Representación esquemática de un sistema con tres fases
|
|
- Eugenia Murillo de la Cruz
- hace 3 años
- Vistas:
Transcripción
1 6 APLICACIONES 6.1 Sistma con varias fass Una vz consguido l modlo para simular una mmbrana, s planta su uso para simular procsos con más d una. Uno d stos procsos podría sr un sistma con varias fass. En dicho sistma s hac pasar l rchazo d una mmbrana por la subsiguint y, a su vz, l rchazo d ésta por la mmbrana subsiguint y así sucsivamnt con cada una. El prmado d cada fas s rcogido n un mismo conducto, mzclándos para dar l producto final. D sta forma s consigu, para un caudal dtrminado d agua salina, una mayor cantidad d producto con una calidad algo mnor. A mayor númro d fass mayor cantidad d producto y por calidad dl mismo. En la Fig. 6.1 pud vrs una rprsntación squmática d un sistma con trs fass, tal y como aparc n ROSA. Fig. 6.1 Rprsntación squmática d un sistma con trs fass Usando l modlo visto n l capítulo 4 para una mmbrana, y ralizando las modificacions prtinnts s pud modlar st nuvo sistma d varias fass. Srá ncsaria su validación, obsrvando si los rrors acumulados n las distintas fass son grands o por l contrario prmancn bajos. Por llo s dcid modificar l archivo mm_spiral_basico_rm_xp_intr.m, ya qu prmit analizar rrors. Una vz validado l modlo para sistmas d varias fass s simplificará n una función tal y como s hizo n l apartado antrior. 74
2 6.1.1 Programación El nuvo archivo s llama mm_spiral_nfass_.m y como s ha comntado antriormnt s una modificación dl archivo mm_spiral_basico_rm_xp_intr.m. A continuación s xplican stas modificacions: S añad la variabl nfass qu almacnará l númro d fass dl sistma. S cra un bucl principal qu, para cada fas, calcula l Rm adcuado sgún las ntradas y jcuta l bucl d cálculo básico d la mmbrana. Admás guarda los valors d las salidas d cada fas n sus corrspondints vctors, d forma qu stos datos san accsibls postriormnt. Por último s actualizan las condicions inicials d la siguint fas sgún las salidas dl rchazo d la fas actual. S prsntan los rsultados dl sistma (l prmado total y l rchazo d la última mmbrana) con sus rrors, así como los rsultados d cada fas. El funcionaminto d st nuvo archivo s l mismo qu los antriors, pro habrá d modificars adcuadamnt l valor d la variabl nfass sgún l númro d fass dl sistma Validación Como s ha hcho hasta ahora s ralizarán unos nsayos alatorios para validar l modlo. Dbido a qu algunas d las variabls d salida calculadas son las ntradas d las fass sucsivas, l rror d stas variabls s propagará por l sistma y n principio irá crcindo. Para validar l modlo habrá qu obsrvar la volución d los rrors n cada fas y comprobar qu su crciminto s nulo o muy pquño. Para cada caso s ralizarán nsayos n sistmas d una, dos y trs fass, d forma qu s puda vr la volución dl rror. Para obtnr los rsultados d ROSA y podr calcular los rrors, s ha d modificar la pstaña corrspondint al númro d fass (Stags in Pass) y ponr l valor adcuado. También s habrá d cuidar qu sólo aparzca una bomba n la ntrada a la primra fas, pus ROSA asigna una bomba automáticamnt a la siguint fas al modificar l númro d fass. Para llo hay qu slccionar las fass sucsivas a la primra mdiant la pstaña Stag in Pass y asgurars d qu l valor d Boost s Non. También pud vrs n l squma dl sistma qu aparc a la drcha. La bomba (círculo vrd) solo db aparcr n la corrint d ntrada d la primra fas. En la Fig. 6.2 s v l caso incorrcto, con una bomba para cada fas, y n la Fig. 6. s v l caso corrcto, con una sola bomba n la corrint d ntrada al sistma. 75
3 Fig. 6.2 Forma incorrcta d slccionar más d una fas n ROSA Fig. 6. Forma corrcta d slccionar más d una fas n ROSA En la Tabla 6.1 s prsntan los rrors obtnidos n los nsayos para la validación dl modlo. Los rrors mostrados n la columna Errors Fas 1 corrspondn a los rrors para un sistma d una sola fas, los mostrados n la columna Errors Fas 2 corrspondn a los d un sistma d dos fass y los d la columna Errors Fas corrspondn a los d un sistma d trs fass. 76
4 Entradas Errors Fas 1 Errors Fas 2 Errors Fas Qf=12( m / h ) Cf=0000 (mg/l) P=46 (bar) T=29 (K) Tabla 6.1 Qf=10 Cf=22000 P=51 T=00 Qf=8 Cf=27500 P=58 T=288 Qf=14 Cf=2000 P=42 T=02. Qf=5 Cf=1520 P=4.5 T=292.6 =0.014 = = = = =0.079 = =0.007 = = = = = =0.516 = = = = = =0.002 =0.010 =0.140 = = =0.029 =0.120 =0.001 = = =0.514 =0.007 =0.009 = = = = =0.026 = = = = = = = =0.050 = = = = =0.467 = = = = = = = =0.214 = = Ensayos d validación para la simulación d un sistma con varias fass mm_spiral_nfass_.m Como s v n la Tabla 6.1 los rrors n gnral s propagan por l sistma y tindn a aumntar con cada fas. Sin mbargo aumntan una cantidad muy pquña, por lo qu s pud considrar válido l modlo si s tin sto n cunta, y por tanto no s usa para un sistma con un númro d fass muy alto Simplificación dl modlo: función Una vz validado l modlo ya no s d intrés mostrar los rrors comtidos, y sin mbargo sí s intrsant simplificar su uso y su programación. El modlo antrior pud simplificars normmnt hacindo uso d las funcions d Matlab. Para llo s transformará l archivo mm_spiral_nfass_.m n una función, al igual qu s hizo antriormnt con mm_spiral.m. Est nuvo archivo s llama mm_spiral_nfass_f.m. 77
5 En st caso, para simplificar l código, s usará la función mm_spiral.m n cada paso dl bucl qu calcula cada una d las fass. D sta forma s limina dl archivo todo lo rfrnt al cálculo d una mmbrana y quda sinttizado n una sola lína, qu s la qu llamada a dicha función. El rsto dl archivo s similar al antrior: s guardan las salidas d cada fas (las salidas d la función mm_spiral.m ) n sus corrspondints vctors, s actualizan las variabls d ntrada para la siguint fas y por último, al finalizar los cálculos s prsntan los rsultados (n st caso sin mostrar los rrors). Esta nuva función pud usars d formas distintas (igual qu mm_spiral.m ), dpndindo d si s dsa ralizar una simulación simpl sobr un sistma d varias fass y obtnr los rsultados por pantalla, o si por l contrario la función s stá usando dntro d otro código, por jmplo para la simulación d una planta dsaladora complta, n cuyo caso s prfribl almacnar los rsultados n variabls. Estas dos formas d uso son: Uso d la función para una simulación simpl: s db scribir l siguint comando: mm_spiral_nfass_f(nfass,qf,pf,cf,tf,1) con n fass l númro d fass dl sistma, Qf ( m / h ), Pf (bar), Cf (mg/l) y T (K), los valors dl caudal, la prsión, la concntración y la tmpratura d alimntación rspctivamnt, n las unidads indicadas. El valor 1 como última variabl d ntrada indica qu s van a mostrar los rsultados por pantalla. Uso d la función como part d otro código: n st caso habrá d tclars la siguint lína d comando: [QP,CP,QB,CB,PB]=mm_spiral_Nfass_f(nfass,Qf,Pf,Cf,Tf,0) Los valors dl caudal d prmado total, la concntración dl prmado total, l caudal, la concntración y la prsión d rchazo, qudan almacnados n las variabls QP ( m / h ), CP (mg/l), QB ( m / h ), CB (mg/l) y PB (bar) rspctivamnt, y n las unidads indicadas. El valor 0 como última variabl d ntrada indica ahora qu no s mustran los rsultados por pantalla. 78
6 6.2 Curvas d funcionaminto Las curvas d funcionaminto prmitn una mjor comprnsión dl funcionaminto d la mmbrana. S pud studiar la volución d cirtas variabls d salida al variar las ntradas n un cirto intrvalo, pudiéndos obtnr conclusions d intrés. El modlo dscrito n st proycto pud usars para obtnr dichas curvas, para la mmbrana aquí tratada, la SW0HR-80. S van a rprsntar dos d stas curvas, qu srán la volución dl caudal dl prmado y la d la concntración dl rchazo, con la tmpratura y la prsión. Para llo s hacn ritradas llamadas a la función d Matlab crada para simular la mmbrana, mm_spiral.m, obtniéndos las salidas dsadas ( y ) para valors d tmpratura ntr 274 K y 0 K, y para prsions qu van dsd los 0 bars hasta los 55, n intrvalos d 5 bars. Los valors obtnidos d y s rprsntan n gráficas distintas, obtniéndos las curvas buscadas. El archivo qu raliza stas opracions s llama curvas_funcionaminto.m. Las Fig. 6.4 y Fig. 6.5 mustran dichas curvas. La curva corrspondint a la prsión más baja s ha dibujado n rojo n ambas gráficas, para facilitar su comprnsión. En la Fig. 6.4 pud vrs cómo n fcto al aumntar la prsión para una tmpratura dada, s obtin mayor caudal d prmado. También s obsrva qu dada una prsión, si s aumnta la tmpratura también aumnta l caudal d prmado. Esto s dbido qu con l aumnto d la tmpratura disminuy la rsistncia d la mmbrana, y por tanto pasa más cantidad d agua. En la Fig. 6.5 pudn vrs fctos similars sobr la concntración dl rchazo. Al aumntar la prsión pasa más cantidad d agua por la mmbrana, por lo qu al habr mnos agua n l flujo d rchazo la concntración srá mayor. Con la tmpratura ocurr un fcto similar. 79
7 Fig. 6.4 Curvas d funcionaminto. Caudal d prmado frnt a tmpratura y prsión Fig. 6.5 Curvas d funcionaminto. Concntración d rchazo frnt a tmpratura y prsión 80
INTEGRACIÓN POR PARTES
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo
8 Límites de sucesiones y de funciones
8 Límits d sucsions y d funcions ACTIVIDADES INICIALES 8.I. Calcula l término gnral, l término qu ocupa l octavo lugar y la suma d los ocho primros términos para las sucsions siguints., 6, 0, 4,..., 6,
+ ( + ) ( ) + ( + ) ( ) ( )
latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f
ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN
ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador
PARTE I Parte I Parte II Nota clase Nota Final
Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:
Energía. Reactivos. Productos. Coordenada de reacción
CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)
Solución a la práctica 6 con Eviews
Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,
1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda
.- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si
CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES
CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o
TEMA 10: DERIVADAS. f = = x
TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad
TEMA 5. Límites y continuidad de funciones Problemas Resueltos
Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,
Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004
MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia
Tema 2 La oferta, la demanda y el mercado
Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la
SEPTIEMBRE Opción A
Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,
Límite Idea intuitiva del significado Representación gráfica
LÍÍMIITES DE FUNCIIONES ((rrsumn)) LÍMITE DE UNA FUNCIÓN f() k s : ímit d a función f() cuando tind a k Límit Ida intuitiva d significado Rprsntación gráfica Cuando f() A aumntar, os vaors d f() s van
2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-
Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar
Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga
ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt)
Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 04/5 PRÁCTICA Nº ESPACIOS VECTORIALES EUCLÍDEOS: Procso d ortonormalización (Gram-Schmidt) En sta práctica vamos a vr como podmos calcular
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los
Tema 5 El Mercado y el Bienestar. Las externalidades
Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.
UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h
LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN
LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.
TAMAÑO DE LA MUESTRA
Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona
( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)
ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y
105 EJERCICIOS de DERIVABILIDAD 2º BACH.
105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:
Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada
1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:
EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +
Definición de derivada
Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()
CINEMÁTICA (TRAYECTORIA CONOCIDA)
1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra
98 EJERCICIOS de DERIVABILIDAD 2º BACH.
98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente
Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl El paso alatorio X t = c + X t 1 + a t no s stacionario. Sin mbargo, l procso difrnciado rgularmnt s stacionario. X t X t 1 = c +
Prof: Zulay Franco Puerto Ordaz, noviembre
56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico qu dispon d una sñal d ntrada, gnralmnt dnominada disparo, al activars sta ntrada n la salida dl circuito (Q s obtin un pulso
Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.
Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.
tiene por límite L cuando la variable independiente x tiende a x
UNIDAD (Continuación).- Funcions rals. Límits y continuidad 9. LÍMITES. LÍMITES LATERALES Rcordamos dl año antrior qu una función y f () tin por it L cuando la variabl indpndint tind a, y s notaba por
MEDICIÓN DE LA BANDA PROHIBIDA DEL SILICIO
MEDICIÓN DE LA BANDA PROHIBIDA DEL SILICIO Amador Ana y Rausch Frnando Dpartamnto d física, Univrsidad d Bunos Airs, Bunos Airs, Argntina Nustro trabajo consistió n mdir l ancho d la banda prohibida dl
Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017
Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR
AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD FÓRMULA AT07 NOMBREdlINDICADOR Porcntaj d población n la scula con un avanc rgular por dad. FÓRMULAdCÁLCULO PPR = PPR A + inf A
COMPUTACIÓN. Práctica nº 2
Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros
DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3
DEPARAMENO DE INGENIERIA MECÁNICA INGENIERÍA INDUSRIAL DISEÑO MECÁNICO PRÁCICA Nº 3 DEERMINACIÓN DEL COEFICIENE DE ROZAMIENO ENRE CORREAS Y POLEAS Dtrminación dl coficint d rozaminto ntr corras y polas
f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,
CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo
CONDICIONES DE FUNCIONAMIENTO DEL TRANSFORMADOR
ELT 73. CONDICIONES DE FUNCIONAMIENTO DEL TRANSFORMADOR /7 CONDICIONES DE FUNCIONAMIENTO DEL TRANSFORMADOR. PRINCIPIO DE FUNCIONAMIENTO El funcionaminto dl transformador s basa n l principio d intracción
Prof: Zulay Franco Puerto Ordaz, noviembre
56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico capaz d gnrar un pulso lógico n alto o n bajo a través d su salida (Q. El timpo d duración dl pulso w, stá dtrminado por
Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b
Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr
MATERIA: Matemáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manuel Armendáriz González
Ciudad d Méico Fundadora y Dirctora Gnral: Profra. Alina Mirya Sánchz Martínz MATERIA: Matmáticas VI, AREA III y IV CICLO ESCOLAR 014-015 PROFESOR Víctor Manul Armndáriz Gonzálz Progrsions Rsulv los siguints
Métodos específicos de generación de diversas distribuciones continuas
Tma 4 Métodos spcíficos d gnración d divrsas distribucions continuas 4.1. Distribución uniform Si X U(a, b), su función d distribución vin dada por: 0 x < a F (x) = a x < b x a b a 1 x b Aplicando l método
Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES
Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas
TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)
TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu
6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntesis Teórico-Práctica Prof. Sergio Weinberger-
6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntsis Tórico-Práctica. 007 Prof. Srgio Winbrgr- DEFINICIÓN DE LÍMITE FINITO: a f () α E( α, ε) E *(a, δ) / E *(a, δ) f () E( α, ε) y Es dcir qu,dado un
Como ejemplo se realizará la verificación de las columnas C9 y C11.
1/14 TRABAJO PRÁCTICO Nº 9 - DIMENSIONAMIENTO DE COLUMNAS Efctuar l análisis d cargas d una columna cntrada y otra d bord y dimnsionar ambas columnas n l nivl d PB. Como jmplo s ralizará la vrificación
Diseño Miniaturizado de Acopladores de Microondas en Tecnología Metamaterial
Univrsidad Politécnica d Cartagna scula Técnica uprior d Ingniría d Tlcomunicación Dpartamnto d Tcnologías d la Información y las Comunicacions Proycto Final d Carrra Disño Miniaturizado d Acopladors d
2ª PRUEBA 24 de febrero de 2017
ª PRUEB 4 d fbrro d 017 Pruba xprintal. Mdida d la rlación carga/asa dl lctrón En 1897, J. J. Thopson utilizó un dispositivo xprintal parcido al d la figura 1 para dtrinar por prira vz la rlación ntr la
PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.
Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f
PRIMERA PRÁCTICA SONIDO
PRIMERA PRÁCTICA SONIDO 1. Objtivo gnral: El objtivo d sta práctica s qu l alumno s familiaric con los concptos d amplitud y frcuncia y los llgu a dominar, así como l fcto qu tin la variación d stos parámtros
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4
Integrales indefinidas. 2Bach.
Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva
Tema 3 La elasticidad y sus aplicaciones
Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad
a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de
Hoja d Problmas Álgbra VII 55. Supongamos qu la función g stá dfinida y s drivabl n [0,]. Supongamos qu g(0)
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación
Química TEM 3 º d achillrato Trmoquímica. La ntalpía d combustión dl butano s d º 875,8 /mol. Si qurmos calntar l air d una habitación d xx3 m con una stua d butano, dsd º hasta 5º, qué masa d butano dbrmos
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar
REPRESENTACIÓN DE CURVAS
REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort
FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel
FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa
Ejercicios resueltos Distribuciones discretas y continuas
ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s
EJERCICIOS RESUELTOS TEMA 1: PARTE 3
Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:
. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:
º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación
Facultad de Ingeniería Matemática intermedia 1. Proyecto 2
Univrsidad d San Carlos d Guatmala Dpartamnto d matmática Facultad d Ingniría Matmática intrmdia 1 Introducción: Proycto Fcha d ntrga: luns 16 d abril d 018 El dsarrollo d proyctos s important n la formación
Practica1.- Determinación experimental de la característica I-V del diodo de unión.
Laboratorio d Elctrónica d Dispositivos Practica1.- Dtrminación xprimntal d la caractrística I-V dl diodo d unión. A.- Objtivos 1.- Mdir los fctos d la polarización dircta invrsa n la corrint por l diodo.
INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:
INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La
LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL
LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES EALES DE UNA VAIABLE EAL.- Estudiar la continuidad, n los puntos y d la función: f ( ) L( ) si / si Solución: f continua n y El dominio d la
1. LÍMITE DE UNA FUNCIÓN REAL
ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : LÍMITES Y CONTINUIDAD DE FUNCIONES REALES Comptncias Utilizar técnicas d aproimación n procsos numéricos infinitos
PRÁCTICA SUMAS DE RIEMANN CURSO CÁLCULO. Práctica 10 (17/12/2014)
PRÁCTICA SUMAS DE RIEMANN CURSO 4-5 CÁLCULO Prácticas Matlab Práctica (7//4) Objtivos Profundizar n la comprnsión dl concpto d intgración. Calcular intgrals dfinidas d forma aproximada, utilizando sumas
EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES
IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y
FIZIKA SPANYOL NYELVEN
Fizika spanyol nylvn középszint 08 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA SPANYOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Los xámns
LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES
96 LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES JUSTIFICACIÓN: En sta Lcción s cntrará la atnción n l studio d aqullas cuacions difrncials ordinarias d primr ordn
RADIO CRÍTICO DE AISLACIÓN
DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta
6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular
MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos
Typeset by GMNI & FoilTEX
Typst by GMNI & FoilTEX CÁLCULO MATRICIAL DE ESTRUCTURAS DE BARRAS (Articuladas 2D-3D) F. Navarrina, I. Colominas, M. Castliro, H. Gómz, J. París GMNI GRUPO DE MÉTODOS NUMÉRICOS EN INGENIERÍA Dpartamnto
PROCESOS ALEATORIOS DE POISSON
PP Dinición d Procso Puntual PROCESOS ALEAORIOS DE POISSON PP I a. óms un instant cualquira como orign d la variabl timpo. Lláms t 0 a dicho instant. Supóngas qu los instants t, t,, postriors a t 0, caractricn
Unidad 11 Derivadas 4
Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no
Considere la antena Yagi de la figura, formada por un dipolo doblado y un dipolo parásito, ambos de longitud λ/2, y separados una distancia d = λ/4.
Problmas capitulo 5 Antna Yagi Considr la antna Yagi d la figura, formada por un dipolo doblado un dipolo parásito, ambos d longitud λ/, sparados una distancia d = λ/4. a) Calcul la impdancia d ntrada
VI.1 GENERADOR DE SISTEMAS COMO NÚCLEO DE UN SISTEMA EVOLUTIVO
VI.1 GENERDOR DE SISTEMS COMO NÚCLEO DE UN SISTEM EVOLUTIVO Frnando Galindo Soria* INTRODUCCIÓN En st trabajo s prsnta l procso para construir y usar una hrraminta para l dsarrollo industrial d sistmas
Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO
Prof. Jsús Olivar Rsumn d Cálculo II ING. PETRÓLEO.- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f, dirmos qu F s una primitiva suya si F
= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño.
F F a) La lnt s convrgnt l objto stá situado ants dl foco objto: β = = = 4 ; = 4 s ; s + = 6 ; -s -4 s = 6 ; s= -, m s, 4,8 ; ; = = = s f 4,8. f, 4,8 f f =0,96 m. La imagn s ral, invrtida rspcto dl objto
Espacios vectoriales euclídeos.
Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 4/5 PRÁCTICA Nº 6 Espacios vctorials uclídos. En sta práctica vamos a vr cómo introducir un producto scalar y trabajar con él n Mathmatica
UNA ECUACION DIFERENCIAL DE CURIOSA SOLUCIÓN
UNA ECUACION DIFERENCIAL DE CURIOSA SOLUCIÓN Josp Maria Franqut Brnis Maria Pilar Caballé Tudó RESUMEN Los autors afrontan la rsolución dl siguint jrcicio o problma d valor inicial (PVI) rfrnt a una cuación
168 Termoquímica y Cinética. Aspectos Teóricos
168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin
Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE
Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios
Relaciones importantes para la entropía.
rmodinámica II 2I Rlacions importants para la ntropía. Entropía Formalmnt la ntropía s d n a partir d la dsigualdad d Clausius I 0 () n dond:! H indica qu la intgral s va a ralizar n todas las parts d
Guía de Pupitres Módulo de Inventario Séneca v1
Guía d s Módulo d Invntario Sénca v 27/03/5 d 3 Índic d contnido Antcdnts...3 2Datos ncsarios para idntificar los pupitrs... 3 3Tipos d pupitrs...4 4Sllado d los pupitrs... 8 5Otros mobiliarios d aula...9
LECTURA 09: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO
Univrsidad Los Ángls d Chimbot LECTURA 9: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO 1. INTRODUCCION: La pruba d indpndncia chi cuadrado s un procdiminto d contrastación
CENTRO DE EXCELENCIA MEDICA EN ALTURA Vigente a partir de 16/03/2016. PROCEDIMIENTO NORMALIZADO DE OPERACIÓN PARA REGISTRO DE HUMEDAD Y TEMPERATURA
días. Página 1 d 8 PROCEDIMIENTO NORMALIZADO DE OPERACIÓN PARA REGISTRO DE HUMEDAD Y TEMPERATURA Contnido 1. Objtivo 2. Alcanc 3. Rsponsabilidads 4. Dsarrollo dl procso 5. Rfrncias Bibliográficas 6. Anxos
Aplicaciones de las Derivadas
www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s