Universidad de Chile Facultad de Ciencias Departamento de Física Electromagnetismo
|
|
- Celia Roldán Carrasco
- hace 5 años
- Vistas:
Transcripción
1 Universi e hile Fcult e iencis Deprtmento e Físic Electromgnetismo orrección Tre N o 2 Profesor: Pero Mirn Pulic el e Aril Ayuntes: Mnuel Rmírez Griel Román. ) Semos que l cpcitnci equivlente pr un conjunto e cpcitores será: pr n cpcitores en prlelo y eq = n, ) = , 2) eq 2 3 n pr n cpcitores en serie. Entonces, en primer lugr, seprremos nuestro circuito en sectores que nos permitn ir sumno los cpcitores y se en serie o prlelo según correspon. Llmemos sectores A, B y los siguientes: A B Figur : ircuito con sectores A, B y. omo poemos ver en l figur, tnto en el sector A como en el B se encuentrn un cpcitor y uno 2 en serie, por lo tnto, usno l ecución 2): Luego, eqa = + 2 =
2 eqa = = eqb. 3) En cmio, en el sector se encuentrn os cpcitores 2 en prlelo, por lo que usremos l ecución ), entonces: eq = = ) Vemos como se ve nuestro circuito consierno los cpcitores equivlentes encontros, D eq A 3 eq B eq Figur 2: ircuito con sector D. omo poemos ver, el sector D posee tres cpcitores en prlelo, entonces: eqd = eqa eqb. 5) Finlmente, nos quen os cpcitores en serie: eqt = eqd + eq = eqd + eq eq eqd, por lo tnto, el cpcitor equivlente totl el circuito es: eqt = eqd eq eq + eqd. 6) Finlmente, l reemplzr los tos numéricos en l ecución 6), se otiene que: eqt = 6, 06 [µf ]
3 ) Por efinición semos que Q = V ; luego, Q T otl = eqt V T otl. Ahor, como l crg es igul pr toos los cpcitores conectos en serie, Q T otl = Q Sector = Q SectorD, luego, Q SectorD = eqt V T otl. 7) Aemás Q SectorD = eqd V SectorD. 8) Igulno 7) con 8), eqt V T otl = eqd V SectorD V SectorD = eqt V T otl eqd. 9) omo en un circuito e cpcitores en prlelo l iferenci e potencil es el mismo pr c cpcitor, V SectorD = V 3. Entonces, Finlmente, reemplzno 9) en 0): Q 3 = 3 V SectorD. 0) Q 3 = 8, [] 2. ) Anlicemos el prolem como si fuern un pr e cpcitores conectos en prlelo, uno e ncho x con un ieléctrico e constne κ y otro e ncho l x y con vcío entre ls plcs, mos conensores e ncho. De est mner, l cpcitnci totl estrá etermin por, ) Semos que = ieléctrico + vcío = x κε 0 + ε 0 l x) = ε 0 κx + l x) = ε 0 xκ ) + l) ) y E = Q2 2, 2)
4 luego, reemplzno l ecución 3) en 2) otenemos Q = V, 3) sí, reemplzno finlmente l ecución ) en 4) V )2 E = 2 E = V 2, 4) 2 E = ε 0 2 xκ ) + l) V 2. 5) 3. ) Pr resolver este prolem primero usquemos l cpcitnci e un elgo conensor e plcs prlels configuro e l mner siguiente: Figur 3: Delgo cpcitor e plcs prlels Los cpcitores que presentn est configurción se pueen nlizr como un pr e conensores en serie, por lo tnto su cpcitnci viene por eq = 2 2 +, 6) one y 2 son ls cpcitncis e los conensores con constntes ieléctrics κ y respectivmente. Por otro lo, semos = κ ε 0 l x h 7) 2 = ε 0 l x h 2 8) Luego, reemplzno ls ecuciones 7) y 8) en 6) tenemos
5 eq = eq = ) l x l x κ ε 0 h ε 0 h 2 l x + κ ε 0 h κ ε 2 0 l2 x) 2 ε 0 l x h 2 ) h h 2 ε 0 l x κ h + h 2 eq = κ h h 2 ε 0 l x h h 2 κ h 2 + h ε 0 l κ eq = x 9) κ h 2 + h Ahor, consieremos el prolem inicil e l siguiente mner: Figur 4: pcitor e plcs prlels con ieléctricos κ y De l figur 4 poemos esprener que l segmentr verticlmente el conensor en elgos elementos, otenemos cpcitores compuestos por os ieléctricos, configuros e l mism mner que en el plntemiento que hicimos inicilmente. Luego, llmemos l cpcitnci el elgo conensor, entonces su vlor estrá etermino por l ecución 9), one De mner que h = L x h 2 = L x x = x l = W = ε 0 W κ κ L x) + L = ε 0W L κ x x) κ x + L x x
6 omo LW es igul l áre A) el cpcitor completo, poemos escriir = κ ε 0 A x 20) κ )x + L Así, como toos estos elgos conensores se encuentrn en prlelo, el vlor e l cpcitnci complet será l sum lgric e ls cpcitncis pequeñs pr toos los vlores e x entre 0 y L. Por lo tnto l cpcitnci complet f ) será, f = L 0 f = κ ε 0 A f = κ ε 0 A f = κ ε 0 A L f = κ ε 0 A κ ) ln 0 κ )x + L x [ ln κ )x + L) κ [ ] lnκ L) ln L) κ ) κ ] L 0 2) Luego multiplicno l ecución 2) por κ 2 κ 2 κ ε 0 A f = κ ) ln =, otenemos finlmente ) Ahor vemos que sucee cuno κ = = κ. Pr resolver este prolem vemos primero el vlor que tom el siguiente límite: κ ) 22) lnx) lím x x lím x lím x lnx) x lnx) x lnx)) = lím x x ) /x = lím x =, 23) por lo tnto, cuno κ = en otrs plrs κ / = ) se tiene e l ecución 22) que, ) f = κε 0A lím ln κ κ κ / f = κε 0A Lo que finlmente coincie con el vlor e l cpcitnci cuno tenemos un único ieléctrico e constnte κ.
7 4. En primer lugr, eemos seprr nuestro circuito en sectores, como muestr l figur 5, que nos permitn ir sumno los cpcitores en serie y prlelo según correspon. A B Figur 5: ircuito con sectores A, B y. Los tres sectores seleccionos en l figur preceente corresponen cpcitores conectos en serie, por lo tnto eeremos usr l ecución 2) pr encontrr sus cpcitores equivlentes, es ecir, por lo tnto, A = + A = 2, Y por el otro lo, A = 2 = B.. 24) entonces, = + + = 3, Ahor, nuestro circuito se verá como lo muestr l figur 6: = 3. 25) El sector D equivle os cpcitores en prlelo, por lo que usno l ecución ) y reemplzno 24) en ell, se otiene que:
8 D A B Figur 6: ircuito con sector D. D = + A = + 2 = = ) Entonces nuestro circuito se porí representr e l siguiente form: E D B Figur 7: ircuito con sector E. omo peemos ver en l figur 7, el sector E corresponen tres cpcitores en serie, es ecir, hor, si reemplzmos 26) en 27), = E + + D = 2 +, 27) D E = = 8 3.
9 Luego, E = ) Finlmente, nuestro circuito se puee representr como lo muestr l figur 8: Eq E B Figur 8: ircuito finl. Poemos ver que los cpcitores se encuentrn en prlelo, por lo tnto, Reemplzno 28), 24) y 25) en 29), otenemos Eq = E + + B +. 29) por lo tnto, Eq = = 24 Eq =
Toda expresión que conste de una expresión algebraica en su denominador y en el numerador.
TEMA : Epresiones Rcionles Contenio TEMA H: Epresiones Rcionles... Introucción epresiones rcionles... PRÁCTICA: Inic los vlores que no formn prte el conjunto solución... Simplificr Epresiones Rcionles...
CAPÍTULO V CONDENSADORES Y DIELECRICOS
J.Pozo y R.M. horbjin. PÍTULO ONDNSDORS Y DILRIOS 5.. Definición e cpci o cpcitnci Si os conuctores islos se conectn un fem como se muestr en l Fig., se prouce un iferenci e potencil entre ellos; pr proucir
CONJUNTO DE LOS NÚMEROS RACIONALES. Definición El conjunto cuyos elementos son los números que pueden representarse de la ,,,, 3,
Mtemátic 8 vo ño Pág. CONJUNTO DE LOS NÚMEROS RACIONALES Los números rcionles se escrien e l siguiente form: ; one es el numeror es el enominor Aemás, l expresión se lee como: sore y signific que está
1.- VECTORES EN EL PLANO. OPERACIONES. Cualquier vector v tiene dos componentes (v 1. v = (4,3) 1 2 1 2 u v. u = v (u, u ) = (v, v )
º Bchillerto Mtemátics I Dpto e Mtemátics- I.E.S. Montes Orientles (Iznlloz-Curso 0/0 TEMA 8.- GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS.- VECTORES EN EL PLANO. OPERACIONES. Concepto e vector Un
SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I
Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.
BUC: Física II. Práctica N 0 3: Carga eléctrica y ley de Coulomb.
BUC: Físic II. Práctic N 0 3: Crg eléctric y ley e Coulomb. Problem 1: Un crg puntul e 3. 10-6 C está un istnci e 1.3 cm e otr e crg -1.48 10-6 C. Ubicr ests crgs en un sistem e referenci rbitrrio, y clculr
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.
. Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto
Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.
Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.
Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).
64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls
El conjunto de los números naturales tiene las siguientes características
CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
PRÁCTICA 5. Corrección del factor de potencia
PRÁTIA 5 orrección del fctor de potenci Objetivo: Determinr el fctor de potenci de un crg monofásic y de un crg trifásic Efectur l corrección del fctor de potenci de un crg monofásic y de un crg trifásic.
2. Impedancia Serie de Líneas de Transmisión
ANEXO. Impenci Serie e Línes e Trnsmisión Prolem # Un conuctor e luminio ientifico con el nomre e Mgnoli est compuesto por 7 hilos conuctores e iámetro 0.606 pulgs. Ls tls crcterístics pr conuctores e
TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1
TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz
TEMA 3: PROPORCIONALIDAD Y PORCENTAJES.
TEM : PROPORCIONLIDD Y PORCENTJES.. Conceptos de Rzón y Proporción. Se define l RZÓN entre dos números como l frcción que se form con ellos. Es decir l rzón entre y es:, con 0. De quí que ls frcciones
CUADRILÁTEROS. ELEMENTOS BÁSICOS Son los mismos que en un polígono cualquiera, excepto el triángulo, ya que un triángulo no tiene diagonales.
DEFINICIÓN Un curilátero es un polígono cerro compuesto por cutro los. 1 EEMENTOS ÁSICOS Son los mismos que en un polígono culquier, excepto el triángulo, y que un triángulo no tiene igonles. VÉRTICES:
TRIGONOMETRÍA LEY DE SENOS Y DE COSENOS página 89
TRIGONOMETRÍA LEY DE SENOS Y DE COSENOS págin 89 págin 90 INSTITUTO VALLADOLID PREPARATORIA SEGUNDO SEMESTRE 5 RESOLUCIÓN DE TRIÁNGULOS 5.1 CONCEPTOS Y DEFINICIONES Toos los triángulos constn e seis elementos
4.1 ÁREAS DE REGIONES PLANAS 4.2 VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN 4.3 LONGITUD DE UNA CURVA PLANA 4.4 VALOR MEDIO DE UNA FUNCIÓN
Cp. pliccione e l Integrl. ÁRES DE REGIONES PLNS. VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN. LONGITUD DE UN CURV PLN. VLOR MEDIO DE UN FUNCIÓN Objetivo: Se pretene que el etuinte clcule áre e regione pln generle,
Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso
Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n
Aplicaciones de la integral
5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle
CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES
Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.
1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN
http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el
La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.
INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje
Práctica 3. Convertidores de códigos
. Objetivo Práctic Convertiores e cóigos El lumno construirá un circuito convertior e cóigo y esplegrá su resulto en un exhibior e siete segmentos.. Anteceentes L informción en un sistem igitl se proces
x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0
Ecuciones cudrátics con un incógnit Sen, 1 y los tres números nturles consecutivos uscdos. El prolem nos indic que ( 1 ) ( ) 365 Un número con misterio! El número 365 tiene l crcterístic de ser l sum de
5. PUNTOS, RECTAS Y PLANOS DEL ESPACIO TRIDIMENSIONAL
EL ÁLGEBRA GEOMÉTRICA DEL ESACIO Y TIEMO 6 5. UNTOS RECTAS Y LANOS DEL ESACIO TRIDIMENSIONAL L plicción fín En el espcio geométrico R e puntos se efine l plicción fín como l trnsformción geométric que
LA TUBERÍA DE PRESIÓN
LA TUBERÍA DE PRESIÓN INTRODUCCIÓN Tmbién enomins tuberís forzs, ls tuberís e presión tienen como objeto conucir el gu ese el punto en el cul se tiene un grn energí potencil, ese el emblse en lgunos csos,
2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR
1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid
Aplicaciones de la derivada (II)
UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre
Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.
Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por
Hl = {P = (x, y) 1 d(p, Fl) - d(p, 4) = -2a} 4.2 NOTACION Y PROPIEDADES
4.1 DEFINICION. Un hipérol es el conjunto de todos los puntos del plno euclideno R~ tles que que l diferenci de sus distncis dos puntos fijos es en vlor soluto un constnte. Así, si F, y F, son dos puntos
LOS CONJUNTOS NUMÉRICOS
Pontifici Universidd Ctólic de Chile Fcultd de Educción Nivelción de Estudios pr Adultos CREA Educción Mtemátic Nivel 2 Profesor Jun Núñez Fernández LOS CONJUNTOS NUMÉRICOS Como se mencionó en l clse nterior,
PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS
POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere
PROBLEMAS DE ÁLGEBRA DE MATRICES
Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese
Matrices y determinantes
Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)
Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales.
Clse del Miércoles 3 de Junio de 22: Ecuciones Integrles. Introducción En est clse estudiremos ls ecuciones integrles de Fredholm y de Volterr. -+ - Empezremos por considerr l ecución de Fredholm de segund
LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así
LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest
Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.
Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción
PROBLEMAS DE OPTIMIZACIÓN
PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito
La máquina de corriente continua
Cpítulo I L máquin de corriente continu L máquin de corriente continu.. Introducción. Ls máquins de corriente continu (cc) se crcterizn por su verstilidd. Medinte diverss combinciones de devndos en derivción
TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1
TEMA DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente modo:
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida
Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función
2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.
. Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )
NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007
NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,
OPERACIONES CON FRACIONES
LEY DE SIGNOS OPERACIONES CON FRACIONES SUMA Y RESTA: Si se sumn dos números con el mismo signo, se sumn los vlores solutos y se coloc el signo común (+) + (+) = + 8 (-) + (-) = - 8 Si se sumn dos números
SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton
SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción
El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C
El Dipolo Plegdo Lbortorio de Electrónic de Comunicciones Dpto. de Señles y Comunicciones, U.L.P.G.C 1 Introducción Un nten muy utilizd en l práctic como receptor es el dipolo plegdo. Este tipo de dipolo
Relación entre el cálculo integral y el cálculo diferencial.
Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd
Tema 2 CIRCUITOS DE CORRIENTE CONTINUA
Tem CCUTOS DE COENTE CONTNU Lección : esistenci eléctric..- esistenci. Definición, representción y modelo mtemático..- Fuentes de corriente continu: tensión e intensidd...- Fuentes reles..- Conversión
accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS
Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función
GEOMETRÍA ANALÍTICA LA HIPÉRBOLA. 1. Ecuación de la hipérbola horizontal con centro en el origen
LA HIPÉRBOLA CONTENIDO. Ecución de l hipérol horizontl con centro en el origen. Análisis de l ecución. Asíntots de l hipérol Ejemplo 3. Ecución de l hipérol verticl con centro en el origen Ejemplo 4. Hipérols
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
GEOMETRÍA ANALÍTICA LA ELIPSE. 1. Ecuación de la elipse horizontal con centro en el origen. 4. Ecuación de la elipse vertical con centro en el origen
LA ELIPSE CONTENIDO. Ecución de l elipse horizontl con centro en el origen. Análisis de l ecución. Ldo recto 3. Ecentricidd de l elipse 4. Ecución de l elipse verticl con centro en el origen 4. Ejercicios
MATRICES: un apunte teórico-práctico
MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e
Figura 1. Teoría y prática de vectores
UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este
Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero
Ejemplo práctico de obtención de l resistenci pndeo de los soportes de cero Apellidos, nombre Gurdiol Víllor, Arinn (gurdio@mes.upv.) Deprtmento Centro Mecánic del Medio Continuo Teorí de Estructurs Escuel
7. Mediciones con puentes.
UNVSDAD NACONAL D QULMS NGNÍA N AUTOMATZACÓN Y CONTOL NDUSTAL Cátedr de nstrumentos Mediciones Docente: Adrián. onconi 7. Mediciones con puentes. 7.. Puentes de CC Básicmente un puente de medición es un
PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway
PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 8 FISICA TOMO Tercer y qunt edcón Rymond A. Serwy CIRCUITOS DE CORRIENTE CONTINUA 8. Fuerz electromotrz 8. Resstores en sere y en prlelo 8.3
Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000
Solución Ejercicio 3: A. Registro de l vent. Vent de 6 frigoríficos 1.000 cd uno. Ls vents del ejercicio son ingresos. 5400 Bnco Clientes Vents de mercderís 0 (+) Bnco (-) (-) Resultdo Ejer (+) 0 (+) Clientes
(a + b) 2 = a 2 + 2ab + b 2
PRODUCTOS NOTABLES. BINOMIO CUADRADO. REPRESENTACIÓN GRÁFICA DEL CUADRADO DE LA SUMA DE DOS CANTIDADES El cudrdo de l sum de dos cntiddes puede representrse geométricmente cundo los vlores son positivos.
Estabilidad de los sistemas en tiempo discreto
Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos
Taller de Matemáticas I
Tller de Mtemátics I Semn y Tller de Mtemátics I Universidd CNCI de México Tller de Mtemátics I Semn y Temrio. Los números positivos.. Representción de números positivos... Frcciones... Decimles... Porcentjes..4.
TRANSFORMADOR IDEAL. Norberto A. Lemozy
TRODCCÓ TRASFORMADOR DEAL orberto A. Lemozy Los trnsformdores ideles son forms idelizds de los trnsformdores reles, son elementos de circuito, como tmbién los son ls resistencis, inductncis y cpcitncis
LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO
6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento
FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS
DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA QUINTA SESIÓN DE PRÁCTICAS 7.- Utilizción del Polímetro
Cuestionario Respuestas
Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
2. LEYES DE VOLTAJES Y CORRIENTES DE KIRCHHOFF
. LEES DE OLTAJES COENTES DE KCHHOFF.. NTODUCCÓN Este pítulo trt e ls leyes e voltjes y orrientes e Kirhhoff llms KL y KCL respetivmente. KL estlee que l sum lgeri e ls ís e voltje en un seueni err e noos
INTEGRALES IMPROPIAS
NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES
se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.
Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se
Volumetrías Acido-Base
olumetrís Acido-Bse Acido Bse Acido /Bse fuerte con se/ ácido fuerte H OH - H 2 O Acido /Bse déil con se/ ácido fuerte AHOH - A - H 2 O B - H BH Acido /Bse déil con se/ ácido déil AHB - A - BH Acido/se
7. Integrales Impropias
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge
Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3
Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd
Capítulo III AGUA EN EL SUELO
Cpítulo III AGUA EN EL SUELO Curso de Hidrologí e Hidráulic Aplicds Agu en el Suelo III. AGUA EN EL SUELO III.1 AGUA SUBSUPERFICIAL (Cp. 4 V.T.Chow) Entre l superficie del terreno y el nivel freático (del
www.fisicaeingenieria.es
7.- RÉGIMEN E FLUJO A TRAVÉS E TUBERÍAS. 7.1.- Ecución de Bernoulli generlizd. L ecución de Bernoulli generlizd tiene en cuent demás de términos energéticos ls energís suministrds o bsobids por elementos
Problemas puertas lógicas, karnaugh...
ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''
PROBLEMAS DE PROGRAMACIÓN LINEAL (LP)
PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) Plntemiento del prolem de progrmción Linel Un prolem de progrmción linel es cundo l función ojetivo es un función linel y ls restricciones son ecuciones lineles; l
INSTITUTO VALLADOLID PREPARATORIA página 81
INSTITUTO VALLADOLID PREPARATORIA págin 81 págin 8 Si se divide un curt prte de un pstel l mitd se otiene un octv prte del mismo, lo que escrito en simologí mtemátic es Lo nterior es lo mismo que 1 1 4
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
Repaso de Matemática Básica
Addison-Wesley s Repso de Mtemátic Básic Números Propieddes Importntes NÚMEROS NATURALES NÚMEROS ENTEROS NO NEGATIVOS {, 2, 3, 4, 5, } {0,, 2, 3, 4, } NÚMEROS ENTEROS {, 3, 2,, 0,, 2, } Rect Numéric 5
Los Números Racionales
Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =
Minimización de AFDs, método y problemas
Minimizción de Fs, método y prolems Elvir Myordomo, Universidd de Zrgoz 8 de octure de. Resultdos sore utómts determinists mínimos El F mínimo existe y es único, es decir Teorem. do unf M = (Q,Σ,δ,q,F),
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
POTENCIAS Y LOGARITMOS DE NÚMEROS REALES
www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (
OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA
. DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN
EJERCICIOS DE GEOMETRÍA
VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3
DINÁMICA Y LAS LEYES DE NEWTON
DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.
Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125
Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror
INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -
INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender
VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE
FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en
Efectuando la división (2x 2 = 1x y 6 2=3) se tiene III. PROBLEMAS QUE SE RESUELVEN UTILIZANDO ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA.
TEORIA GENERAL DE LAS ECAUCIONES I. IGUALDADES Y ECUACIONES Ls igulddes son epresiones en donde precen el símolo = Ejemplos:. 5 + = 15-7. + 6 = 5 Alguns propieddes de ls igulddes que utilizremos son: Si
Fracciones equivalentes
6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,
( ) ( ) El principio de inducción
El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum