ALGUNOS RESULTADOS SOBRE MARTINGALAS DISCRETAS FINITAS Some results on finite discreet martingales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ALGUNOS RESULTADOS SOBRE MARTINGALAS DISCRETAS FINITAS Some results on finite discreet martingales"

Transcripción

1 et et eh Año V No 4 Agosto e 009 Uvers eológ e Perer N 0-70 ALGUNO RULAO OBR MARNGALA CRA FNA ome results o te sreet mrtgles RUMN este rtíulo se reset vros eemlos e mrtgls srets ts sí omo se emuestr lguos resultos ue relo ls mrtgls srets ts o los temos e ro PALABRA CLAV: Mrtgls ts srets Vrle letor temo e ro ABRAC hs rtle resets severl exmles o te srete mrtgle emostrtes some results tht relte the te srete mrtgle wth tmes o uemlomet KWOR: Fte srete mrtgle Rom vrle tmes o uemlomet GAR ALRO VALNCA ANGULO Proesor Auxlr Mgíster e Ces Mtemáts ertmeto e Mtemáts Fult e Ces Báss Uvers eológ e Perer evle@uteuo FRNANO MA Proesor tulr Mgster e strumetó Fís ertmeto e Mtemáts Fult e Ces Báss Uvers eológ e Perer emes@uteuo PRO PABLO CÁRNA ALZA Proesor Asstete Mgíster e señz e ls Mtemáts ertmeto e Mtemáts Fult e Ces Báss Uvers eológ e Perer lo@uteuo NROUCCÓN L teorí e ls mrtgls es u herrmet umetl e l teorí e los roesos estoástos L lr mrtgl rovee el omre e u uelo Fres llmo Mrtgues osste e u estrteg e uego e uego e l rulet ue osste e ostr vez lo osto e l ro teror ver [ ] el estuo e ls mrtgls srets ts osermos ue teemos u suesó t e vrles letors Κ e u eso e rol Ω P to Κ so evetos tles ue r too Κ Ω Φ r too es er estos outos orm u esomosó e Ω eeo euet lo teror vmos er ue es u mrtgl t sret ostrur lguos eemlos emostrr lguos resultos ue volur los temos e ro o ls mrtgls ts srets PRANZA CONCONAL CON RPCO A COMPOCON FNA Ates e er l eserz ool e u vrle letor o reseto u esomosó reoremos lguos resultos e esomosoes ts e P Ω u eso e rol to u suesó e esomosó es e Ω Reoremos lo sguete: { } es u esomosó e Ω etoes Φ Φ s Υ Ω P > 0 Aemás el lger u or α est osttu or Φ uto o tos ls uoes e terseoes e outos e Feh e Reeó: 8 e uo e 009 Feh e Aetó: e ulo e 009

2 et et eh Año V No 4 Agosto e 009 Uvers eológ e Perer es u álger e Ω etoes exste u ú esomosó { } α e Ω tl ue 3 so os esomosoes e Ω tles ue α α esrmos 4 so vrles letors l esomosó u or se ee omo se eot or { ω ω x x } : ω 5 emos ue u vrle letor es mele s se uee reresetr e l orm oe lgus uee ser gules u vrle letor u eso e rol to P Ω u rtó mele se uee er u uev vrle letor l ul tee roees terestes ue vmos esrrollr eó emos l eserz ool e u vrle letor o reseto u esomosó mele omo se reset e [] etoes Proosó e P Ω u eso e rol u esomosó e Ω vrles letors ue tom vlores e orm t toes: oe so osttes Ω 3 4 F oe es ostte etoes P F oe P F P F 5 eserz roe e l ole 6 es mele etoes rtulr 7 etoes 8 es eeete e es er eeete r etoes L emostró se uee ver e [4] 3 MARNGALA CRA FNA A otuó mos l eó e mrtgl lguos eemlos terestes e mrtgls srets ts lmete resetmos lguos resultos ue stse ests mrtgls eó 3 U suesó e vrles letors es u mrtgl o reseto l suesó e esomosoes s: es mele mé se suele er ue mrtgl es u emlo 4 e vrles letors eeetes étmete strus o P P

3 et et eh Año V No 4 Agosto e 009 Uvers eológ e Perer 3 Muestre ue: es u mrtgl oe es u mrtgl oe oluó Por eó es mele emostremos l roe e mrtgls emostremos Por eó es mele ue l sum e uoes meles es u uó mele Hemos uso el heho e ue es mele or lo tto omo so eeetes etoes tmé lo so or lo tto Aemás 0 emlo 5 e vrles letors ue stse 0 Muestre ue es u mrtgl oe ls uoes so uoes s oluó Como etoes es mele Veruemos l otr roe Como es mele etoes

4 4 et et eh Año V No 4 Agosto e 009 Uvers eológ e Perer Ahor Por hótess 0 luego 0 or lo tto Así ue u mrtgl Proosó 6 e u vrle letor u suesó e es esomosoes etoes mrtgl oe mrtgl es e est orm emostró es u Aemás to Por eó es mele Mostremos hor ue s es u mrtgl t etoes los elemetos tee l orm eeto U e ls rzoes or ls ue ls mrtgls srets ts tee muhs loes e l rol e otrs rms el oometo es or ue o exste orreló etre sus remetos este seto resetmos el sguete resulto: Proosó 7 es u mrtgl etoes o tee remetos e orreló s er s 0 emostró Por eó oseremos Luego u mrtgl etoes Por se 0 Aálogmete se emuestr ue 0 Por lo tto teemos Flmete omo es mele etoes Ahor 0 Por lo tto 0 0 sí ue 4 MPO PARO Presetmos e est seó l eó e temo omo lo he [ 3] e ro u resulto ue relo los temos e ro o ls mrtgls srets ts eó 8 e u esomosó e Ω U vrle letor { } : Ω ℵ se llm temo e ro o reseto l esomosó s { ω } ω : r too ℵ Proosó 9 e u suesó e vrles letor u temo e ro Muestre ue s

5 5 et et eh Año V No 4 Agosto e 009 Uvers eológ e Perer etoes mrtgl es u emostró e u temo e ro lo emos or e e o emos ls sguetes vrles letors: { } { } { } { } { } { } Ahor or hótess { } e uí { } Por eó luego { } { } { } { } Por eó P llmmos { } etoes r too P P sí Luego Ahor e uí teemos Aálogmete se lleg 3 Por lo tto oemos suoer ue r e e o etoes Flmete emos { } { } { } { } Por hótess teemos ue { } { } luego or lo tto teemos P o { } { } { } P { } P { } luego Por lo tto 3 CONCLUÓN es u mrtgl Ls olusoes el tro so ls sguetes: u vrle letor u suesó e esomosoes etoes to mrtgl tee l orm es u mrtgl etoes o tee remetos e orreló Flmete el resulto ms mortte es ue s teemos u suesó e vrles letor u temo e ro tl ue etoes 4 BBLOGRAFÍA es u mrtgl [] P rrol L Pro V Ques eorí e l Prol torl ítess A 997 [] M Muñoz L Blo trouó l teorí vz e l rol Uvers Nol e Colom Prmer eó 00 [3] A N hrev Prolt eo to Aem Press 975 [4] Wllms Prolt heor wth Mrtgles Cmrge Uverst Press 997

1 i. Hojas de Problemas Álgebra IX

1 i. Hojas de Problemas Álgebra IX Hojs e Polems Álge IX 7 Se A l ml e uoes :R * R es o log, " N R *{ R:>} Estu su eee lel e el R-eso etol AlR *,R Hll l mesó y u se el sueso que ege Soluó: Es log log log S m, y m so lelmete eeetes: α β

Más detalles

RESOLVIENDO PROBLEMAS DE MATEMÁTICA

RESOLVIENDO PROBLEMAS DE MATEMÁTICA Mtemát Fís Astoomí shom 6 ESOLVIENDO POBLEMAS DE MATEMÁTICA ESOLUCIÓN DE LOS POBLEMAS POPUESTOS POBLEMA 8 (6 Hll l eó el lg geométo e los tos ese oe se ee tz os tgetes qe fome ete sí áglo eto l v: SOLUCIÓN:

Más detalles

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes.

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes. Tem 6. Itegró 6. Cálulo e prmtvs. 6. Áre e tegrl ef. 6.3 El Teorem fumetl el álulo 6.4 Áre e u regó etre os urvs. 6.5 Cálulo e volúmees. 6.6 Logtu e ro superfe e revoluó. E.U.Polté e Sevll. Fumetos Mtemátos

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

1. ÁLGEBRA LINEAL Y VECTORES ALEATORIOS

1. ÁLGEBRA LINEAL Y VECTORES ALEATORIOS . ÁLGEBRA LINEAL Y VECTORES ALEATORIOS Vetores Ortogolzó de Grm-Shmdt Mtres ortogoles Atovlores tovetores Forms dráts Vetores mtres letors Mtrz de dtos DAGOBERTO SALGADO HORTA ALGEBRA LINEAL Vetores Mtrz

Más detalles

206 MÉTODOS NUMÉRICOS

206 MÉTODOS NUMÉRICOS 6 MÉTODOS UMÉRICOS.. Alguos hhos mortts r ls rs vs wto: ls sguts so lgus ls ros más mortts ls rs vs wto: (. S s u rmutó K ) ( ) K tos [ K ] [ K ] CASO PARTICULAR: [ ] [ ] ( Est ro s osu l u l olomo trolt

Más detalles

T. P es una partición de T y se P T n sí y sólo sí: una partición medible de T. Se denomina diámetro de un conjunto T i

T. P es una partición de T y se P T n sí y sólo sí: una partición medible de T. Se denomina diámetro de un conjunto T i ANALISIS MAEMÁICO II I.S.F.D. Nº 7 UNIDAD DIDÁCICA Nº: Estuo geerl e ls fuoes e R e R m ese el puto e vst el álulo tegrl erer ño Profesoro e Mtemát INEGRALES DE CAMPOS ESCALARES. Itegrles múltples. Defoes

Más detalles

Método del spline cúbico. Cuando un número grande de datos tiene que ajustarse a una curva suave, la interpolación de Lagrange no es adecuada.

Método del spline cúbico. Cuando un número grande de datos tiene que ajustarse a una curva suave, la interpolación de Lagrange no es adecuada. MÉTODO DEL PLINE CÚBICO PROGRAMACIÓN AVANZADA emestre 09- Método del sple úo. Cudo u úmero grde de dtos tee que justrse u urv suve l terpoló de Lgrge o es deud. Pr esto se emple el método del sple úo este

Más detalles

TEMA 6: TEORÍA DE RENTAS. RENTAS CONSTANTES ÍNDICE

TEMA 6: TEORÍA DE RENTAS. RENTAS CONSTANTES ÍNDICE Mtemáts Fers Prof. Mª Merees Rojs e Gr TEMA 6: TEORÍA DE RENTAS. RENTAS CONSTANTES ÍNDICE. CONCEPTO DE RENTA FINANCIERA... 2 2. ELEMENTOS DE UNA RENTA FINANCIERA... 2 3. CLASES DE RENTAS... 3 3.. SEGÚN

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS 1 Epresoes Algebrcs es l uó de úmeros y vrbles medte opercoes de sum, rest, multplccó, dvsó, poteccó y rdccó. Epresó lgebrc rcol: se llm sí quells e ls que ls vrbles está fectds

Más detalles

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1 PROBLEMS RESUELTOS Presetmos cotucó ls solucoes los problems,, del úmero de l Revst, que eví Crlos Mrcelo Css Cudrdo. Problem Resolver l ecucó e l cógt : (bsolutorl ufgbe, Bver, 87 Solucó l problem El

Más detalles

4 Lugar Geométrico de las Raíces.

4 Lugar Geométrico de las Raíces. ute: Lug Geométo e l Ríe L uó e lo olo e tem lele otee l fomó elevte e éte E efeto t e ét e uee olu e u etl teít ám etát E ete ítulo e ev el oeto e Lug Geométo e l Ríe omo el gáfo e l uó e lo olo e u tem

Más detalles

Utilizando la fórmula que nos proporciona el número de divisores se tiene que:

Utilizando la fórmula que nos proporciona el número de divisores se tiene que: Hoj de Prolems º Alger IV /. Hllr u úmero etero A que o teg ms ftores primos que, y 7, siedo demás que ª tiee divisores más que A y que ª tiee divisores ms que A. Clulr tmié l sum de todos los divisores

Más detalles

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores.

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores. Hojs de Prolems Estdístc I. Se cosder el expermeto letoro cosstete e trr tres ddos l re y otr los putos de ls crs superores. ) utos elemetos tee el espco de sucesos? ) lculr l proldd de scr l meos dos.

Más detalles

GUÍA DE EJERCICIOS III

GUÍA DE EJERCICIOS III Fult e Igeierí UCV Álger Liel Geometrí líti 5 Cilo Básio GUÍ DE EJECICIOS III rsformioes lieles: Demuestre e so si l trsformió el esio vetoril V e el esio vetoril W es liel e w : B oe B es g u mtri fij

Más detalles

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2.

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2. Hojs de Problems Algebr III 8. ) Demostrr que s es r, los úmeros turles y so rmos etre s. b) Demostrr que s m, etoces l ctdd de úmeros eteros ostvos dsttos de cero que o so myores que m y que o se dvde

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS NÚMEOROS COMPLEJOS Defcó: El cojuto de los úmeros complejos es C R R {(, / R y b R} C está formdo por todos los pres ordedos de úmeros reles etre los que defmos u relcó, l guldd, y dos opercoes brs que

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

Para mensajes: A este apunte se le efectuarán correcciones y agregados.

Para mensajes: A este apunte se le efectuarán correcciones y agregados. LGEBR Y GEOMETRI NLITIC - MTRICES putes e l Cáter lerto Serrtell Colorro: Crst Msett Ves Bergo Eó Prev CECN CECEJS CET Juí UNNOB Uvers Nol e Noroeste e l P e Bs s Pr meses: lerto_serrtell@hooomr este pute

Más detalles

Determinación del Número de Particiones de un Conjunto

Determinación del Número de Particiones de un Conjunto Determcó del Número de rtcoes de u Couto Lus E Ryber E el estudo de prtcoes estblecds e u couto A que posee elemetos se susct l cuestó del úmero totl de tles prtcoes Es evdete y el cálculo sí lo dc que

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

σ c de los conductores metálicos es alta,

σ c de los conductores metálicos es alta, EC3 ORIA DE ONDAS 4.5 GUÍAS DE ONDAS METÁLICAS CON CONDUCTORES REALES 4.5. Eeto e l outivi iit el outor e los s e propgió Tl oo se estleió e l seió 3.6. pr el so e ls líes e trsisió reles el eeto e l outivi

Más detalles

COSAS DE DIVISORES Y HOTELES

COSAS DE DIVISORES Y HOTELES COSAS DE DIVISORES Y HOTELES E est sesió trtremos de resolver el siguiete rolem: Prolem: El hotel de ls mil hitioes. Cuet ue e ierto ís hí u gr hotel ue teí 000 hitioes y otros ttos emledos. Estos, u dí

Más detalles

CAPÍTULO VIII APLICACIONES DE LA INTEGRAL

CAPÍTULO VIII APLICACIONES DE LA INTEGRAL PÍTULO VIII PLIIONES DE L INTEGRL 8. VOLÚMENES DE SÓLIDOS DE REVOLUIÓN o reó pl es r lreeor e eje e revoló eer sólo e revoló. L prmer reó reslt e rr reó pról lreeor el eje, metrs qe e el seo so se h ro

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA (Aputes s revsó pr oretr el predzje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Sumtor Pr represetr e form revd determdo tpo de sums, se utlz como símolo l letr greg sgm. Ejemplos.

Más detalles

Llamaremos términos amortizativos a las cuantías de los capitales financieros que componen la contraprestación: (a 1, a 2,, a n ).

Llamaremos términos amortizativos a las cuantías de los capitales financieros que componen la contraprestación: (a 1, a 2,, a n ). Tem 3 mortcó e prétmo Defcó y mgtue fumetle opercó e mortcó e prétmo e u opercó fcer e l ue u pero pretmt o creeor cocert etregr otr pero prettro o euor u eterm cutí e u mometo coro y el euor e compromete

Más detalles

{ } + S = = S, para S. a converge si su sucesión de sumas parciales converge, es decir,

{ } + S = = S, para S. a converge si su sucesión de sumas parciales converge, es decir, Esuel de Igeierí Cetro de Ciei Bási Cálulo de Vrile Rel Guí teóri Series Series Iiits: Deiiió: Se { } u suesió iiit. L epresió, se deoi serie iiit o serie y se deot por: { } S S S S S S S S - U serie es

Más detalles

TEORÍA DE RENTAS DISCRETAS Rentas Variables en Progresión Geométrica (teoría)

TEORÍA DE RENTAS DISCRETAS Rentas Variables en Progresión Geométrica (teoría) TEORÍ DE RENTS DISCRETS Rets Vrbles e Progresó Geométrc (teorí Profesor: Ju too Gozález Díz Deprtmeto Métodos Cutttos Uersdd Pblo de Olde www.clsesuerstrs.com RENTS VRIBLES EN PROG. GEOMÉTRIC VLORCIÓN

Más detalles

INICIO. Elaborado por: Enrique Arenas Sánchez

INICIO. Elaborado por: Enrique Arenas Sánchez INICIO Elbordo or: Erque Ares Sáchez EL PROMEDIO El cálculo del romedo de u lst de vlores [,, K,,, ], 2 K ormlmete se clcul medte l coocd exresó: m...() U form geerl r clculr el romedo de u lst

Más detalles

MMII_L1_c4: Ecuaciones en derivadas parciales lineales

MMII_L1_c4: Ecuaciones en derivadas parciales lineales MMII : Eoes e derds prles leles Gó: Est leó está dedd l eoes leles estdremos s ormló sobre todo ss propeddes oods de otrs eoes leles sts e sgtrs de mtemáts terores pero qe oedrá reordr trtr de espelzr

Más detalles

GUÍA EJERCICIOS: NÚMEROS NATURALES

GUÍA EJERCICIOS: NÚMEROS NATURALES UNIVERSIDAD ANDRÉS BELLO DEPARTAMENTO DE MATEMÁTICAS ÁLGEBRA FMM COORD. PAOLA BARILE M. GUÍA EJERCICIOS: NÚMEROS NATURALES PROGRESIONES ARITMÉTICA Y GEOMÉTRICA EJERCICIOS CON RESPUESTAS.- Verfque s ls

Más detalles

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica.

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica. INTRODUCCIÓN L MECÁNIC CUÁNTIC Prte : Fudmetos mtemátos Prte : Meá Cuát Prte : FUNDMENTOS MTEMÁTICOS Espos etorles ompleos de dmesó ft Operdores leles Represetó mtrl Proyetores utolores y utoetores Operdor

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Uversdad de los des Faultad de Ceas Eoómas y Soales Esuela de Estadísta Estruturas lgebraas Prof. Gudberto José Leó Ragel MÉRID, 2015 1 Profesor Gudberto Leó Teoría Estadísta I Uversdad de Los des - Faultad

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

PROBLEMAS RESUELTOS DE DINÁMICA DEL PUNTO

PROBLEMAS RESUELTOS DE DINÁMICA DEL PUNTO PROBLEMAS RESUELOS E INÁMICA EL PUNO Equpo oee: Aoo J. Brbero Grí Mro Herez Puhe Alfoso Cler Beloe PROBLEMA Sobre u puo erl e s k lee e reposo y que se esplz lo lro el eje X ú u fuerz vrble que, expres

Más detalles

INTEGRAL DEFINIDA INTRODUCCIÓN

INTEGRAL DEFINIDA INTRODUCCIÓN INTRODUCCIÓN U medo potete de l vestgcó e mtemátc, físc, mecác y otrs rms de l cec es l tegrl defd. El cálculo de áres lmtds por curvs, de ls logtudes de rcos, volúmees, trjo, velocdd, espco, mometos de

Más detalles

SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA

SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA AuldeMte.com SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA Breve reseñ históric: Los pitgóricos llmb trigulres los úmeros 3, 6, 0,,... e cosoci co l costrucció que prece e l figur. Se trt de u primer

Más detalles

Mg. Marco Antonio Plaza Vidaurre 1 LA TASA DE INTERÉS ANTICIPADA Y SUS APLICACIONES

Mg. Marco Antonio Plaza Vidaurre 1 LA TASA DE INTERÉS ANTICIPADA Y SUS APLICACIONES Mg. Mrco Atoio Plz Viurre LA TASA E ITERÉS ATICIPAA Y SUS APLICACIOES L ts e iterés veci es quell que se utiliz e u operció ficier cuy liquició se efectú l fil el u perioo y l ts e iterés ticip, ifereci

Más detalles

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica.

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica. INTRODUCCIÓN L MECÁNIC CUÁNTIC Prte : Fudmetos mtemátos Prte : Meá Cuát Prte : FUNDMENTOS MTEMÁTICOS Espos etorles ompleos de dmesó ft Operdores leles Represetó mtrl Proyetores utolores y utoetores Operdor

Más detalles

TEMA 7: RENTAS VARIABLES

TEMA 7: RENTAS VARIABLES Mtemáts Fers Prof. Mª Merees Rojs e Gr TEM 7: RENTS VRIBLES ÍNDICE. RENTS VRIBLES EN PROGRESIÓN GEOMÉTRIC..... RENT TEMPORL, POSPGBLE, INMEDIT Y ENTER...... CÁLCULO DEL VLOR CTUL...... CÁLCULO DEL VLOR

Más detalles

Tema 4 Empréstitos. Definición y magnitudes fundamentales

Tema 4 Empréstitos. Definición y magnitudes fundamentales Tem 4 Emprétto Defcó y mgtue fumetle U emprétto e u prétmo e gr cutí co u úco euor Eto omue Autóom Ayutmeto Ete Públc Socee prv etc. y u úmero elevo e pretmt termero fcero e verore prtculre. Se trt e u

Más detalles

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a 5 dsttos Cosecuetemete el cojuto de tods ls combcoes fes de dos putos R es tod l líe determd por estos dos putos metrs que el cojuto de tods ls combcoes coves es el segmeto de líe que ue y. Obvmete cd

Más detalles

APROXIMACION DE FUNCIONES

APROXIMACION DE FUNCIONES APROXIMACION DE FUNCIONES Metodos Numercos 6 Fmls de Fucoes Bses - Moomos : 3 - Trgoométrcs: sωt cosωt sωt... - Fs. Sle: olomos trozos - Fs. Eoecles: e e 4 Metodos Numercos 6 Iterolcó Suogmos teer u cojuto

Más detalles

APLICACIONES DE LA DIFERENCIAL

APLICACIONES DE LA DIFERENCIAL DEINICIÓN DE UNCIÓN DIERENCIABLE Se die que u uió es diereible e u puto si su iremeto puede esribirse de l orm g η es tl que g o depede de los iremetos η udo. Ejemplo: Determir si l uió es diereible. Clulemos

Más detalles

Formulario de matemáticas

Formulario de matemáticas Forlro tát lgr- Sgo (+) (+) = + (-) (-) = + (+) (-) = - (-) (+) = - (+) / (+) = + (-) / (-) = + (+) / (-) = - (-) / (+) = - Fro Proto otl ftorzó ( ) ( ) ( ) ( ) ( ) ()() ()( ) ( )( ) ()( ) L lo ot rl log

Más detalles

Electrónica Básica. Álgebra de Boole. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC

Electrónica Básica. Álgebra de Boole. Electrónica Digital. José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC Eletrói Bási Álger de Boole Eletrói Digitl José Rmó Sedr Sedr Dpto. de Igeierí Eletrói y Automáti ULPGC 2 Ciruito de omutió p.e. sistem de otrol idustril sistem teleóio ordedor et. El Álger de Boole sirve

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEAS DE ATEÁTICAS Oposoes de Seudr TEA 9 EL PROBLEA DEL CÁLCULO DEL ÁREA. INTEGRAL DEFINIDA.. Itroduó.. Deó de tegrl de Rem... Prtoes... Sum superor y sum eror..3. Itegrl de Rem. 3. Propeddes de l tegrl.

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II UED FUTD DE. EOÓIS Y ERESRIES TEÁTI DE S OERIOES FIIERS II URSO / l uevo Eme e JUIO Dí // l ho TERI UXIIR: lulo fe DURIÓ: ho. El bo X oee u pétmo hpoteo l S. Y. utí el ptl peto e el % el peo e tó el po

Más detalles

a, b y POSITIVA, se puede hacer una aproximación del área

a, b y POSITIVA, se puede hacer una aproximación del área BLOQUE III: Aálss -ÁREA BAJO UNA CURVA Tem 5: Itegrles defds Dd u fucó (, y POSITIVA, se puede hcer u promcó del áre compredd etre el eje X y l gráfc de l fucó e el tervlo, del sguete modo: ) Se dvde el

Más detalles

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ UNIVERSIDD DE GRND ONENCI DE MTEMÁTICS LICDS LS CIENCIS SOCILES ONENTE: ROF FRNCISCO JIMÉNEZ GÓMEZ RUE DE CCESO R MYORES DE ÑOS CONVOCTORI DE ENUNCIDOS Y RESOLUCIÓN DE LOS EJERCICIOS ROUESTOS EN MTEMÁTICS

Más detalles

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante Uversdd de Stgo de Chle Fcultd de Cecs Deprtmeto de Mtemátcs y Cecs de l Computcó Aputes y Ejerccos RESUMEN DE CONTENIDOS. Recordr: Proceso de ortogolzcó de Grm-Schmdt: Se defe, e prmer lugr, el operdor

Más detalles

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ]

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ] TCNOLOGÍ DL HBL. CUSO 9/ TM : PDICCIÓN LINL. Los vlores de se uede romr or u combcó lel de ls últms muestrs. co.. Método de l utocorrelcó. rror e Mmzdo el error cudrátco medo se clcul los coefcetes : e

Más detalles

UNIVERSIDAD DE CONCEPCIÓN

UNIVERSIDAD DE CONCEPCIÓN .5. SERIES DE FOURIER DE SENOS Y DE COSENOS. Es clro que si f SC[-,] es u fució pr, etoces (9) fx ( ) = + cosx, (CM) SERIE DE FOURIER DE COSENOS (SFC) = co () = f ( x )cos x dx, =,,,3,... Si f SC[-,] es

Más detalles

3. SERIES DE FOURIER DE SENOS Y DE COSENOS. Es claro que: Si f SC[-π,π] es una función impar, entonces. cosnx, (CM) SERIE DE FOURIER DE COSENOS (SFC)

3. SERIES DE FOURIER DE SENOS Y DE COSENOS. Es claro que: Si f SC[-π,π] es una función impar, entonces. cosnx, (CM) SERIE DE FOURIER DE COSENOS (SFC) 3 SERIES DE FOURIER DE SENOS Y DE COSENOS Es clro que: Si f SC[-,] es u fució pr, etoces (9) fx ( ) = + cosx, (CM) SERIE DE FOURIER DE COSENOS (SFC) = co () = f(x)cosxdx, =,,,3, Si f SC[-,] es u fució

Más detalles

INTEGRAL DEFINIDA. b A =, es decir, la tercera parte 3 1.- INTRODUCCIÓN

INTEGRAL DEFINIDA. b A =, es decir, la tercera parte 3 1.- INTRODUCCIÓN INTEGRAL DEFINIDA.- INTRODUCCIÓN E este tem estudremos u cocepto uevo, el de tegrl defd. Auque será ecesro defrl de form eseclmete complcd, l tegrl vee formlzr u cocepto secllo, tutvo: el de áre. Ahor

Más detalles

Sucesiones de números reales

Sucesiones de números reales Tem 5 Sucesioes de úmeros reles Defiició 5.1 Llmremos sucesió de úmeros reles culquier plicció f: IN IR y l represetremos por { } =1, dode = f(. Por comodidd, diremos tmbié que l sucesió es el cojuto ordedo

Más detalles

TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7

TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7 TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7 Valuaió de u boo e ua feha etre uoes E lo que hemos isto hasta aquí sobre la determiaió del reio de u boo o uó hemos osiderado eriodos omletos, es deir, el úmero

Más detalles

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación USACH ÁLGEBRA Gbrel Rbles R. Uversdd de Stgo de Chle Fcultd de Cec Depto. Mtemátc y Cec de l Computcó Prof. Gbrel Rbles R. SUMATORIAS EJERCICIOS RESUELTOS: Clculr: ) ) b) [ ) ) ] c) j j j d) el vlor de

Más detalles

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es: POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble

Más detalles

Definimos renta financiera como un conjunto de capitales que han de hacerse efectivos en determinados vencimientos.

Definimos renta financiera como un conjunto de capitales que han de hacerse efectivos en determinados vencimientos. Te 3 lorcó e Rets lorcó e rets Defos ret fcer coo u cojuto e cptles que h e hcerse efectvos e eteros vecetos. (, t, ( 2, t 2,, (, t Llreos téros e l ret ls cutís e los cptles fceros que copoe l ret (,

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

PRODUCTO TENSORIAL DE ESPACIOS VECTORIALES

PRODUCTO TENSORIAL DE ESPACIOS VECTORIALES PRODUCTO TENSORIL DE ESPCIOS ECTORILES Poduco Teol El Fuo Poduco Teol 3 Poedde del Poduco Teol 4 Ále Teol de u Eco ecol 5 El Fuo Ále Teol Poduco Teol: Codeemo lo eco vecole oe el cueo comuvo K e χ l ceoí

Más detalles

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr . OPERIONES ON MRIES.. Sum de mtrices Pr oder sumr dos mtrices ésts debe teer l mism dimesió. Etoces se sum térmio térmio: b b m m m Proieddes de l sum de mtrices: socitiv: omuttiv: Elemeto eutro: L mtriz

Más detalles

a se denomina serie a es convergente y SERIES = si r <1 S n La suma de los términos de una sucesión infinita { } n n=1 infinita o simplemente serie

a se denomina serie a es convergente y SERIES = si r <1 S n La suma de los términos de una sucesión infinita { } n n=1 infinita o simplemente serie SERIES L sum de los térmios de u suesió ifiit { } = ifiit o simplemete serie se deomi serie Y se represet o el símbolo = Defiiió: = 4 KK Dd l serie = ésim sum pril = 4 K K, se desigrá S su S = = = 4 K

Más detalles

Métodos Numéricos 06/09/2017

Métodos Numéricos 06/09/2017 Métodos Numérios 6/9/7 SOLUCION DE ECUACIONES NO LINEALES Clsiiió de Métodos METODO DE BISECCION Por ejemlo: = 6 + 5 = 5 6 + = se - e = - / = l 6 - k = Métodos Numérios 7 De itervlo Aiertos Gráio Biseió

Más detalles

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES VALORES ABSOLUTOS Defiició: si 0 =, si < 0 = Por lo tto 0 R Teorem 2 = 2 Demostrció: si 0 2 = 2, si < 0 2 = ( ) 2 = 2 PROPIEDADES. =. = + + (desiguldd trigulr) = Teorem x x Demostrció: x x 2 2 x 2 2 x

Más detalles

ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS

ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS TEMA 5: RENTA. INTRODUCCIÓN Llmmos ret u sucesó de cptles que se hce efectvos e vecmetos peródcos. Ejemplo: lquler, slros, préstmos, etc. A cd uo de estos cptles se le deom térmos o ulddes (A. Llmmos durcó

Más detalles

4ª Etapa. Contaminación de Alimentos

4ª Etapa. Contaminación de Alimentos 4ª Etp Cotmcó de Almetos *Cotmcó de lmetos. Almeto cotmdo: *lterdo *Adulterdo *Geuo,etc. Tpos de Cotmcó: * Bológc * Químc * Físc 3 3 Almeto cotmdo: *Alterdo: *Cotmdo: *Adulterdo: Almeto que h sufrdo, por

Más detalles

C n i V0 V10 V'0 V'10 1.000 10 0,05 7721,73493 12577,8925 8107,82168 13206,7872

C n i V0 V10 V'0 V'10 1.000 10 0,05 7721,73493 12577,8925 8107,82168 13206,7872 9. lcúlese los vlores cl y fl de u ret dscret, medt, formd por térmos de cutí. y vlord u tto perodl del %. Dstgur los csos prepgble y pospgble. Solucó: 7.7,7 ;.77,9 ; (pospgble).7, ;.,79 ; (prepgble).....

Más detalles

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2 POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel x es: f x = x + x + + x + x+, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior. Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los

Más detalles

H con H conjunto recibe el nombre de sucesión de elementos de H. Vamos a centrarnos en las sucesiones de números reales.

H con H conjunto recibe el nombre de sucesión de elementos de H. Vamos a centrarnos en las sucesiones de números reales. uesoes Título: uesoes. Tget: Pofesoes e Mteáts. Asgtu: Mteáts. Auto: El Olvá Clz Le e Mteáts Pofeso e Mteáts e Euó eu. UCEIONE. TÉRMINO GENERAL Y FORMA RECURRENTE Vos estu u tpo e fuoes uyo oo e efó es

Más detalles

D E T E R M I N A N T E S M A T R I Z I N V E R S A

D E T E R M I N A N T E S M A T R I Z I N V E R S A º DE BACHILLERATO DETERMINANTES D E T E R M I N A N T E S ----------- M A T R I Z I N V E R S A DETERMINANTES I. Determites. II. Primers pliioes de los determites. I. Determites.. Defiió álulo de u determite.

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

C A P Í T U L O IV F A M I L I A S

C A P Í T U L O IV F A M I L I A S C Í T U L O V F M L S E teorí tutv de coutos se dce que u ml es u couto cuos elemetos tmbé so coutos Se hbl de u ml cudo se tee u couto que se llm couto de ídces cd elemeto se le sg u couto Como e uestr

Más detalles

Dado el sistema de ecuaciones lineales de la forma

Dado el sistema de ecuaciones lineales de la forma Aálss del Error e Solucó de Sstems de Ecucoes Leles Ddo el sstem de ecucoes leles de l form R A b, dode A ; b R E reldd teemos: A δa δ b δb A Aδ δa δa δ A δb S desprecmosδa δ : δ A - δb δa Métodos Numércos

Más detalles

3. Unidad Aritmética Lógica (ALU)

3. Unidad Aritmética Lógica (ALU) 3. Udd rtmétc Lógc (LU) bordremos los spectos que permte l mplemetcó de l rtmétc de u computdor, trbuto fucol de l Udd rtmétc Lógc (LU). Prmero se revstrá lo relcodo l form de represetr los úmeros como

Más detalles

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real.

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real. RADICALES Etre los úeros reles se euetr los rdiles, ue se uede exresr oo ríz de u ídie de u úero rel. Ríz eési de u úero rel. Si R y Ν, o, direos ue l ríz eési de es u úero rel r y lo otreos sí: r, si

Más detalles

Unidad 8. Matrices. Tema 8. Matrices.

Unidad 8. Matrices. Tema 8. Matrices. U. Mres Tem. Mres.. Defó e Mres pos e Mres. Operoes o Mres.. Igul e Mres.. Sum e Mres.. Prouo e u Mr por u úmero (eslr). Prouo e Mres.. Prouo geerl e Mres.. Prouo e Mres urs. Trsposó e Mres. Mres smérs

Más detalles

Olimpiadas. Internacionales

Olimpiadas. Internacionales ble e L Olp Iele De Fí Jé Lu Heáe ée uí L ll 8 Jé Lu Heáe ée, uí L ll, 8 XXX OLIID INERNCIONL DE FÍSIC. CORE DEL SUR. I.-UN CONDENSDOR ING-ONG U e e e pl ule plel ee í, e R el e pl y l ee ell, uplée que

Más detalles

el blog de mate de aida CSI: sistemas de ecuaciones. pág

el blog de mate de aida CSI: sistemas de ecuaciones. pág el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i

Más detalles

GEOMETRÍA ANALÍTICA - SECCIONES CÓNICAS

GEOMETRÍA ANALÍTICA - SECCIONES CÓNICAS GEOMETRÍA ANALÍTICA SECCIONES CÓNICAS PARÁBOLA ELIPSE p + oe + M(0, ) p F(0, p) V P (, p) P(, ) V(, 0) F(, 0) F(, 0) V(, M(0, ) HIPÉRBOLA oe + W(0, ) F(, 0) F(, 0) V(, 0) V(, 0) W(0, ) fe mejo e FORMULAS

Más detalles

el blog de mate de aida CSII: derivadas

el blog de mate de aida CSII: derivadas el blo de mte de id CSII: derivds Pá. TASAS E VARIACIÓN L siuiete tbl orece el úmero de cimietos e cd mes lo lro de u ño e u determid poblció: Meses 7 8 Ncimietos 7 8 8 8 7 Pr sber, por ejemplo, cómo vrido

Más detalles

al suceso la moneda elegida es la i, donde i puede ser 1, 2 ó 3. Entonces, M

al suceso la moneda elegida es la i, donde i puede ser 1, 2 ó 3. Entonces, M Hojs de rolems Estdíst IV 4. Teemos tres moeds ue llmremos M, M, M. L moed M est eulrd. L moed M est rgd y, l lzrl, es dos vees más fál ue slg r ue ruz. L moed M est rgd y, l lzrl, ree r o roldd ¼. S elegmos

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Movimientos I. 1 Qué fuerzas actúan sobre los extremos de la cuerda de la figura?

IES Menéndez Tolosa Física y Química - 1º Bach Movimientos I. 1 Qué fuerzas actúan sobre los extremos de la cuerda de la figura? IES Meédez Tolos ísic y Químic - 1º Bch Movimietos I 1 Qué fuerzs ctú sobre los extremos de l cuerd de l figur? Actú ls fuerzs T1 y T, que so ls fuerzs que m1 y m ejerce respectivmete sobre l cuerd, es

Más detalles

z Gráfica de f . Llamamos partición P al conjunto de puntos tales que:

z Gráfica de f . Llamamos partición P al conjunto de puntos tales que: Prof nre Cmpllo nálss Mtemáto II Integrles oles Consermos un funón f : R R, efn ot en el rento retngulr [, ] [, ] enomnmos [, ] [, ] Gráfmente poemos onserr l sguente stuón: uo z Gráf e f Reoremos qué

Más detalles

TEMA 5 VALORACIÓN FINANCIERA DE RENTAS (II)

TEMA 5 VALORACIÓN FINANCIERA DE RENTAS (II) Fcultd de CC.EE. Dpto. de Ecoomí Fcer I Mtemátc Fcer Dpotv TEMA 5 VALORACIÓN FINANCIERA DE RENTAS (II). Ret cotte temporle y perpetu. 2. Ret dferd y tcpd 3. Ret vrble e progreó geométrc y rtmétc Fcultd

Más detalles

FUNDAMENTOS DE ÁLGEBRA PARA INGENIERÍA

FUNDAMENTOS DE ÁLGEBRA PARA INGENIERÍA Edtorl de l Uversdd Teológ Nol FUNDAMENTOS DE ÁLGEBRA PARA INGENIERÍA Dr Adr M. C Ig. Alfredo Ros Lgrde Coloró: Ig. Lur Gels Deprtmeto de Ces Báss Fultd Regol Geerl Pheo Uversdd Teológ Nol - U.T.N. Arget

Más detalles

INTRODUCCION AL ALGEBRA.

INTRODUCCION AL ALGEBRA. INTRODUCCION AL ALGEBRA. 6- COMBINATORIA. Aputes de l Cátedr. Ves Bergoz, Alerto Serrtell. Colorró: Crst Mscett Edcó Prev CECANA CECEJS CET Juí. UNNOBA Uversdd Ncol de Noroeste de l Pc. de Bs. As. Pr esjes:

Más detalles

Resolución de sistemas de congruencias

Resolución de sistemas de congruencias Resolucó de sstems de cogruecs E este prtdo veremos cómo utlzr l rtmétc modulr pr resolver u problem muy tguo, coocdo como problem cho de los restos, que reformulremos hor utlzdo el leguje modero de ls

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

6. INTERPOLACIÓN POLINOMIAL: SPLINES

6. INTERPOLACIÓN POLINOMIAL: SPLINES 6. INTERPOLACIÓN POLINOMIAL: SPLINES Jorge Edurdo Ortz Trvño jeortzt@unl.edu.o http:/www.doentes.unl.edu.o/jeortzt/ Coeentes de un polnomo de nterpolón Un método dreto pr lulr los oeentes de un polnomo

Más detalles

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores.

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores. Tem : Itegrcó umérc Tem : Itegrcó ó umérc Prolem Fórmuls de cudrtur. Fórmuls de Newto-Cotes. Fórmuls del trpeco Smpso. Errores. Clculr l sguete tegrl: e d Usremos l tegrcó umérc cudo, por el motvo que

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

tiene derivada continua hasta de orden 1

tiene derivada continua hasta de orden 1 Cálulo Numério Progrmió Apli INTERPOLACIÓN SEGMENTARIA O SPLINES L otruió e poliomio e iterpolió e gro lto uque utifile teórimete plte muo prolem Por u lo, l form e l fuió poliómi e gro lto meuo o repoe

Más detalles

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID / Grl. Ampudi, 6 Teléf.: 9 5-9 55 9 ADRID FBRRO 5 UNIVRSIDAD PONTIFIIA D SALAANA ATÁTIAS DISRTAS FBRRO 5 (TARD) PROBLA : Se cooce el siguiete comportmieto de Luis e u resturte l que v comer: - No es verdd

Más detalles

RACCONTO SOBRE TÉCNICAS DE CONTEO

RACCONTO SOBRE TÉCNICAS DE CONTEO TC RACCONTO SOBRE TÉCNICAS DE CONTEO Asocicioes de opcioes idepedietes TC I Supógse u fáric de utomóviles que ofrezc ls siguietes opcioes idepedietes: Opció α: Motor ft, gs, o diesel (3 opcioes). Opció

Más detalles

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b.

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b. Visulizión de triángulos Curso de Mtemátis pr Físi Curso de Mtemátis pr Físi Físi I, vi@ Internet 2004 B A C Físi I, vi@ Internet 2004 Visulizión de triángulos Fijémonos en un triángulo ulquier. Curso

Más detalles