LECTURA 09: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO
|
|
- Marina Espejo López
- hace 3 años
- Vistas:
Transcripción
1 Univrsidad Los Ángls d Chimbot LECTURA 9: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO 1. INTRODUCCION: La pruba d indpndncia chi cuadrado s un procdiminto d contrastación qu s utiliza para dtrminar la indpndncia o rlación ntr dos variabls catgóricas., como por jmplo l nivl ducativo y l nivl d consumo d Intrnt d las prsonas, l rndiminto académico y l nivl socioconómico d las prsonas, marca d computadoras y l prcio, tc.. CONTRASTACION DE HIPOTESIS: Pasos a sguir: 1. Formulación d Hipótsis: H : No xist rlación ntr las catgorías. H 1 : Exist rlación ntr las catgorías.. Nivl d signicancia: α. Estadística d pruba: r i 1 j 1 ( ) v Dond: v (r 1) ( 1) grados d librtad. r Númro d ilas. Númro d columnas. 1 Fcha : Stimbr 1 Vrsión :
2 Univrsidad Los Ángls d Chimbot 4. Establciminto d los critrios d dcisión: 1 α R.A. α 1 α, v R.R. Si Si o o ; s acpta H o. 1 α, v > ; s rchaza H o. 1 α,v 5. Cálculos: 6. Dcisión: S acpta o rchaza H o. r ( ) i 1 j 1 Ejmplo 1: S ha ralizado una ncusta n una ciudad con objto d studiar las posibls rlacions ntr l nivl ducativo d las prsonas y l nivl d consumo d Intrnt. Los rsultados para 159 prsonas slccionadas al azar han sido: Nivl Nivl d consumo ducativo Bajo Mdio Alto Total Suprior Scundaria Primaria Total Dtrminar si l nivl ducativo y l nivl d consumo d Intrnt d las prsonas s rlacionan. Us α.5 Fcha : Stimbr 1 Vrsión :
3 Univrsidad Los Ángls d Chimbot Solución: 1. Formulación d Hipótsis: H : No xist rlación ntr l nivl ducativo y l nivl d consumo d Intrnt d las prsonas. H 1 : Exist rlación ntr l nivl ducativo y l nivl d consumo d Intrnt d las prsonas.. Nivl d signicancia: α.5. Estadística d pruba: i 1 j 1 ( ) Dond: r y ; ntoncs v (-1) x (-1) 4 grados d librtad. 4. Establciminto d los critrios d dcisión: 1 - α.95 α R.A. R.R. R.A.: Si o ; s acpta H o. R.R.: Si 9.49 ; s rchaza H o. o > 5. Cálculos: Hallando los valors sprados : i..j n Fcha : Stimbr 1 Vrsión :
4 Univrsidad Los Ángls d Chimbot n n Nivl ducativo Nivl d consumo Suprior Scundaria Bajo Mdio Alto i Primaria Total n159 Hallando l valor xprimntal : (1 6) 6 ( 19) 19 (6 578) 578 (8 8) 8 (1 1) 1 (4 67) 67 (5 11) 11 (5 5) 5 (5 14) Dcisión: 197 > 9.49 ; por lo tanto rchazamos H. En nivl ducativo y l nivl d consumo d Intrnt d las prsonas s rlacionan. Ejmplo : Para introducir cirto producto n l mrcado, una mprsa dsa conocr como sria acptado por los posibls compradors, para llo s ha obtnido una mustra alatoria d consumidors habituals d sa lína d productos, a los qu s ls prgunta por su dad y por l grado d acptación dl producto a introducir n l mrcado, l rsultado s rcog n la tabla siguint: Edad n años Opinión a más Total Favorabl Dsavorabl Total Fcha : Stimbr 1 Vrsión :
5 Univrsidad Los Ángls d Chimbot Dtrminar si xist rlación ntr la dad y la opinión sobr la acptación dl producto, d los consumidors, con α.5. Solución: 1. Formulación d Hipótsis: H : No xist rlación ntr la dad d las prsonas y la opinión sobr la acptación dl producto, d los consumidors. H 1 : Exist rlación ntr la dad d las prsonas y la opinión sobr la acptación dl producto, d los consumidors.. Nivl d signicancia: α.5. Estadística d pruba: ( ) i 1 j 1 Dond: r y ; ntoncs v (-1) x (-1) grados d librtad. 4. Establciminto d los critrios d dcisión: 1 - α.95 α R.A. R.R. R.A.: Si o 5.99 ; s acpta H o. R.R. Si ; s rchaza H o. > 5.99 o 5. Cálculos: Hallando los valors sprados : i..j n 5 Fcha : Stimbr 1 Vrsión :
6 Univrsidad Los Ángls d Chimbot n n n n n n.. 81 Edad n años Opinión a más i. Favorabl Dsavorabl Total Hallando l valor xprimntal : (5 91) ( 91) (1 18) ( 59) (6 59) (5 81) TEMA 19: COEFICIENTE DE CONTINGENCIA CHI CUADRADO El coicint d contingncia chi cuadrado o coicint d contigncia C d Parson: Es una mdida stadística qu s utiliza para mdir l grado d rlación o asociación ntr dos variabls catgóricas. Su valor varía ntr y 1, pro diícilmnt llga a 1. C no tin a 1 como límit suprior (LS), su límit suprior o C max s rlaciona con l númro d catgorías. Para una tabla suprior construida con igual númro d ilas y columnas l límit suprior s para una tabla x l límit suprior s 1. D st modo /.8; para una tabla 4 x 4, /4.87, tc. Cuando l númro d columnas y ilas diir, por jmplo, x 4 l límit suprior d C s dduc con un valor igual númro más pquño. El coicint d contingncia s xprsa así: 6 Fcha : Stimbr 1 Vrsión :
7 Univrsidad Los Ángls d Chimbot C n Si C >. s considra qu s adcuado Ejmplo : Calculando l coicint C d Parson para l Ejmplo 1: 197 C C.4 >. s adcuado. El valor máximo qu pud tomar C n st caso s: Gráicamnt podmos obsrvar : C En conclusión l grado d asociación ntr l nivl ducativo y l nivl d consumo d intrnt d las prsonas s adcuado. Ejmplo : Calculando l coicint C d Parson para l Ejmplo : 7 Fcha : Stimbr 1 Vrsión :
8 Univrsidad Los Ángls d Chimbot 81 C.8 81 C.8 >. s adcuado. El valor máximo qu pud tomar C n st caso s: Gráicamnt podmos obsrvar : C En conclusión l grado d asociación ntr la dad y la opinión sobr la acptación d los productos, d los consumidors s adcuado. 8 Fcha : Stimbr 1 Vrsión :
SOLUCIONES DE LOS EJERCICIOS INCLUIDOS EN LOS TEMAS 1 a 3 DE ESTADÍSTICA II
ESTADÍSTICA II SOLUCIONES DE LOS EJERCICIOS INCLUIDOS EN LOS TEMAS 1 a 3 DE ESTADÍSTICA II Profsors: J Gabril Molina y María F. Rodrigo Univrsitat d València TEMA 1 1) a) accidntal, b) alatorio simpl,
Solución a la práctica 6 con Eviews
Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj
TAMAÑO DE LA MUESTRA
Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona
Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.
PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución
Prueba de asociación de dos variables cualitativas
Pruba d asociación d dos variabls cualitativas Dscripción Esta pruba s aplica n disños d invstigación n los qu s studia a un único grupo d individuos dond a cada uno d llos s han mdido simultánamnt dos
Prueba ji-cuadrado: χ 2. Estudiar la relación entre dos variables cualitativas. Estudiar la relación entre dos variables cualitativas
ÁNALISIS BIVARIADO Estudiar la rlación ntr dos variabls cualitativas ANALISIS DE FRECUENCIAS, INDEPENDENCIA Estudiar la rlación ntr dos variabls cuantitativas CORRELACIÓN Y REGRESIÓN LINEAL Estudiar la
Tema 10 Análisis de datos categóricos Grados de utrición Humana y Dietética Ciencia y Tecnología de Alimentos
Tma 10 Análisis d datos catgóricos Grados d utrición Humana y Ditética Cincia y Tcnología d Alimntos Ángl Corbrán y Francisco Monts Dpartamnt d Estadística i I. O. Univrsitat d València 1. Tablas d contingncia
ESTADÍSTICA NO PARAMÉTRICA
UNIDAD 5 ESTADÍSTICA NO PARAMÉTRICA Introducción a la unidad En la unidad 4 corrspondint a Prubas d Hipótsis, s studiaron prubas tanto para las mdias poblacionals como para las proporcions poblacionals.
Métodos específicos de generación de diversas distribuciones continuas
Tma 4 Métodos spcíficos d gnración d divrsas distribucions continuas 4.1. Distribución uniform Si X U(a, b), su función d distribución vin dada por: 0 x < a F (x) = a x < b x a b a 1 x b Aplicando l método
MÉTODOS DE INTEGRACIÓN. x x x. x x. dx dx x. dx x 2)( Lnx. x dx x. x x
http://www.damasorojas.com.v/ damasorojas8@gmail.com damasorojas8@hotmail.com, damasorojas8@galon.com MÉTODOS DE INTEGRACIÓN.-Sustitución Simpl. d d d d d d d d d d d d d d d d d d d d d d d d a d d d
Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:
APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos campos dl conociminto n qu istn aplicacions d la intgral. Por la naturalza d st concpto, pud aplicars tanto n Gomtría, n Física, n Economía incluso n
Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.
Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.
Soluciones al examen de Estadística Aplicada a las Ciencias Sociales Junio 2008 Segunda semana
Solucions al amn d Estadística Alicada a las Cincias Socials Junio 008 Sgunda smana Ejrcicio. Para dtrminar si ha aumntado la intnción d voto ralizarmos una ruba d hiótsis d la siguint manra: Sindo P 0,377
PARTE I Parte I Parte II Nota clase Nota Final
Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:
. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:
º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación
Representación esquemática de un sistema con tres fases
6 APLICACIONES 6.1 Sistma con varias fass Una vz consguido l modlo para simular una mmbrana, s planta su uso para simular procsos con más d una. Uno d stos procsos podría sr un sistma con varias fass.
Tema 3 La elasticidad y sus aplicaciones
Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad
2ª PRUEBA 24 de febrero de 2017
ª PRUEB 4 d fbrro d 017 Pruba xprintal. Mdida d la rlación carga/asa dl lctrón En 1897, J. J. Thopson utilizó un dispositivo xprintal parcido al d la figura 1 para dtrinar por prira vz la rlación ntr la
Modelos Matemáticos para la optimización y reposición de maquinarias: Caso la Empresa Eléctrica de Milagro
Modlos Matmáticos para la optimización y rposición d maquinarias: Caso la Emprsa Eléctrica d Milagro Edwin Lón Plúas, Csar Gurrro Loor 2 Ingniro n Estadística Informática, 2003 2 Dirctor d Tsis, Matmático,
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los
: Marketing en las Empresas de Servicio
INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO PRIVADO EL BUEN PASTOR SÍLABO DE MARKETING EN LAS EMPRESAS DE SERVICIOS I. INFORMACIÓN GENERAL Carrra Profsional Unidad Didáctica Smstr Académico : Administración
Tema 2 La oferta, la demanda y el mercado
Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la
I, al tener una ecuación. diferencial de segundo orden de la forma (1)
.6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn
Espacios vectoriales euclídeos.
Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 4/5 PRÁCTICA Nº 6 Espacios vctorials uclídos. En sta práctica vamos a vr cómo introducir un producto scalar y trabajar con él n Mathmatica
Guías de Prácticas de Laboratorio
Guías d Prácticas d Laboratorio Laboratorio d: (5) FÍSICA OPTICA Y ACUSTICA Titulo d la Práctica d Laboratorio: (6) OSCILADOR ARMONICO SIMPLE. LEY DE HOOKE Idntificación: (1) Númro d Páginas: (2) 8 Rvisión
DETERMINACION DE LAS RELACIONES VOLUMÉTRICAS DE LOS SUELOS
DETERMINACION DE LAS RELACIONES VOLUMÉTRICAS DE LOS SUELOS I. GENERALIDADES: La dtrminación d las rlacions volumétricas d los sulos son importantísimas, para l manjo comprsibl d las propidads mcánicas
CONSUMO MUNDIAL DE FIBRAS TEXTILES
ISSN 007-1957 CONSUMO MUNDIAL DE FIBAS TEXTILES Ana María Islas Corts Instituto olitécnico Nacional ESIT amislas@ipn.mx Gabril Guillén Bundía Instituto olitécnico Nacional ESIME Azcapotzalco gguilln@ipn.mx
Practica 9: Tipo de cambio y paridad de poder adquisitivo
Practica 9: Tipo d cambio y paridad d podr adquisitivo 1 Practica 9.1: Ejrcicio 1, capitulo 13, pag. 355 En Munich un bocadillo d salchicha custa 2, n l parqu Fnway d Boston un prrito calint val 1$. Con
CINEMÁTICA (TRAYECTORIA CONOCIDA)
1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra
Andrés Maroto Sánchez
Sánchz Organización Industrial Grado: Economía (2º smstr) Código 669 Part I: El análisis dl quilibrio parcial Tma 2.El monopolio. 2. Análisis dl quilibrio. 2.2 Discriminación d prcios y rgulación. 2 2.
Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General
Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral
CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES
CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o
ESTUDIO ECONOMÉTRICO DE LA PRODUCCIÓN DE ACERO
ESTUDIO ECONOMÉTRICO DE LA RODUCCIÓN DE ACERO Ana María Islas Corts Instituto olitécnico Nacional, ESIT amislas@ipn.mx Gabril Guillén Bundía Instituto olitécnico Nacional, ESIME-Azcapotzalco gguilln@ipn.mx
Cuánto tarda una pelota en dejar de botar?
Cuánto tarda una plota n djar d botar? Dr. Guillrmo Bcrra Córdoa Unirsidad Autónoma Chapino Dpto. d Prparatoria Arícola Ára d Física Profsor-Instiador 59595500 xt. 59 E-mail: llrmbcrra@yahoo.com Km. 8.5
1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:
EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +
CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden
APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión
+ ( + ) ( ) + ( + ) ( ) ( )
latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f
ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt)
Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 04/5 PRÁCTICA Nº ESPACIOS VECTORIALES EUCLÍDEOS: Procso d ortonormalización (Gram-Schmidt) En sta práctica vamos a vr como podmos calcular
Energía. Reactivos. Productos. Coordenada de reacción
CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando
-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
RUBRICAS PRIMERA EVALUACIÓN I TERMINO Tema #2 (10 puntos). (Conceptos Varios)
RUBRICAS PRIMERA EVALUACIÓN I TERMINO 21 Tma #2 (1 ). (Concptos Varios) RUBRICA TEMA #2 TEMAS CONDUCTA AFICIONADO NOVATO PROFESIONAL EXPERTO En la cuarta #2 columna No Rgistra rgistra la 4% d la 7% d la
Alfredo Masó Macroeconomía Intermedia Grado de ADE y DADE-Curso Práctica 2 (Tema 1: modelo Mundell-Fleming : Políticas de DA)
Alrdo Masó Macroconomía Intrmdia Grado d ADE y DADE-Curso 2012 roblmas: ráctica 2 (Tma 1: modlo Mundll-Flming : olíticas d DA) 1º) Obtnga la xprsión d la Dmanda Agrgada, la rnta d quilibrio, l tipo d intrés
PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES
Licnciatura n Administración y Dircción d Emprsas (LADE) Facultad d Cincias Jurídicas y ocials (FCJ) Univrsidad Ry Juan Carlos (URJC) PROBLEMA CÁLCULO INTEGRAL Y ECUACIONE DIFERENCIALE Matmáticas Primr
Proceso de análisis de regresión múltiple
Procso d análisis d rgrsión múltipl Rcolcción d datos Chquo d la calidad d los datos Diagnóstico d rlacions o intraccions furts ntr las variabls Xs Aplicación d mdidas rmdials Si S rquirn mdidas rmdials?
FORMULARIO INDICADORES DE DESEMPEÑO AÑO 2013
FORMULARIO INDICADORES DE DESEMPEÑO AÑO 2013 MINISTERIO MINISTERIO DEL INTERIOR Y SEGURIDAD PÚBLICA PARTIDA 05 SERVICIO SERVICIO NACIONAL PARA PREVENCION Y REHABILITACION CONSUMO DE CAPÍTULO 09 DROGAS
Informe Semanal (SAIE)
17 d marzo d 2009 Inform Smanal (SAIE Nº 245 Valoración d Participacions Minoritarias: la importancia dl dividndo La adquisición d una participación minoritaria implica la ausncia d control para l invrsor
CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE EJERCICIOS RESUELTOS DEL TEMA 1
Manul José Frnándz mjg@uniovi.s CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. - EJERCICIOS RESUELTOS DEL TEMA Dmostrar aplicando l principio d inducción las rlacions siguints: a a n n n... n n N b n n!
Límites finitos cuando x: ˆ
. Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador
PRUEBA CHI-CUADRADO EN LA ESTADISTICA NO PARAMÉTRICA
UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANN VICERRECTORADO ACADÉMICO (FACULTAD DE CIENCIAS) INFORME FINAL DE INVESTIGACIÓN TITULADO PRUEBA CHI-CUADRADO EN LA ESTADISTICA NO PARAMÉTRICA RESOLUCIÓN DE FACULTAD
Typeset by GMNI & FoilTEX
Typst by GMNI & FoilTEX FACTORIZACIONES DE CROUT Y DE CHOLESKY F. Navarrina, I. Colominas, H. Gómz, J. París, M. Castliro GMNI GRUPO DE MÉTODOS NUMÉRICOS EN INGENIERÍA Dpartamnto d Métodos Matmáticos y
Como ejemplo se realizará la verificación de las columnas C9 y C11.
1/14 TRABAJO PRÁCTICO Nº 9 - DIMENSIONAMIENTO DE COLUMNAS Efctuar l análisis d cargas d una columna cntrada y otra d bord y dimnsionar ambas columnas n l nivl d PB. Como jmplo s ralizará la vrificación
PRIMERA PRÁCTICA SONIDO
PRIMERA PRÁCTICA SONIDO 1. Objtivo gnral: El objtivo d sta práctica s qu l alumno s familiaric con los concptos d amplitud y frcuncia y los llgu a dominar, así como l fcto qu tin la variación d stos parámtros
ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006
ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 d fbrro d 006 Timpo: horas 30 minutos Cada problma db ntrgars n hojas d xamn
- Se trata en el fondo, de la misma manera de medir la asociación entre X y M.
BOLETÍN EPIDEMIOLÓGICO DE CASTILLA-LA MANCHA FEBRERO 2007/ Vol.19 /Nº 10 LA REGRESIÓN LOGÍSTICA EN EPIDEMIOLOGÍA II (*) A.- VARIABLE X CUALITATIVA CON DOS CATEGÍAS (DICOTÓMICA) X rprsnta, por jmplo, l
Curso: 2º Bachillerato Examen VIII. donde m representa un número real.
Nombr: Nota Curso: º Bachillrato Eamn VIII Fcha: d Fbrro d 06 La mala o nula plicación d cada jrcicio implica una pnalización d hasta l % d la nota..- Dada la matriz m dond m rprsnta un númro ral. m a)
CASO PRACTICO Nº 127
CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d
CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C.
Vignt a partir d: Administración y Finanzas Vrsión: Página 1 d 5 1. Objtivo Asgurar qu la Gstión d la Cobranza dl Cntro Univrsitario dl Fútbol y Cincias dl Dport así como dl Cntro d Formación y Rsidncia
Coeficiente de correlación parcial
Coficint d corrlación parcial.- Introducción....- Corrlación parcial mdiant l rcurso d diagramas d Vnn.... 3 3.- Corrlación parcial como corrlación ntr rsiduals... 6 4.- Coficint d rgrsión múltipl y coficint
Typeset by GMNI & FoilTEX
Typst by GMNI & FoilTEX CÁLCULO MATRICIAL DE ESTRUCTURAS DE BARRAS (Articuladas 2D-3D) F. Navarrina, I. Colominas, M. Castliro, H. Gómz, J. París GMNI GRUPO DE MÉTODOS NUMÉRICOS EN INGENIERÍA Dpartamnto
Cédula de Identidad. Año/ Semestre HAMLET MATA MATA I-2012 Asignatura: ESTADÍSTICA I Código: Sección 1 y Aula: Lab
/NÚCLEO El Tigr FACULTAD FACES ESCUELA Admón., FICHA DE CONTROL ACADEMICO HAMLET MATA MATA 3950590 I- Asignatura: ESTADÍSTICA I Código: 10200373 Scción 1 y Aula: Lab 2 Marzo 02 VIER 1 05 LUN 06 09 VIER
105 EJERCICIOS de DERIVABILIDAD 2º BACH.
105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
Ejercicios resueltos Distribuciones discretas y continuas
ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s
6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntesis Teórico-Práctica Prof. Sergio Weinberger-
6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntsis Tórico-Práctica. 007 Prof. Srgio Winbrgr- DEFINICIÓN DE LÍMITE FINITO: a f () α E( α, ε) E *(a, δ) / E *(a, δ) f () E( α, ε) y Es dcir qu,dado un
TEMAS 3-6: EJERCICIOS ADICIONALES
TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s
Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General
Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 9 Expcaivas, Consumo Invrsión Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo
Tema 13. Aplicaciones de las derivadas
Tma 3. Aplicacions d las drivadas. Monotonía. Crciminto y dcrciminto d una función.... Etrmos rlativos... 3 3. Optimización... 6. Curvatura... 7 5. Puntos d Inflión... 8 6. Propidads d las funcions drivabls,
9 Aplicaciones de las derivadas
9 Aplicacions d las drivadas Página 69 Optimización B A P' Q' O Q T P Página 71 r a) y' = 0 x = 0 8 Punto ( 0 0) x = 1 8 Punto ( 1 1) En (0 0) hay un punto d inflxión. En (1 1) hay un máximo rlativo. b)
LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN
LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.
98 EJERCICIOS de DERIVABILIDAD 2º BACH.
98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN
SEMANA 1 POTENCIACIÓN Y RADICACIÓN 1. Si l numral aann s un cuadrado prfcto; Calcul la suma d cifras d su raíz cuadrada? A) 15 B) 1 C) 19 D) 1 E) 1 aann K 11 aann difrncia s cro; ntoncs s múltiplo d 11
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I.
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matmáticas II EXAMEN FINAL Junio APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE % Las rspustas rrónas rstan puntos. Dbn rljars
Una onda es una perturbación que se propaga y transporta energía.
Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga
INFORME ESTADO DE LA REGION (2008)
INFORME ESTADO DE LA REGION (28) Caractrización d los hogars sgún l accso a dinros provnints d rmsas rcibidas dl xtrior Luis Angl Ovido C. Consultor Abril dl 28 El contnido d sta ponncia pud no corrspondr
e PROCEDIMIENTO PARA LA CONTRATACIÓN DE PERSONAL ADMINISTRATIVO Y OPERATIVO Vigente a partir de:
Vignt a partir d: Clav: 01 d Marzo dl 2007 Srvicios d Rcursos Humanos Vrsión: Página 1 d 4 1. Objtivo Asgurar qu la contratación dl prsonal administrativo y d apoyo cumpla con lo stablcido n su dscripción
a) lim x lim senx sen lim lim lim lim lim x x 2 lim Ejercicio nº 1.- Calcula: Solución: Ejercicio nº 2.-
Ejrcicio nº.- Calcula: c) 8 sn Evaluación: Fcha: c) 8 sn sn Ejrcicio nº.- Calcula l siguint it y studia l comportaminto d la unción por la izquirda y por la drcha d : Calculamos los its latrals: Ejrcicio
TÉRMINOS DE REFERENCIA CONCURSO PÚBLICO PARA LA CONTRATACIÓN DE CAPACITACIONES BASES ADMINISTRATIVAS Y TÉCNICAS
TÉRMINOS DE REFERENCIA CONCURSO PÚBLICO PARA LA CONTRATACIÓN DE CAPACITACIONES A. BASES ADMINISTRATIVAS BASES ADMINISTRATIVAS Y TÉCNICAS 1. Gnralidads: Estas bass técnicas stán rfridas a la contratación
Introducción al método de los
Introducción al método d los Elmntos Finitos n D Lcción Discrtizacion Intrpolación n D Adaptado por Jaim Puig-Py (UC) d:. Zabaras, N. Curso FE Analysis for Mch&Arospac Dsign. U. Cornll. 0.. Fish, J., Blytschko,
TEMA 10: DERIVADAS. f = = x
TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad
Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente
Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl El paso alatorio X t = c + X t 1 + a t no s stacionario. Sin mbargo, l procso difrnciado rgularmnt s stacionario. X t X t 1 = c +
INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:
INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La
Variables aleatorias continuas
Probabilidads y Estadística Comutación Facultad d Cincias Eactas y Naturals. Univrsidad d Bunos Airs Ana M. Bianco y Elna J. Martín 4 Variabls alatorias continuas Distribución Uniorm: Rcordmos qu tin distribución
Aplicaciones de las Derivadas
www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s
CONTROL PID DEL ÁNGULO DE CABECEO DE UN HELICÓPTERO
CONROL EL ÁNGULO E CABECEO E UN HELCÓERO F. Morilla SEÑO OR EAAS Canclación d la dinámica subamortiguada impo d asntaminto d la rspusta tmporal Rstriccions n la sñal d control Estructura d control y filtro
AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR
AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD FÓRMULA AT07 NOMBREdlINDICADOR Porcntaj d población n la scula con un avanc rgular por dad. FÓRMULAdCÁLCULO PPR = PPR A + inf A
UNED Tudela Psicometría. Tema 4 Esquema tema 4
Esquma tma 4 1.- Orintacions didácticas: Tmas antriors: construcción dl tst Tmas 4 al 8: Evaluación d la calidad d la pruba piloto basándos n las rspustas d los sutos: Fiabilidad, validz y calidad d los
Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar
Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga
Valuación por comparables. Dr. Marcelo A. Delfino
Valuación por comparabls Dr. Marclo A. Dlfino Múltiplos Estima l valor d una mprsa a partir dl valor conocido d otra mprsa d caractrísticas similars. El supusto básico s qu, sindo compañías similars l
91 EJERCICIOS de DERIVABILIDAD 2º BACH.
9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
( ) 2 2 ( ) RESOLUCIÓN * RESOLUCIÓN 2. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN N K.
SEMANA 1 POTENCIACIÓN Y RADICACIÓN 1. Si l numral aann s un cuadrado prfcto; Calcul la suma d cifras d su raíz cuadrada? A) 15 B) 1 C) 19 D) 1 E) 1 aann = K 11 aann difrncia s cro; ntoncs s múltiplo d
Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida
ntgral indfinida achillrato ntgral indfinida. Primitiva d una función Dfinición: Sa f() una función dfinida n l intrvalo (a,b), llamarmos primitiva d la función f() a toda función ral d variabl ral, F(),
Tema 7 El modelo IS-LM / O.A.-D.A: análisis macroeconómico
Tma 7 El modlo IS-LM / O.A.-D.A: un marco gnral para l análisis macroconómico (Curva IS La rcta IS, rcog los pars d puntos, tipos d intrés y producción r )los cuals l mrcado d bins stá n quilibrio.,, para
Universidad Nacional del Litoral
Univrsidad Nacional dl Litoral Facultad d Ingniría y Cincias Hídricas ESTADÍSTICA Ingnirías: Rcursos Hídricos-Ambintal-Agrimnsura- Informática Mg. Ing. Susana Vanlsbrg MODELOS DE VARIABLE ALEATORIA CONTINUA
Guía de Pupitres Módulo de Inventario Séneca v1
Guía d s Módulo d Invntario Sénca v 27/03/5 d 3 Índic d contnido Antcdnts...3 2Datos ncsarios para idntificar los pupitrs... 3 3Tipos d pupitrs...4 4Sllado d los pupitrs... 8 5Otros mobiliarios d aula...9
Responsabl e de su aplicación
SEGUIMIENTO DE TÍTULOS INFORMACIÓN PÚBLICA: SÍNTESIS DE LOS PLANES DE MEJORA TÍTULO: GRADUADA/O-MASTER EN DIRECCIÓN Y ADMINISTRACIÓN DE EMPRESAS (MBA) AÑO: 2010- CRITE RIO Dnominación Punto débil tctado
168 Termoquímica y Cinética. Aspectos Teóricos
168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin
MEDICIÓN DE LA BANDA PROHIBIDA DEL SILICIO
MEDICIÓN DE LA BANDA PROHIBIDA DEL SILICIO Amador Ana y Rausch Frnando Dpartamnto d física, Univrsidad d Bunos Airs, Bunos Airs, Argntina Nustro trabajo consistió n mdir l ancho d la banda prohibida dl
Modelo de Regresión Logística
Modlo d Rgrsión Logística Modlo d rgrsión qu lica l comortaminto d una variabl dndint discrta, Y, dicotómica n función d una o más variabls indndints cualitativas o cuantitativas. Los valors qu toma la