluciones en la página 125) 85 6.A PROBLEMAS DE SELECCIÓN

Más detalles

PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO

PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO Labor ator io Dinámica de Máquinas UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DINÁMICA DE MÁQUINAS 3.1. Objetivos PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO 1.

Más detalles

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 2008-09

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 2008-09 Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 8-9 C) VIBRACIONES Y ONDAS 1. VIBRACIONES MECÁNICAS 1. 1. INTRODUCCIÓN Una vibración ecánica es la oscilación repetida de un punto aterial

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

Un experimento con integración

Un experimento con integración Un experimento con integración numérica Se dispone de una varilla uniforme de madera dotada de unos agujeros situados simétricamente. Estos agujeros pueden ser centros de suspensión, lo cual permite variar

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Práctica 3 DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO DEL ÁCIDO ACÉTICO MEDIANTE MEDIDAS DE CONDUCTIVIDAD

Práctica 3 DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO DEL ÁCIDO ACÉTICO MEDIANTE MEDIDAS DE CONDUCTIVIDAD Dpto. Sisteas Físicos, Quíicos y Naturales- Área de Quíica Física Práctica 3 DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO DEL ÁCIDO ACÉTICO MEDIANTE MEDIDAS DE CONDUCTIVIDAD Cuestiones y cálculos previos:

Más detalles

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario MECANICA TEORÍA Moento Entonces Sistea Par o Cupla de Vectores Es un sistea de dos vectores deslizables de la isa agnitud que están en distintas rectas sostén con la isa dirección pero sentido contrario

Más detalles

donde M es la suma de la masa de la varilla y del magnético.

donde M es la suma de la masa de la varilla y del magnético. Oscilación de un dipolo agnético en un capo agnético. Lorena Cedrina (lovc@infovia.co.ar) y Paula Villar (coco77@sinectis.co.ar) Laboratorio 5, Departaento de Física - Facultad de Ciencias Eactas y Naturales,

Más detalles

Física de la Acústica Tecnología en Sonido

Física de la Acústica Tecnología en Sonido Uniersidad Pérez Rosales Departaento de cústica Profesor: Jaie Undurraga e-ail: jaie_undurraga@hotail.co Física de la cústica Tecnología en Sonido Tal coo definios, la acústica estudia la generación, transisión

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos.

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos. Laboratorio 1 Péndulo físico 1.1 Objetivos 1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1.2 Preinforme 1. Exprese y explique el teorema de ejes paralelos.

Más detalles

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano).

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano). JUNIO INSTRUCCIONES: El eaen presenta dos opciones B; el aluno deberá elegir una de ellas contestar raonadaente a los cuatro ejercicios de que consta dicha opción en h. in. OPCIÓN. Calificación áia: puntos

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Ingeniería Mecánica. Mecánica Racional. Ejercicio de Mecánica Vectorial y Analítica

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Ingeniería Mecánica. Mecánica Racional. Ejercicio de Mecánica Vectorial y Analítica Mecánica Racional Ejercicio de Mecánica Vectorial y Analítica Profesor Dr. Ercoli Liberto Alumno Breno Alejandro Año 2012 1 Cinemática y cinética del cuerpo rígido: Universidad Tecnológica Nacional Ejercicio

Más detalles

ASIGNATURA GAIA MECÁNICA DE FLUIDOS NOMBRE IZENA FECHA DATA 18/1/ mm L = 0,5 m 1V1. 10 mm L = 0,5 m. 8 mm

ASIGNATURA GAIA MECÁNICA DE FLUIDOS NOMBRE IZENA FECHA DATA 18/1/ mm L = 0,5 m 1V1. 10 mm L = 0,5 m. 8 mm SIGNUR GI MECÁNIC DE FLUIDOS CURSO KURSO NOMBRE IZEN FECH D 8//00 0 L 0, V B 8 L 0V 0V 0 L 0, ubería de retorno al tanque 0 L 0Z B 0Z M 0 8 L Esquea de fijación del cilindro y vástago S El circuito hidráulico

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA.

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE:

Más detalles

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides.

PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. PRÁCTICA DE LABORATORIO - trigonometría Funciones trigonométricas y ondas senoides. Objetivos: Identificar y familiarizarse con las ondas senoides. construir e identificar claramente las características

Más detalles

P2.- El escape de áncora

P2.- El escape de áncora P.- El escape de áncora. Como es bien sabido desde hace tiempo, las oscilaciones de un péndulo son isócronas, por lo que son idóneas como referencia para la medida del tiempo en los relojes. Sin embargo,

Más detalles

Péndulo en Plano Inclinado

Péndulo en Plano Inclinado Péndulo en Plano nclinado Variación del Período en función de g Alejandra Barnfather: banfa@sion.com - Matías Benitez: matiasbenitez@fibertel.com.ar y Victoria Crawley: v_crawley@hotmail.com Resumen El

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI

UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: VIBRACIONES MECÁNICAS FECHA DE ELABORACIÓN: FEBRERO 2006 ÁREA DEL PLAN DE ESTUDIOS: AS ( ) AC

Más detalles

Algunos Ejercicios Resueltos

Algunos Ejercicios Resueltos lgunos Ejercicios Resueltos IS Paralelo 5 Prof. Rodrigo Vergara Segundo Seestre 6 ) Sobre un óvil de asa [kg] que se encuentra sobre una superficie sin roce, inicialente en reposo en el origen (x), actúa

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

TRABAJO PRÁCTICO Nº 3 - RESOLUCIÓN ESTÁTICA DE LOSAS. Efectuar la resolución estática de las losas de la planta tipo (s/pb y s/1º).

TRABAJO PRÁCTICO Nº 3 - RESOLUCIÓN ESTÁTICA DE LOSAS. Efectuar la resolución estática de las losas de la planta tipo (s/pb y s/1º). TRABAJO PRÁCTICO Nº 3 - RESOLUCIÓN ESTÁTICA DE LOSAS Efectuar la resolución estática de las losas de la planta tipo (s/pb y s/1º). Coo ejeplo se realizará el análisis de cargas de la planta s/2º (de azotea)

Más detalles

EL MUELLE. LAS FUERZAS ELÁSTICAS

EL MUELLE. LAS FUERZAS ELÁSTICAS EL MUELLE. LAS FUERZAS ELÁSTICAS En una pista horizontal copletaente lisa, se encuentra un uelle de 30 c de longitud y de constante elástica 100 N/. Se coprie 0 c y se sitúa una asa de 500 g frente a él.

Más detalles

Diseño de Reactores Heterogéneos Catalíticos Reactores de Lecho Fijo

Diseño de Reactores Heterogéneos Catalíticos Reactores de Lecho Fijo Diseño de Reactores Heterogéneos Catalíticos Reactores de Lecho Fio En un reactor catalítico de lecho fio para llevar a cabo una reacción fluido-sólido, el catalizador se presenta coo un lecho de partículas

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

Estatica. Carrera: Participantes Academia de Ing. Civil del ITN. Asignaturas Temas Asignaturas Temas Resistencia de Materiales.

Estatica. Carrera: Participantes Academia de Ing. Civil del ITN. Asignaturas Temas Asignaturas Temas Resistencia de Materiales. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Estatica Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3 2 8 2.- HISTORIA DEL PROGRAMA Lugar y fecha de elaboración

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

CURSO CERO DE FÍSICA DINÁMICA

CURSO CERO DE FÍSICA DINÁMICA CURSO CERO DE ÍSICA Departaento de ísica COTEIDO. Principios fundaentales de la dináica. Priera ley de ewton: Ley de la inercia. Segunda ley de ewton: Ley fundaental de la dináica. Tercera ley de ewton:

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Planificación FS-100 (II 2014)

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Planificación FS-100 (II 2014) Universidad Nacion Autónoma de Honduras Facultad de Ciencias Escuela de Física Planificación FS-100 (II 2014) Hoja de información, Física Gener I (FS-100) 1. Nombre Coordinador: Carlos Eduardo Gabarrete

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS Facultad de Ciencias Curso 1-11 Grado de Óptica y Optoetría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS 1. Una olécula de agua tiene un átoo de oxígeno y dos de hidrógeno. El átoo

Más detalles

Derivación por Equilibrio de Complejo Activado

Derivación por Equilibrio de Complejo Activado 1/3/14 Energía Libre de Gibbs reactivos G Estado de transición Productos Coordenada de reacción Reacción: HO + CH 3 r [HO --- CH 3 --- r] + CH 3 OH + r http://upload.wikimedia.org/wikipedia/commons/thumb/9/99/rxn_coordinate_diagram_5.pg/4px-rxn_coordinate_diagram_5.pg

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Momento de Torsión Magnética

Momento de Torsión Magnética Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Momento de Torsión Magnética Elaborado por: Ing. Francisco Solórzano I. Objetivo. Determinar de forma experimental el momento

Más detalles

CANTABRIA / SEPTIEMBRE LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE LOGSE / FÍSICA / EXAMEN COMPLETO CANAIA / SEPIEE 000. LOGSE / FÍSICA / EXAEN COPLEO El aluno elegirá tres de las cinco cuestiones propuestas, así coo una de las dos opciones de probleas. Cada cuestión o problea puntúa sobre puntos. CESIONES

Más detalles

La Energía Mecánica. E = m v

La Energía Mecánica. E = m v Energía La Energía Mecánica Direos que la energía de un cuerpo o sistea de cuerpos es la capacidad que tienen para realizar trabajo. Esta definición es iperfecta pero nos alcanza para hacer una priera

Más detalles

B: DINAMICA. & r, y la

B: DINAMICA. & r, y la 10 Escuela de Ineniería. Facultad de Ciencias Físicas y Mateáticas. Universidad de Chile. B: DINAMICA B.1.-Un bloque B de asa desliza con roce despreciable por el interior de un tubo, el cual a su vez

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS JUAN ALFONSO OAXACA LUNA, MARÍA DEL CARMEN VALDERRAMA BRAVO Introducción Uno de los conceptos centrales en el

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

Capítulo 2. Oscilaciones Amortiguadas, Forzadas y Resonancia.

Capítulo 2. Oscilaciones Amortiguadas, Forzadas y Resonancia. Capítulo. Oscilaciones Aortiguadas, Forzadas y Resonancia. Introducción: Nuestro objetivo en los prieros capítulos es el de coprender el coportaiento oscilatorio que presentan uchos sisteas siples en la

Más detalles

IMPACTO DE BAJA ENERGÍA DE UN LAMINADO EPOXI-FIBRA DE CARBONO

IMPACTO DE BAJA ENERGÍA DE UN LAMINADO EPOXI-FIBRA DE CARBONO ANALES DE MECÁNICA DE LA RACTURA Vol. () 49 IMPACTO DE BAJA ENERGÍA DE UN LAMINADO EPOXI-IBRA DE CARBONO M. Sánchez-Soto*, G. Gonzalo, O. Jiénez, O.O. Santana, A.B. Martinez. Centre Català del Plástic.

Más detalles

Suponga que trata de calcular la rapidez de una flecha disparada con un arco.

Suponga que trata de calcular la rapidez de una flecha disparada con un arco. TRABAJO Y ENERGÍA CINÉTICA 6?Cuando una ara de fuego se dispara, los gases que se expanden en el cañón epujan el proyectil hacia afuera, de acuerdo con la tercera ley de Newton, el proyectil ejerce tanta

Más detalles

Física I. Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Física I. Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física I Ingeniería en Sistemas Computacionales SCM - 0409 3-2-8 2.- HISTORIA DEL

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway

PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO Cuarta, quinta y sexta edición Rayond A. Serway MOVIMIENTO LINEAL Y CHOQUES 9. Moento lineal y su conservación 9. Ipulso y oento 9.3

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles