MÉTODOS DE INTEGRACIÓN. x x x. x x. dx dx x. dx x 2)( Lnx. x dx x. x x

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MÉTODOS DE INTEGRACIÓN. x x x. x x. dx dx x. dx x 2)( Lnx. x dx x. x x"

Transcripción

1 MÉTODOS DE INTEGRACIÓN.-Sustitución Simpl. d d d d d d d d d d d d d d d d d d d d d d d d a d d d d d d d d d d d d d d d d d d d d d / /

2 Parts. d d d d d d d d d d d d d d d d d d d d d d d d Racionals Fraccions Parcials d Hacr d d d d d d d d d d d d d d d d d d d d d d d d

3 APLICACIONES A LA ECONOMÍA.. Una compañía actualmnt produc 0 unidads por smana d producto. Por princia, sabn qu l costo d producir la unidad númro n una smana sto s, l costo marginal stá dado por: C 0. 0 Suponindo qu st costo marginal aún s aplica, dtrmin l costo tra por smana qu dbría considrars al lvar la producción d 0 a 00 unidads por smana.. El ingrso marginal d una mprsa stá dado por R 0. 0 a Dtrmin la función d ingrso. b Encuntr la rlación d dmanda para l producto d la mprsa.. La función d costo marginal d una mprsa s C a Dtrmin la función d costo C, si los costos fijos d la mprsa son d $000 por ms. b Cuánto costará producir 0 unidads n un ms? c Sí los artículos s pudn vndr a $ cada uno cuántos dbn producirs para maimizar la utilidad?. El costo marginal d cirta mprsa stá dado por C Si l costo d producir 00 unidads s d $,700, ncuntr: a La función d costo; b Los costos fijos d la mprsa; c El costo d producir 00 unidads. d Si los artículos pudn vndrs a $90 cada uno, dtrmin l nivl d producción qu maimiza la utilidad.. La función d ingrso marginal d cirta mprsa s R a Dtrmin l ingrso obtnido por la vnta d unidads d su producto. b Cuál s la función d dmanda dl producto d la mprsa?. La función d ingrso marginal d cirta mprsa s R a Encuntr la función d ingrso. b Cuánto ingrso s obtndrá por la vnta d 00 unidads dl producto d la mprsa? c Cuál s la función d dmanda dl producto d la mprsa? damasorojas8@gmail.com damasorojas8@hotmail.com, damasorojas8@galon.com

4 7. La función d utilidad marginal d una mprsa s P y la mprsa obtin una utilidad d $0 al vndrs 00 unidads. Cuál s la función d la mprsa? 8. El costo marginal n dólars d una compañía qu fabrica zapatos stá dado por: C 00 ; n dond s l númro d pars d 000 zapatos producidos. Si los costos fijos son d $00, dtrmin la función d costo. 9. Un industrial ttil tin un costo marginal n dólars por rollo d una tla 0.0 particular dado por C 0, n dond s l númro d rollos producidos d la tla. Si los costos fijos ascindn a $00, dtrmin la función d costo. 0. Una mprsa tin un costo marginal por unidad d su producto dado por C ; Dond s l nivl d producción. Si los costos fijos 0 ascindn a $000, dtrmin la función d costo.. La función d costo marginal d cirta mprsa a nivl d producción s C y l costo d fabricar 0 unidads s $9,00. Dtrmin l costo d fabricar 0 unidads.. La función d ingrso marginal d una mprsa s R a Dtrmin la función d ingrso. b Qué ingrso s obtndrá al vndr 0 unidads? c Cuál s la función d dmanda dl producto d la mprsa? d Cuántas unidads podrá vndr la mprsa si ls fija un prcio d $ a cada una?. Dspués qu una prsona ha stado trabajando por t horas con una máquina n particular, habrá rndido unidads, n dond la tasa d rndiminto númros d unidads por hora stá dada por d 0 t /0. dt a Cuántas unidads d rndiminto alcanzará la prsona n sus primras 0 horas? b Cuántas rndirá durant las sgundas horas. El ingrso marginal d una mprsa stá dado por R 00 damasorojas8@gmail.com damasorojas8@hotmail.com, damasorojas8@galon.com

5 a Encuntr la función d ingrso. b Dtrmin la rlación d dmanda.. La utilidad marginal diaria d una mprsa stá dada por P. Si la mprsa pird $0 por día cuando sólo 900 vnd 0 unidads por día, dtrmin la función d utilidad d la mprsa.. La utilidad marginal d una mprsa stá dada por P. Si los costos fijos d la mprsa son d $00, ncuntr la función d utilidad. 7. El ingrso marginal d una mprsa por su producto s R 0 0 / 0. Dtrmin la función d ingrso y la cuación d dmanda dl producto. 8. El costo promdio marginal d cirto producto stá dado por 00 C 0.0. Si tin un costo d $ 00 producir 00 unidads, dtrmin la función d costo C. 9. Un studio indica qu dntro d mss la población d cirta ciudad stará crcindo a una rata d / por prsonas por ms. En qué cantidad crcrá la población d la ciudad durant los 8 mss próimos? 0. La función costo marginal stá dada por C 8. Si l costo d producción d unidads s d 0. Calcular la función costo total.. Si l ingrso marginal stá dado por y 7.Encuntr la función ingrso total y la cuación d la dmanda.. La razón d cambio n los gastos d mantniminto d una máquina sta dada por la cuación 0 t t, n dond t s l númro d años. Encuntr l monto dl mantniminto cuando han pasado 8 años.. La utilidad marginal d una mprsa stá dada por G 0 Si la mprsa obtin como ganancia Bs. 00 cuando s vndn 0 unidads. Dtrmin la función utilidad. damasorojas8@gmail.com damasorojas8@hotmail.com, damasorojas8@galon.com

6 . Los ingrsos marginals d una mprsa stán dados por la cuación I y su C. Cuando s producn unidads d un producto. Calcular: a La función ingrso si cuando s vndn 0 unidads s igual a 00. b La función costo si l númro d unidads s, st s igual a.. Los ingrsos marginals d una mprsa stán dados por: I 8 8 / y los costos marginals por C 8. Cuando su producción unidads d un producto. Calcular: a La función costo, si st s d $07.7, cuando l númro d unidads s igual a 00. b La función ganancia si G La función ingrso marginal d una mprsa stá dada por I ; y su costo marginal por C. Dtrminar la función ganancia sí G La función ingrso marginal d una mprsa stá dada por I ; y su costo marginal por C. Encontrar a la función dl costo total, sabindo qu C 00 b La función ingrso si l ingrso marginal s nulo. ABRIL, 009 DÁMASO ROJAS. damasorojas8@gmail.com damasorojas8@hotmail.com, damasorojas8@galon.com

MATERIA: Matemáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manuel Armendáriz González

MATERIA: Matemáticas VI, AREA III y IV CICLO ESCOLAR PROFESOR Víctor Manuel Armendáriz González Ciudad d Méico Fundadora y Dirctora Gnral: Profra. Alina Mirya Sánchz Martínz MATERIA: Matmáticas VI, AREA III y IV CICLO ESCOLAR 014-015 PROFESOR Víctor Manul Armndáriz Gonzálz Progrsions Rsulv los siguints

Más detalles

5) dx. 9) x. dx 11) 4x dx. x e 27)

5) dx. 9) x. dx 11) 4x dx. x e 27) .. Antidrrivadas: Evalú las intgrals siguints: Wilfrdo Saravia Maradiaga UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS DET-8, MÉTODODOS CUANTITATIVOS III GUÍA DE EJERCICIOS,

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

Representación de Funciones.

Representación de Funciones. T 5 Rprsntación d Funcions EJERCICIOS DE DESARROLLO 1- Elmntos Fundamntals para la Construcción d Curvas 1 Halla l dominio d stas funcions: a 5 + 7 + b d y g + 5 5 + = ln + + 1 ln +1 = y ( ) f ( ) Halla

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

( ) 1. Halla el dominio de continuidad y clasifica las discontinuidades de las siguientess funciones: x 1. x 4. = x 2. = x. b) f ( x) x 4x.

( ) 1. Halla el dominio de continuidad y clasifica las discontinuidades de las siguientess funciones: x 1. x 4. = x 2. = x. b) f ( x) x 4x. º Bacillrato d CCNN. Halla l dominio d continuidad y claica las discontinuidads d las guintss uncions: a b c ln d g i j 7 k l 8 m 6 n 6 o p q r s t u v w y z ln. Halla l dominio d continuidad y claica

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

GUÍA METODOLÓGICA PARA ARQUITECTURA

GUÍA METODOLÓGICA PARA ARQUITECTURA Dpartamnto d Cincias Eactas GUÍA METODOLÓGICA DE MATEMÁTICA APLICADA II PARA ARQUITECTURA Marzo0-Julio 0 Campus Matriz Quito: Burgois N-0 y Rumipamba Tléfonos 6 /58/59 Et. 68/66 Quito Ecuador Dpartamnto

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES Licnciatura n Administración y Dircción d Emprsas (LADE) Facultad d Cincias Jurídicas y ocials (FCJ) Univrsidad Ry Juan Carlos (URJC) PROBLEMA CÁLCULO INTEGRAL Y ECUACIONE DIFERENCIALE Matmáticas Primr

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : LÍMITES Y CONTINUIDAD DE FUNCIONES REALES Comptncias Utilizar técnicas d aproimación n procsos numéricos infinitos

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

x. Determina las asíntotas de la gráfica de f.

x. Determina las asíntotas de la gráfica de f. Slctividad CCNN 008 ax +x si x. [ANDA] [SEP-A] Considra la función f: dfinida por: f(x) = x -bx-4 si x > a) Halla a y b sabindo qu f s drivabl n. b) Dtrmina la rcta tangnt y la rcta normal a la gráfica

Más detalles

LECTURA 09: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO

LECTURA 09: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO Univrsidad Los Ángls d Chimbot LECTURA 9: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO 1. INTRODUCCION: La pruba d indpndncia chi cuadrado s un procdiminto d contrastación

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

105 EJERCICIOS de DERIVABILIDAD 2º BACH.

105 EJERCICIOS de DERIVABILIDAD 2º BACH. 105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas ap. Ecuacions Difrncials d Primr ordn. Introducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions actas.7 Factor Intgrant.8 Estabilidad dinámica dl quilibrio.9

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones 8 Límits d sucsions y d funcions ACTIVIDADES INICIALES 8.I. Calcula l término gnral, l término qu ocupa l octavo lugar y la suma d los ocho primros términos para las sucsions siguints., 6, 0, 4,..., 6,

Más detalles

Modelos Matemáticos para la optimización y reposición de maquinarias: Caso la Empresa Eléctrica de Milagro

Modelos Matemáticos para la optimización y reposición de maquinarias: Caso la Empresa Eléctrica de Milagro Modlos Matmáticos para la optimización y rposición d maquinarias: Caso la Emprsa Eléctrica d Milagro Edwin Lón Plúas, Csar Gurrro Loor 2 Ingniro n Estadística Informática, 2003 2 Dirctor d Tsis, Matmático,

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5 página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),

Más detalles

Model de precios rígidos Profesor: J. Marcelo Ochoa Otoño 2007

Model de precios rígidos Profesor: J. Marcelo Ochoa Otoño 2007 . Ba dl modlo Modl d prcio rígido Profor: J. Marclo Ochoa Otoño 2007.. Dmanda Agrgada y Política Montaria El lado d la dmanda dl modlo rum n la iguint cuacion: Curva IS: Y = A0 PMG Ir+Xǫǫr PMG r Rgla d

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1 En los problmas complt la tabla siguint para cada función. d d DIVISION DE INGENIERIA ELECTRONICA.. Rumbo al amn d rcupración a Part: CALCULO INTEGRAL Ejrcicios Difrncials Dfinición. Faus6 Supóngas qu

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función: º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

ANÁLISIS (Selectividad 2014) 1

ANÁLISIS (Selectividad 2014) 1 ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

Problemas resueltos. Problema 4.1 R 4 C E L. k i 4 3 R 3

Problemas resueltos. Problema 4.1 R 4 C E L. k i 4 3 R 3 Problmas rsultos. Problma 4. Para la rd d la figura P4., mplar la idntificación para las variabls sgún l diagrama d la drcha, d tal forma qu l producto d las variabls asociadas a un lmnto, sa la potncia

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Solución a la práctica 6 con Eviews

Solución a la práctica 6 con Eviews Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

Dinámica macroeconómica con metas de inflación y déficit fiscal.

Dinámica macroeconómica con metas de inflación y déficit fiscal. Dinámica macroconómica con mtas d inflación y déficit fiscal. Waldo Mndoza Bllido Dpartamnto d Economía-PUCP XXVII Encuntro d Economistas BCRP Lima, 13 d novimbr d 2009 Contnido. 1. Antcdnts y objtivos.

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

1. Calcular la integral definida de: x e xdx. sin 5

1. Calcular la integral definida de: x e xdx. sin 5 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS INSTRUCCIONES. Lln todos los datos n ltra

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

Oficina de Acceso a la Información pública del MITRAB

Oficina de Acceso a la Información pública del MITRAB No. 22 Tmas Consultados 13 Aquí s dtalla l rgistro d atnción a usuarios d la OAIP: REGISTRO DE LA OFICINA DE ACCESO A LA INFORMACIÓN Enro 2010 o 7 S. 2 6 Pasos a sguir un trabajador para intrponr una dmanda

Más detalles

Alfredo Masó Macroeconomía Intermedia Grado de ADE y DADE-Curso Práctica 2 (Tema 1: modelo Mundell-Fleming : Políticas de DA)

Alfredo Masó Macroeconomía Intermedia Grado de ADE y DADE-Curso Práctica 2 (Tema 1: modelo Mundell-Fleming : Políticas de DA) Alrdo Masó Macroconomía Intrmdia Grado d ADE y DADE-Curso 2012 roblmas: ráctica 2 (Tma 1: modlo Mundll-Flming : olíticas d DA) 1º) Obtnga la xprsión d la Dmanda Agrgada, la rnta d quilibrio, l tipo d intrés

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral: APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos campos dl conociminto n qu istn aplicacions d la intgral. Por la naturalza d st concpto, pud aplicars tanto n Gomtría, n Física, n Economía incluso n

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos CAPITULO. Aplicación d la mcánica cuántica a la rsolución d problmas físicos sncillos 1) Partícula n un foso d potncial infinito (caja d una dimnsión) I I V() V() V() X l d ( ) + m d d ( ) m + ( E V (

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

a. Calcula la potencia que debe tener la fuente de radiación. n I 10 A Js m s C 2.

a. Calcula la potencia que debe tener la fuente de radiación. n I 10 A Js m s C 2. Tara. Rsulta 1. Una art d un instrumnto lctrónico incluy un disositivo qu db sr caaz d roorcionar una corrint léctrica d 10 - A or mdio d fcto fotoléctrico. Si la funt d radiación usada tin una λ =.5 10-7

Más detalles

Facultad de Ingeniería Matemática intermedia 1. Proyecto 2

Facultad de Ingeniería Matemática intermedia 1. Proyecto 2 Univrsidad d San Carlos d Guatmala Dpartamnto d matmática Facultad d Ingniría Matmática intrmdia 1 Introducción: Proycto Fcha d ntrga: luns 16 d abril d 018 El dsarrollo d proyctos s important n la formación

Más detalles

Espectro de vibración de las moléculas diatómicas

Espectro de vibración de las moléculas diatómicas Espctro d vibración d las moléculas diatómicas Ilana Nivs Martínz QUIM 404 1 Pozo d nrgía potncial y moléculas diatómicas 1 Caractrísticas r la longitud dl nlac n quilibrio. r, V 0 (no hay intracción.

Más detalles

Cuánto tarda una pelota en dejar de botar?

Cuánto tarda una pelota en dejar de botar? Cuánto tarda una plota n djar d botar? Dr. Guillrmo Bcrra Córdoa Unirsidad Autónoma Chapino Dpto. d Prparatoria Arícola Ára d Física Profsor-Instiador 59595500 xt. 59 E-mail: llrmbcrra@yahoo.com Km. 8.5

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C.

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. Vignt a partir d: Administración y Finanzas Vrsión: Página 1 d 5 1. Objtivo Asgurar qu la Gstión d la Cobranza dl Cntro Univrsitario dl Fútbol y Cincias dl Dport así como dl Cntro d Formación y Rsidncia

Más detalles

3.- Hallar las ecuaciones de las rectas tangente y normal a la curva del ejercicio 1a en el punto en el que se indica en dicho ejercicio.

3.- Hallar las ecuaciones de las rectas tangente y normal a la curva del ejercicio 1a en el punto en el que se indica en dicho ejercicio. Matmáticas II Unidad 7 UNIDAD 7 DERIVABILIDAD.- Utilizando la dinición d drivada, hallar las drivadas d las uncions guints n los puntos qu s indican: a b c d 5 n n n n.- Utilizando la dinición d drivada,

Más detalles

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación Química TEM 3 º d achillrato Trmoquímica. La ntalpía d combustión dl butano s d º 875,8 /mol. Si qurmos calntar l air d una habitación d xx3 m con una stua d butano, dsd º hasta 5º, qué masa d butano dbrmos

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

ECONOMÍA DE FIESTAS ESTUDIOS DE LA ACTIVIDAD COMERCIAL EN LA FERIA DE LAS ALASITAS EDICIÓN: de mayo del 2014

ECONOMÍA DE FIESTAS ESTUDIOS DE LA ACTIVIDAD COMERCIAL EN LA FERIA DE LAS ALASITAS EDICIÓN: de mayo del 2014 ECONOMÍA EDICIÓN: 02 16 d mayo dl 2014 LA ACTIVIDAD COMERCIAL EN LA FERIA LAS ALASITAS - 2014 PRODUCCIÓN: Cntro d Estudios Económicos 07 fbrro dl 2014 ESTUDIO LA ACTIVIDAD COMERCIAL EN LA FERIA LAS ALASITAS

Más detalles

Taller 3 cálculo diferencial cdx24: Preparación tercer parcial

Taller 3 cálculo diferencial cdx24: Preparación tercer parcial Tallr cálculo difrncial cd: Prparación trcr parcial Profsor Jaim Andrés Jaramillo Gonzálz jaimaj@concptocomputadors.com. ITM 07- Drivada. Encuntr la drivada d la función usando la dfinición d drivada:

Más detalles

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl ilar Osorno dl Rosal Olga María Rodríguz Rodríguz http://bit.ly/8l8u

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

RUBRICAS PRIMERA EVALUACIÓN I TERMINO Tema #2 (10 puntos). (Conceptos Varios)

RUBRICAS PRIMERA EVALUACIÓN I TERMINO Tema #2 (10 puntos). (Conceptos Varios) RUBRICAS PRIMERA EVALUACIÓN I TERMINO 21 Tma #2 (1 ). (Concptos Varios) RUBRICA TEMA #2 TEMAS CONDUCTA AFICIONADO NOVATO PROFESIONAL EXPERTO En la cuarta #2 columna No Rgistra rgistra la 4% d la 7% d la

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:

Más detalles

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos . Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral

Más detalles

Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO

Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO Prof. Jsús Olivar Rsumn d Cálculo II ING. PETRÓLEO.- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f, dirmos qu F s una primitiva suya si F

Más detalles

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS EJERCICIOS DE REPSO PR SELECTIVIDD: NÁLISIS Ejrcicio. San f : R R y g : R R las funcions dfinidas por f( = -( + + a + b y g( = c S sab qu las gráficas d f y g s cortan n l punto (, y tinn n s punto la

Más detalles

Tema 1. Termodinámica Estadística. Problemas

Tema 1. Termodinámica Estadística. Problemas ma. rmodinámica Estadística Problmas jrcicios E.- S tin un sistma formado por partículas iguals, con 6 nivls nrgéticos no dgnrados. a) Calcular l númro acto d microstados (M) n los trs casos siguints:

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83 TEMA. ECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 6 a 8 Página 6. a) mcm (, ) ( ) + ( ) + 7 + / mcm (6, 0) 0 ( + ) ( ) 0 + 8 0 / c) mcm (7, ) 8 ( ) 7 ( + ) 8 (9 ) 8 97 / 9 d) mcm (8, ) 8 6 (0 ) 8 Página

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

FÍSICA APLICADA. EXAMEN EXTRAORDINARIO 26/Junio/2012

FÍSICA APLICADA. EXAMEN EXTRAORDINARIO 26/Junio/2012 FÍSI ID. EMEN ETODINIO 6/Junio/01 TEOÍ (.5 p). a) oncpto d campo léctrico y potncial léctrico. b) S tinn dos cargas léctricas puntuals dl mismo valor y signos contrarios sparadas una distancia d (dipolo

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM

LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM Est capitulo xamina l fcto qu tin sobr l ingrso d quilibrio un cambio n la ofrta d dinro, n l gasto gubrnamntal y/o n los ingrsos ntos por impustos.

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico qu dispon d una sñal d ntrada, gnralmnt dnominada disparo, al activars sta ntrada n la salida dl circuito (Q s obtin un pulso

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS NOMBRE DE LA ASIGNATURA FÍSICA TÉRMICA CÓDIGO ASIGNATURA 02112 LABORATORIO No 5 TÍTULO DE LA PRÁCTICA DURACIÓN BIBLIOGRAFÍA SUGERIDA CALORIMETRÍA 2 HORAS. - Sars y Z., Física Univrsitaria, Tomo I, Editorial

Más detalles

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgral dfinida: (º) Aplicación:

Más detalles