=, despeja y calcula la matriz X.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "=, despeja y calcula la matriz X."

Transcripción

1 Universidd de Cstill l Mnch PAEG Junio.05 Opción A. ) Despej l mtriz X en l siguiente ecución mtricil: X + XA + B = I 4, suponiendo que tods ls mtrices son cudrds del mismo orden (I es l mtriz identidd) b) Dd l ecución mtricil: X =, despej y clcul l mtriz X.. En un coro, l sum de soprnos, mezzosoprnos y contrltos es igul 5. Un dí que tuvieron que cntr fltron mezzosoprnos y contrlto debido l gripe, de tl form que ese dí el número de soprnos er igul l medi ritmétic de mezzosoprnos y contrltos. Y demás ese dí el número de mezzosoprnos y el número de contrltos coincidín. ) Plnte el sistem de ecuciones que nos permit verigur el número totl de soprnos, mezzosoprnos y contrltos que tiene el coro sidumente. b) Resuelve el sistem plntedo en el prtdo nterior. x = nº soprnos y = nº mezzosoprnos z = nº contrltos Por tnto, hy 4 soprnos, mezzosoprnos y 5 contrltos.. Se consider l función ) Hll el vlor de t pr que f se continu en x=. b) Pr t=0, represent gráficmente l función. Pr que se continu en x=: Pr t=0: 4

2 á á Exmen Selectividd _ Mtemátics _ CCSS _ Cstill l Mnch 4. L evolución del precio de un determindo producto, en miles de euros, durnte meses, viene dd por l función f(t) = t 9t + 5t + 50, 0 t, siendo t el tiempo medido en meses. c) Cuál fue el vlor que lcnzó dicho producto el segundo mes (t=)? d) Cuándo lcnzó su precio máximo ese producto? Y cuánto scendió? e) Cundo lcnzó su precio mínimo? Y cuál es dicho vlor? En el segundo mes lcnzó: f() = Ahor optimizmos l función: t) = t 8 t + 5 t) = 0 t 8 t + 5 = 0 8 Por lo que lcnzó un precio máximo de 7 y uno mínimo de. 5. De un estudio sobre ccidentes de tráfico se dedujeron los siguientes dtos: en el 5% de los csos no se llevb puesto el cinturón de seguridd, en el 0% no se respetron los límites de velocidd permitidos y en el 5% de los csos no se cumplín mbs norms, es decir, no llevbn puesto el cinturón y no respetbn los límites de velocidd. ) Clcul l probbilidd de que, en un ccidente de tráfico, no se hy cumplido lgun de ls dos norms. b) Rzone si son independientes los o r o v o p o r r ccidente no r p o o í v o. Suceso A = r o v o p o r P(A) = 0.5 Suceso B = r o r p o o í v o P(B) = 0. P (A B)= 0.05 L probbilidd de que no se hy cumplido lgun norm: P(A B)... 7 Dos sucesos son independientes si se cumple:... Es decir, no son independientes.. Se sbe que el número de pulsciones después de relizr un serie de ejercicios sigue un distribución norml de desvición típic = 5. Los siguientes dtos representn ls pulsciones de 0 persons elegids l zr después de relizr dichos ejercicios:, 5,, 4, 8, 9, 4, 0, 5,,, 7,, 8,, 5, 9,, y 8. ) Determin el intervlo de confinz pr l medi poblcionl del número de pulsciones después de l relizción de los ejercicios con un nivel de confinz del 97%. b) Será rzonble pensr que este ejemplo proviene de un poblción norml con medi =.4 con un nivel de confinz del 97%? Y con un nivel de significción igul 0.08? Rzon tus respuests. Nos piden un IC pr l medi de un poblción norml con desvición típic conocid: Pr clculr el vlor de Z /, hy que tener en cuent que un nivel de confinz del 0.97, le corresponde un nivel de significción = 0.0. Como el vlor correspondiente P(Z <0.05) no prece en l tbl: P(Z<0.05) = P(Z<0.985) Es decir, el vlor buscdo es.7. Tmbién nos hce flt l medi:.

3 Por tnto, el IC pedido es:.. 7 No podemos concluir que l medi poblcionl se, con un nivel de confinz del 97%, y que este vlor no pertenece l intervlo que hemos clculdo un nivel de significción del %. Si el nivel de significción es = 0.08, el vlor de Z / será Z 0.04, que como en el cso nterior no prece en l tbl, por lo que: P(Z<0.04) = P(Z<0.9). Es decir, el vlor buscdo es menor. Al ser el vlor de Z / menor, el IC tmbién será menor, por lo que el vlor de l medi tmpoco estrá incluido en el intervlo, es decir, tmpoco podemos concluir que l medi poblcionl se de.. Opción B. Un empres tiene 00 lts de perdiz en escbeche y 000 lts de lomo de orz. Dese elborr dos tipos de lotes pr reglo con dichs lts: lotes de tipo A formdos por un lt de perdiz en escbeche y dos de lomo de orz, que venderá 70 euros; lotes de tipo B formdos por dos lts de perdiz en escbeche y un de lomo de orz que venderá 0 euros. ) Expres l función objetivo. b) Describe medinte inecuciones ls restricciones del problem y represent gráficmente el recinto definido. c) Hll el número de lotes de cd tipo que debe preprr pr obtener l myor cntidd de dinero. x: nº de lotes del tipo A y: nº de lotes del tipo B L función objetivo viene dd por: B(x, y) = 70x +0y Restricciones B (0, 550) 500 A (00, 400) 00 D (0, 0) C (500, 0) Es decir hy 00 lotes del tipo A y 400 lotes del tipo B.. En un pequeñ empres de procesdo de limentos pr su conservción, se trtn tres tipos de productos limenticios: A, B y C. Estos limentos psn por tres procesos pr su conservción: lvdo, esclddo y congelción. En l tbl siguiente se muestr el tiempo que necesit un lote de cd tipo pr su procesdo: A B C Lvdo 5 minutos minutos minutos Esclddo 0 segundos 0 segundos 0 segundos Congelción hors hors hor ) Plnte el sistem de ecuciones que nos permit verigur cuántos lotes de cd producto limenticio se pueden procesr con un disponibilidd de 85 minutos pr lvdo, 4000 segundos pr el esclddo y 475 hors pr congeldo. b) Resuelve el sistem plntedo en el prtdo nterior. x = nº lotes tipo A y = nº lotes tipo B z = nº lotes C

4 á á 4 Lo resolvemos por Crmer: Exmen Selectividd _ Mtemátics _ CCSS _ Cstill l Mnch 7 Es decir, se procesrán 00 lotes del tipo A, 75 lotes del tipo B y 5 lotes del tipo C.. Se consider l función ) Estudi su continuidd en x =. b) Clcul los extremos reltivos de l función f(x) en el intervlo (,4). c) Clcul los intervlos de crecimiento y decrecimiento de l función f(x) en (, + ) Pr que se continu Es decir, l f(x) no es continu en x =, sino que present un discontinuidd inevitble de slto finito Clculmos los extremos reltivos (máximos y mínimos). Como nos dicen en el intervlo (,4), l función en ese intervlo tiene l form: f(x) = x x + 9 x = 0 x = f <0 f >0 Es decir existe un mínimo en (, 0). Los intervlos en (, + ), serán: Decrece: (, ) Crece (, + ) 4. Determin un función polinómic de segundo grdo sbiendo que tiene un mínimo reltivo en el punto (, ) y que l rect tngente dich función en el punto de bscis x = 4 es prlel l rect y = x + 7. Un función polinómic de segundo grdo tiene l form: f(x) = x + bx + c Pr que exist un mínimo reltivo p o,, q p r q : x) = x + b + b = 0 Además, si ps por el punto (,), signific que: f() = 9 + b + c = Por último, nos dicen que l rect tngente en x=4 tiene l mism pendiente que l rect y = x + 7, es decir: 8 + b = Resolvemos el sistem formdo por ls tres ecuciones: Por tnto, l función pedid es: f(x)= x x +

5 Un person que corre hbitulmente tiene un probbilidd 0.0 de lesionrse. Suponiendo que el hecho de que un person se lesione es independiente de que otr se lesione o no. ) Cuál es l probbilidd de que se lesionen dos persons que corren hbitulmente? b) Cuál es l probbilidd de que se lesionen l menos un de cutro persons que corren hbitulmente? c) Cuál es l probbilidd de que se lesione exctmente un person de dos que corren hbitulmente? Suceso A = o ª p r o P(A) = 0.0 Suceso B = o ª p r o P(B) = 0.0 S o C o ª p r o P(C) = 0.0 S o D o ª p r o P(D) = 0.0 Los sucesos A y B son independientes, es decir, cumplen l regl del producto: P(AՍB) = P(A) P(B) L probbilidd de que dos persons se lesionen: P(AՍB) P (AՍB) = P(A) P(B) = P (AՍB) = L probbilidd de que se lesionen l menos un de ls cutro persons: P(no se lesione ninguno) P(AՈBՈCՈD) = P Ո ՈCՈD = [ ] = P (AՈBՈCՈD) = L probbilidd de que se lesione un person de dos: P(AՈ ) + P( ՈB) P (AՈ ) + P( ՈB) = P(A) P( ) + P( ) P(B)= P (AՍ ) + P( ՈB) = Un fbricnte de lámprs LEDs sbe que l vid útil de un lámpr LED sigue un distribución norml de medi desconocid y desvición típic 000 hors. Tomndo un muestr letori de lámprs producids por dicho fbricnte, se h obtenido el siguiente intervlo de confinz pr l medi poblcionl (49804, 509) con un nivel de confinz del 95%. ) Clcul el tmño de l muestr utilizd y clcul el vlor que se obtuvo pr l medi muestrl. b) Cuál será el error máximo dmisible si se hubier utilizdo un muestr de tmño 50 y un nivel de confinz del 9.98%? Si l vrible X: hors útiles de un lámpr LED, sigue un distribución norml: X ~ N(, 000), el intervlo de confinz pr l medi, tom l form:. Nos dicen que el IC es (49804, 509) con un nivel de confinz del 95%, es decir, con un nivel de significción = Pr buscr el vlor de Z 0.05 en l tbl: P(Z < 0.05) = P(Z < 0.975) Z 0.05 =.9 L de l muestr es el centro del IC, es decir, el vlor medio de los extremos del intervlo: Por tnto: C,... El error máximo dmisible es: Nos dicen pr un nivel de confinz del 9.98%, es decir, con un nivel de significción = Pr buscr el vlor de Z 0.05 en l tbl: Por tnto, pr un tmño n = 50: P(Z < 0.05) = P(Z < 0.949) Z 0.05 =.8. 7

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1.

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1. Pág. de 7 x si x Ì Hll el vlor de k pr que l función fx = x + k si x > se continu en x =. b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =, h de ser fx = f. x 8

Más detalles

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1 II BLOQUE II ANÁLISIS Págin 3 3x si x Ì Hll el vlor de k pr que l función fx = continu en x =. x + k si x > se b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =,

Más detalles

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior.

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior. MATEMÁTICAS II ACTIVIDADES REFUERZO ª EVALUACIÓN Ejercicio 1. Sen f : y g : ls funciones definids por f() = -( + 1) + + b y g() = ce Se sbe que ls gráfics de f y g se cortn en el punto ( 1, ) y tienen

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = rues de cceso Enseñnzs Universitris Oiciles de Grdo Mteri: MTEMÁTCS CDS S CENCS SOCES El lumno deerá contestr un de ls dos opciones propuests o. Se podrá utilizr culquier tipo de clculdor. ropuest. Queremos

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices

Más detalles

MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS 4º E.S.O.

MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS 4º E.S.O. 4º E.S.O. UNIDAD 1: LOS NÚMEROS REALES Ejercicio nº 1.- ) Escribe en form de intervlo, di su nombre y represent en cd cso:.1) { R / x 4}.) { R / < x } x (0.5 puntos) x (0.5 puntos) b) Escribe en form de

Más detalles

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDDES PÚBLICS DE L COUNIDD DE DRID PRUEB DE CCESO ESTUDIOS UNIVERSITRIOS (LOE) EEN ODELOCURSO - TEÁTICS PLICDS LS CIENCIS SOCILES II INSTRUCCIONES Y CRITERIOS GENERLES DE CLIFICCIÓN INSTRUCCIONES:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas.

SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas. SELECTIVIDAD. Est es un selección de cuestiones propuests en ls otrs comuniddes utónoms en l convoctori de Junio del.. En quells comuniddes en ls que no se indic nd, el formto de emen es similr l que se

Más detalles

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOE) EXAMEN MODELOCURSO - MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

, que, como está triangularizado, se observa que es

, que, como está triangularizado, se observa que es MTEMÁTICS PLICDS LS CIENCIS SOCILES II PRUEB ESCRIT. BLOQUE: ÁLGEBR ECH: DE ENERO DE Prte I. Sistems de ecuciones lineles. Mtrices. Ejercicio. Resuelv el siguiente sistem de ecuciones, utilindo, si es

Más detalles

Cuántos gramos hay que coger de cada uno de los tres lingotes?

Cuántos gramos hay que coger de cada uno de los tres lingotes? Consejerí de Educción, Cultur Deportes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simien C/ Frncisco Grcí Pvón, 6 Tomelloso 7 (C. Rel) Teléfono F: 96 9 9. Por un rotuldor, un cuderno un crpet se pgn,6 euros.

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

IES Fco Ayala de Granada Sobrantes del 2001 (Modelo 1) Solución Germán-Jesús Rubio Luna OPCIÓN A Area Area

IES Fco Ayala de Granada Sobrantes del 2001 (Modelo 1) Solución Germán-Jesús Rubio Luna OPCIÓN A Area Area IES Fco Ayl de Grnd Sobrntes del (Modelo ) GermánJesús Rubio Lun OPCIÓN A Ejercicio de l Opción A del Modelo de sobrntes de. Se quiere dividir l región encerrd entre l prábol y x y l rect y en dos regiones

Más detalles

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006 Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente

Más detalles

1-ª 2-ª 3 1-ª 3-ª ª. x + y + z = 2. 5y + 4z = 2 2z = 24 2-ª ª 3-ª 1-ª 5 2-ª 3-ª 1-ª 2-ª 2 3-ª + 2-ª

1-ª 2-ª 3 1-ª 3-ª ª. x + y + z = 2. 5y + 4z = 2 2z = 24 2-ª ª 3-ª 1-ª 5 2-ª 3-ª 1-ª 2-ª 2 3-ª + 2-ª DOSIER SISTEMAS DE ECUACIONES LINEALES - GAUSS MACS. Resuelve estos sistems de ecuciones medinte el método de Guss: b c -ª -ª -ª -ª -ª -ª -ª -ª -ª,, Resuelve estos sistems de ecuciones lineles: b -ª -ª

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.. CONCEPTO DE FUNCIÓN Ls funciones que hbitulmente utilizmos son funciones reles de vrible rel. f es un función de R en R si cd número rel Dom, le hce corresponder otro número

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I Mtemátics Nivel Medio Mtemátics Ap.CC.SS.I Mrtes 0 de noviembre de 01 1 hor NOMBRE APELLIDOS CALIFICACIÓN 1. Oper medinte notción rdicl y simplific l máximo: (0 puntos). Resuelv ls siguientes cuestiones

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tem 8 Geometrí Anlític Mtemátics º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Hll el punto medio del segmento de extremos P, y Q,. Ls coordends del punto medio, M, son l

Más detalles

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l

Más detalles

c Ejemplo: 25 9x 2 = 0 x

c Ejemplo: 25 9x 2 = 0 x 1.- ECUACIONES POLINÓMICAS Ecuciones de º grdo Son ecuciones donde l incógnit está elevd. Ecuciones de º grdo complets Son del tipo x + bx + c = 0, con b, c 0. Pr resolverls usmos l fórmul b b 4c x L expresión

Más detalles

lím 1 si x=0 3) Halla la ecuación de la recta tangente a la gráfica de la siguiente función en el punto de abscisa π/2: sen x y = arc tg 1+cos x

lím 1 si x=0 3) Halla la ecuación de la recta tangente a la gráfica de la siguiente función en el punto de abscisa π/2: sen x y = arc tg 1+cos x CURSO 4-5. de myo de 5. ) Clcul los siguientes ites: (+e ) / sen(/) ) Estudi l continuidd de l siguiente función: +e/ f() -e / si si ) Hll l ecución de l rect tngente l gráfic de l siguiente función en

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

0 x+2y=1. x+(a+4)y+(a+1)z=0 -(a+2)y +(a 2 +3a+2)z=a+4. a+1 a 2 +3a ± ±2

0 x+2y=1. x+(a+4)y+(a+1)z=0 -(a+2)y +(a 2 +3a+2)z=a+4. a+1 a 2 +3a ± ±2 JUNIO DE 8. PROBLEMA A. Estudi el siguiente sistem de ecuciones lineles dependiente del prámetro rel resuélvelo en los csos en que es comptible: x+ x+(+4)+(+)z (+) +( +3+)z+4 (3 PUNTOS) Aplicmos el método

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

RELACION DE PROBLEMAS DE ÁLGEBRA. Problemas propuestos para la prueba de acceso del curso 1996/ e I =

RELACION DE PROBLEMAS DE ÁLGEBRA. Problemas propuestos para la prueba de acceso del curso 1996/ e I = IES "Jándul" RELACION DE PROBLEMAS DE ÁLGEBRA Prolems propuestos pr l prue de cceso del curso 996/97 º Consider ls mtrices A e I Clcul un mtri X tl que A AX I, clcul, si eiste, l invers de X º Estudi el

Más detalles

- sen(x) cos(x) cos(x) sen(x)

- sen(x) cos(x) cos(x) sen(x) EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nombre: Curso: º Grupo: Dí: CURSO 5-6 Opción A.- ) [ punto] Si A y B son dos mtrices cudrds y del mismo orden, es ciert en generl l relción (A+B)

Más detalles

0, , , , ,9 9

0, , , , ,9 9 UNIDAD 1: Los números reles EJERCICIOS Y ACTIVIDADES-PÁG. 1 1. Expres como deciml ls siguientes frcciones y clsific los números decimles obtenidos: 5 0, 71485 es un periódico puro. 7 5 1, 6 es un deciml

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3). ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES Unidd didáctic 7. Funciones reles de vrible rel Autors: Glori Jrne, Espernz Minguillón, Trinidd Zbl CONCEPTOS BÁSICOS Se llm función rel de vrible rel culquier plicción f : D R con D Œ R, es decir, culquier

Más detalles

a ) x x y x y b) x x x : x x x x x x x x x d ) x x x : x x 2x - 3x + x + 8 :

a ) x x y x y b) x x x : x x x x x x x x x d ) x x x : x x 2x - 3x + x + 8 : EJERCICIOS MATEMÁTICAS B 4º E.S.O. JUNIO 05..- Clcul simplific: 6 6 4 5 4 7 4 5 4 5 4 6 5 5 7 5 ) b) c) d ) :.- Ddos los polinomios: P ( ), Q ( ), R()= - Clculr: 4 ) P( ) Q ( ) R( ) b) P( ) Q( ) R( ).-

Más detalles

ACTIVIDADES VERANO 4º ESO opción A a b) 3 2 x. 121x 169y. 8 y. a Expresa en forma de potencia: a) Expresa en forma de radical:

ACTIVIDADES VERANO 4º ESO opción A a b) 3 2 x. 121x 169y. 8 y. a Expresa en forma de potencia: a) Expresa en forma de radical: ACTIVIDADES VERANO º ESO opción A 01 NOMBRE: Grupo: 1.- Expres en form de potenci: ) 1 x c) b b.- Expres en form de rdicl: ) = =.- Reduce común índice: ) x,, 8.- Clcul ls siguientes ríces: 1 ) 81 0, 000081.-

Más detalles

MATEMÁTICAS (II) JUNIO 2002

MATEMÁTICAS (II) JUNIO 2002 MTEMÁTICS (II) JUNIO El emen present dos opciones, B. El lumno deberá elegir UN Y SÓLO UN de ells resolver los cutro ejercicios de que const. No se permite el usó de clculdors con cpcidd de representción

Más detalles

RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO.

RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO. RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO. 1- Ddo el triángulo de vértices A=(1,-3,), B=(3,-1,0) y C(-1,5,4). ) Determinr ls coordends del bricentro. b) Si ABCD es un prlelogrmo, determinr ls coordends

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Álgebr UNIDAD SISTEMAS DE ECUACIONES LINEALES.- Resolver, con el método de Guss, los sistems siguientes: ) b) 9 c) 9 8.- Resuelve utilindo l regl de Crmer: ) 7 b).- Anlir l comptibilidd del sistem siguiente:.-

Más detalles

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0 FUNCIONES FUNCIÓN: RELACIÓN ENTRE DOS MAGNITUDES X E Y TAL QUE A CADA VALOR DE X LE CORRESPONDE UN ÚNICO VALOR DE Y X: vrible independiente Y: vrible dependiente f()= Notción: f(2)=4, si =2, entonces =4

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas: EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

Cuaderno de repaso 4º ESO: Matemáticas orientadas a las enseñanzas académicas. Tema 1:

Cuaderno de repaso 4º ESO: Matemáticas orientadas a las enseñanzas académicas. Tema 1: Cuderno de repso 4º ESO: Mtemátics orientds ls enseñnzs cdémics Ejercicios pr resolver el profesor Ejercicio 1.- Extre fctores del rdicl: ) 12 b) 16 c) 64 d) 8 8 4 4 x y z t 6 Tem 1: Ejercicio 2.- Reliz

Más detalles

Modelo 5 de sobrantes de Opción A

Modelo 5 de sobrantes de Opción A Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím

Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím Universidd Ncionl Autónom de Hondurs Fcultd de Ciencis Económics Guí de Ejercicios No. DET 85, Métodos Cuntittivos III PARTE : Propieddes de límites: No. Teorem Form de reconocerlo C C ite de un constnte

Más detalles

DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO SEPTIEMBRE. A los padres del alumno/a de 4º de la ESO

DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO SEPTIEMBRE. A los padres del alumno/a de 4º de la ESO DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO SEPTIEMBRE A los pdres del lumno/ de º de l ESO Puesto que su hijo no h superdo los objetivos de º de l ESO en el áre de Mtemátics A, es necesrio que repse los

Más detalles

MATEMÁTICAS 2º BACH CIENCIAS INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CIENCIAS INTEGRAL DEFINIDA Profesor: Fernndo Ureñ Portero 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hy infinidd de funciones extríds del mundo rel (científico, económico, físic )pr ls cules tiene especil relevnci clculr el áre jo

Más detalles

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

Pruebas t para una y dos muestras independientes

Pruebas t para una y dos muestras independientes Densidd Densidd AGRO 55 LAB 9 Pruebs t pr un y dos muestrs independientes 1. Clcule ls siguientes probbiliddes usndo l tbl t e InfoStt. Incluy un digrm en cd cso.. P(T>1.356) si gl=1 b. P(T

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

Examen con soluciones

Examen con soluciones Cálculo Numérico I. Grdo en Mtemátics. Exmen con soluciones. Decidir rzondmente si ls siguientes firmciones son verdders o flss, buscndo un contrejemplo en el cso de ser flss (.5 puntos): () Si f(x) cmbi

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

MATEMÁTICAS B Curso º de E.S.O

MATEMÁTICAS B Curso º de E.S.O MATEMÁTICAS B Curso - º de E.S.O Cálculo de proiliddes Estdístic L Dirección Generl de tráfico h recogido l siguiente informción reltiv l número de mults diris impuests por eceso de velocidd en cierto

Más detalles

ÁREA DE MATEMÁTICAS Asignatura : ALGEBRA BANCO DE PREGUNTAS Curso NOVENO Bimestre CUARTO Fecha

ÁREA DE MATEMÁTICAS Asignatura : ALGEBRA BANCO DE PREGUNTAS Curso NOVENO Bimestre CUARTO Fecha ÁREA DE MATEMÁTICAS Asigntur : ALGEBRA BANCO DE PREGUNTAS Curso NOVENO Bimestre CUARTO Fech 12.09.2011 Elboró Prof. MAURICIO CARDENAS SILFREDO CARRIONI GRECY SANDOVAL Revisó Prof. LUIS GONZALEZ 2011: Cien

Más detalles

SELECTIVIDAD DETERMINANTES

SELECTIVIDAD DETERMINANTES SELECTIVIDAD DETERMINANTES Junio 8: Dds ls mtrices A = 5, B = y M = b, clcúlese y b pr que se verifiquen MA =, M + B =, donde se está usndo l notción hbitul (con brrs verticles) pr denotr l determinnte

Más detalles

Gestión de inventarios

Gestión de inventarios Gestión de inventrios José Mrí Ferrer Cj Universidd Pontifici Comills Introducción Inventrio (stock): Conjunto de bienes lmcendos pr su posterior uso Tipos de bienes del inventrio: Mteris prims en esper

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

INTEGRAL DEFINIDA 2º BACHILLER

INTEGRAL DEFINIDA 2º BACHILLER Colegio Vizcy Mtemátics II UNIDAD DIDÁCTICA INTEGRAL DEFINIDA º BACHILLER 9 Colegio Vizcy Mtemátics II OBJETIVOS DIDÁCTICOS. Aproximr por exceso y por defecto, medinte rectángulos, el áre encerrd por un

Más detalles

TEMA 0: CONCEPTOS BÁSICOS.

TEMA 0: CONCEPTOS BÁSICOS. TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I.

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I. DEPARTAMENTO DE ECONOMÍA Emen Finl (sólo ª prte) de Análisis Mtemático -Mo-05 GRADOS ECO ENI NOMBRE: DNI TURNO: TEST 45 PUNTOS (Cd pregunt contestd correctmente sum 05 puntos, contestd errónemente rest

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

C Á L C U L O M A T R I C I A L

C Á L C U L O M A T R I C I A L C Á L C U L O M T R I C I L C O N C E P T O D E M T R I Z T I P O S D E M T R I C E S Se llm mtriz de m fils y n columns tod colección de m x n números reles dispuestos de l form = i m i m j j ij mj n

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA SEGUNDA CONVOCATORIA

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA SEGUNDA CONVOCATORIA Dertmento de Mtemátic Alicd Escuel Universitri de Ingenierí Técnic Industril Universidd del Pís Vsco Plz de l Csill, 48 Bilbo MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA SEGUNDA CONVOCATORIA - EJERCICIO Tres

Más detalles

ACTIVIDADES. 001 Escribe una matriz que cumpla las siguientes condiciones. Su dimensión sea 3 2. a 32 = a 21 = a 11 = 1 a 22 = a 12 = a 31 = 2

ACTIVIDADES. 001 Escribe una matriz que cumpla las siguientes condiciones. Su dimensión sea 3 2. a 32 = a 21 = a 11 = 1 a 22 = a 12 = a 31 = 2 Solucionrio ACTIVIDADES Escribe un mtriz que cumpl ls siguientes condiciones. Su dimensión se. L mtriz es:. Se venden listones con dos cliddes y de dos longitudes. los listones grndes de bj clidd cuestn,75

Más detalles

3 Sistemas de ecuaciones lineales

3 Sistemas de ecuaciones lineales Solucionrio Sistems de ecuciones lineles CTIVIDDES INICILES.I. Resuelve los siguientes sistems de ecuciones. ) c) 6 ), λ, λλ R, c) Sistem incomptible,.ii. En cd cso, escribe un sistem de ecuciones cu solución

Más detalles

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a Resuelve ls siguientes ecuciones: 4 5 = 0 0 + 6 = 0 0 + 0 = 0 = 0 Hll el vlor de los siguientes determinntes de orden 4: 0 0 0 0 0 0 4 0 0 5 4 0 0 6 0 5 Clcul el vlor de los siguientes determinntes: 0

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.

Más detalles

DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES

DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES REPASO Y APOYO OBJETIVO DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES IDENTIDADES Y ECUACIONES Un iguldd lgebric está formd por dos expresiones lgebrics seprds por el signo igul (=). Un identidd es

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO

1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Límite de funciones. Continuidd MATEMÁTICAS II 1 1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor? En generl, pr tener un ide de l respuest

Más detalles

Bloque I. Aritmética y álgebra

Bloque I. Aritmética y álgebra Mtemátics plicds ls Ciencis Sociles I Autoevlución Págin 0 Explic si es verdder o fls cd un de ests frses: ) Todo número deciml se puede expresr como frcción. ) L sum de dos números irrcionles es siempre

Más detalles

24. Estudia la continuidad de la siguiente función: Dominio : . 3. lim f(x) lim. 3x 1. x 2. x x

24. Estudia la continuidad de la siguiente función: Dominio : . 3. lim f(x) lim. 3x 1. x 2. x x . Estudi l continuidd de l guiente unción: () Dominio : Dom () : ( ),, Present discontinuiddes en, y () () Presentun discontinuidd ntótic de primer especie de slto ininito.., : ( ) () () No está deinid.

Más detalles

Álgebra Selectividad

Álgebra Selectividad Álgebr Selectividd 4-11 1 Cundo el ño 18 Beethoven escribe su primer Sinfoní, su edd es diez veces mor que l del jovencito Frnz Schubert. Ps el tiempo es Schubert quien compone su célebre Sinfoní Incomplet.

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l

Más detalles

Sistemes d equacions (Gauss)

Sistemes d equacions (Gauss) Sistemes d equcions (Guss) Ejercicio nº.- Dos kilos de nrnjs, más un kilo de plátnos, más dos kilos de mngos, vlen, euros. Dos kilos de nrnjs, más dos kilos de plátnos, más de mngos, vlen euros. Tres kilos

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

TEMA 3. MATRICES Y DETERMINANTES

TEMA 3. MATRICES Y DETERMINANTES TEMA. MATRICES Y DETERMINANTES. DEFINICIÓN Un mtriz es un tbl de números ordendos en fils y columns de l siguiente form: n A m mn que es un mtriz de m fils y n columns, donde el elemento ij es el número

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

m m = -1 = μ - 1. Halla la Apellidos: Nombre: Curso: 2º Grupo: A Día: 27 - IV - 15 CURSO Opción A

m m = -1 = μ - 1. Halla la Apellidos: Nombre: Curso: 2º Grupo: A Día: 27 - IV - 15 CURSO Opción A S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nobre: Curso: º Grupo: A Dí: 7 - IV - 5 CURSO 4-5 ) Durción: HORA y 3 MINUTOS. b) Debes elegir entre relizr únicente los cutro ejercicios

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas:

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas: Álgebr: Sistems José Mrí Mrtíne Medino MATEMÁTICAS II TEMA Sistems de ecuciones lineles: Problems propuestos Clsificción resolución de sistems por métodos elementles Resuelve utilindo el método de de reducción

Más detalles

SOLUCIONARIO MATEMATICA Experiencia PSU MA02-3M-2018

SOLUCIONARIO MATEMATICA Experiencia PSU MA02-3M-2018 Curso: Mtemátic SOLUCIONARIO MATEMATICA Experienci PSU MA0-M-08. L lterntiv correct es E 5 7 + + 00.000 00.000.000 500 7.507 + + 00.000 00.000 00.000 00.000 0,0507. L lterntiv correct es B 5 5. L lterntiv

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles