SUMA DE VARIABLES ALEATORIAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SUMA DE VARIABLES ALEATORIAS"

Transcripción

1 SUMA DE VARIABLES ALEATORIAS do C. 018 Clase Nº 9 Mg. Stella Figueroa

2 Teorema Cetral del Límite El teorema afirma que la distribució de la suma de u gra úmero de variables aleatorias tiee aproximadamete ua distribució ormal, co ciertas restriccioes leves referidas al aporte de los sumados. El valor de este teorema es que o requiere codicioes para las distribucioes de las variables aleatorias idividuales que se suma.

3 Si S es la suma de u gra úmero de variables aleatorias xi idepedietes, etoces bajo ciertas codicioes, la fució de desidad de probabilidad de la variable aleatoria S se distribuye ormalmete. TCL Si las xi o está idéticamete distribuidas: V x E x i i i i E( S) E x E x i i i i 1 i 1 i 1 V( S) V x V x i i i i 1 i 1 i 1 Esta geeralizació es válida cuado las variables aleatorias idividuales sólo hace ua cotribució relativamete pequeña a la suma total Por ser las xi idepedietes Es decir, si S i1 x i etoces z S i 1 i 1 i i ~ N 0,1

4 Si S es la suma de u gra úmero de variables aleatorias idepedietes etoces, bajo ciertas codicioes, la fució de desidad de probabilidad de la variable aleatoria S se distribuye ormalmete TCL Si las xi está idéticamete distribuidas: E x i E( S) E xi E xi. i1 i1 V x i V( S) V xi V xi. i1 i1 Por ser las xi idepedietes Etoces el teorema afirma que la fdp de la variable S se distribuye ormalmete. S z ~ N0,1.

5 Supógase que u proceso de fabricació produce lavadoras de las cuales, alrededor del 5% so defectuosas. Si se ispeccioa 100 lavadoras Cuál es la prob.de que haya etre y 6 lavadoras defectuosas? P x 6 P x 3 P( x 4) P( x 5) ,05.0,95 0,05.0,95 0,05.0,95 0,4977 Comparemos el resultado del cálculo directo co el cálculo aproximado, es decir, aplicado el TCL:

6 Aplicamos el TCL co la correcció por cotiuidad para variables discretas 1) Calculamos E(x)=p=100.0,05=5 ) V(x)= p(1-p)=100.0,05.0,95= 4,75 3) Trabajamos co el igual, es decir, si <x<6, 3 x Si a x b a x b P 5,5 5,5 5,5 x 5,5 4,75 4,75 0,3 1,15 0,591 0,151 0,4659 El resultado exacto es 0,4977

7 Problema Ua fábrica de productos alimeticios produce care elatada, co u peso medio de 50 grs y ua variaza de 900 grs cuadrados por lata. Si los pesos de las latas so estadísticamete idepedietes. Las cajas cotiee 60 latas. Se elige ua al azar, hallar la probabilidad de que: a) El peso de la caja sea a lo sumo 14,5 kg. b) El peso de la caja sea al meos 15,3 kg.

8 Solució x i : es el peso de cada lata S: es el peso de la caja E( xi) 50 grs. V( xi) 30 grs S xi E S E xi E( xi ) grs 15 kg. i 1 i 1 i V S V x i V( xi) grs i1 i1 ( S) ,38grs 0,338kg

9 Calculamos las probabilidades pedidas a) El peso de la caja sea a lo sumo 14,5 kg. b) El peso de la caja sea al meos 15,3 kg. 14,5 15 a) P S 14,5,15 0,0158 0,338 15,3 15 b) P S 15, ,9 0, ,9015 0,0985

10 Cosideracioes fiales El que se requiere para aplicar el teorema cetral del límite e gra parte depede de la forma de la distribució de las variables aleatorias idividuales que se suma Si los sumados está ormalmete distribuidos, al aplicar el teorema cetral del límite, las probabilidades obteidas so exactas. No importa. Si o se cooce la distribució de los sumados, para mayor o igual que 5, se obtiee bueas aproximacioes. Si las variables aleatorias se distribuye biomialmete, >10 si p 0,5 tambie si p 0 ó 1, debe ser bastate mayor.

11 Desigualdad de Tchebyshev La probabilidad de que ua variable aleatoria X asuma u valor que está detro de las k dispersioes de su esperaza, es por lo meos 1 1 k 0 k 1 P x k; k 1- ó k 1 P x k 1- k la Px k 1 k Co esperaza y variaza fiitas O tambié por ser sucesos cotrarios

12 Cosideracioes 1) Si k y k k 1 ) El sigificado de esta desigualdad reside e su completa uiversalidad, ya que puede ser aplicada a cualquier variable aleatoria 3) Si coocemos la distribució de probabilidades de ua variable aleatoria discreta o cotiua, podemos calcular, si existe, E(x) y V(x). La recíproca o es cierta, pero podemos dar ua cota superior o iferior de dicha probabilidad

13 Ley de los grades úmeros Teorema de Beroulli Cuado el úmero de repeticioes de u experimeto aleatorio aumeta, la fa coverge e setido probabilístico a la probabilidad teórica P(A) f P( A) para A E ua sucesió de pruebas de Beroulli dado u úmero positivo arbitrario, lim lím P f A p 1 0 P f A p 0 0 E toda sucesió de pruebas de Beroulli, la frecuecia relativa coverge e setido probabilístico a p.

14 Demostració Dado u experimeto y u suceso A asociado a dicho experimeto, cosideramos repeticioes idepedietes del experimeto, x es el úmero de veces que ocurre A e las repeticioes, además P(A) = P f A x X es ua variable aleatoria biomial e cada repetició. 1 E x p y V x p p x 1 1 E fa E E x. p p x 1 1 V fa V V x. p 1 p p 1 p

15 Aplicamos la desigualdad de Tchebyshev 1 k A 1 P f p k p 1 p 1 P fa p k 1 k Como P fa lím 0 p 1 P f A p 1 1 p p 1 p p lím p p p p k k P f p 1 A lím P f A p 1 p p 1

16 Aplicamos la desigualdad de Tchebyshev Dada ua muestra aleatoria, es decir: ua sucesió de v.a. x1, x, x3, x4,..x 0 lím P x 1 ó lím P x 0 El límite, e probabilidad, de la media muestral para es igual a la media de la població de la que se extrajo la muestra

17 Demostració x1, x, x3,... x x1, x, x3,... x So variables aleatorias idepedietes, co x i 1 x i E( x ) y V( x ) i Es ua fució de i x1, x, x3,... x Por lo tato, la media muestral es otra variable aleatoria. xi 1 1 E x E E xi.. i1 i1 xi 1 1 V x V V xi.. i1 i1

18 Cosideramos. k k 1 P x k. 1- k 1 P x k. 1- P x k. 1- < ó P x Aplicamos la desigualdad de Tchebyshev

19 Aplicamos Límite para tediedo a ifiito límpx lím 1 Px 1 lím ó 0 límp x 0 El teorema se puede geeralizar a variables aleatorias co su esperaza y variaza respectivas.

Desigualdad de Tchebyshev

Desigualdad de Tchebyshev Desigualdad de Tchebyshev Si la Esperaza y la variaza de la variable X so fiitas, para cualquier úmero positivo k, la probabilidad de que la variable aleatoria X esté e el itervalo La probabilidad de que

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció ( p ). Para

Más detalles

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces.

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces. Statistics Review Variable Aleatoria o Ua variable aleatoria es ua variable cuyo valor está sujeto a variacioes que depede de la aleatoriedad. o Debe tomar valores uméricos, que depede del resultado del

Más detalles

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS

INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS INFERENCIA ESTADÍSTICA CONCEPTOS BÁSICOS Població E el cotexto de la estadística, ua població es el cojuto de todos los valores que puede tomar ua característica medible e particular, de u cojuto correspodiete

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

5.1. Tipos de convergencia

5.1. Tipos de convergencia Estadística Tema 5 Covergecia de Variables Aleatorias 51 Tipos de covergecia 52 Ley de los grades úmeros 53 Teorema cetral del límite 54 Método delta Objetivos 1 Motivació estudio secuecias de VAs 2 Covergecia

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

Distribuciones Muestrales

Distribuciones Muestrales 10/08/007 Diseño Estadístico y Herramietas para la Calidad Distribucioes Muestrales Epositor: Dr. Jua José Flores Romero juaf@umich.m http://lsc.fie.umich.m/~jua M. e Calidad Total y Competitividad Distribucioes

Más detalles

Tema 6: Teoremas Asinto ticos

Tema 6: Teoremas Asinto ticos Tema 6: Teoremas Asito ticos Teorı a de la Comuicacio Curso 27-28 Coteido 1 Teorema del Límite Cetral 2 Teorema de DeMoivre-Laplace 3 Desigualdad de Chebychev 4 Ley de Los Grades Números Coteido 1 Teorema

Más detalles

Ley de Grandes Números y Teorema Central del

Ley de Grandes Números y Teorema Central del Ley de Grades Números y Teorema Cetral del Límite 25 de mayo de 2017 2 Capítulo 1 Ley de grades úmeros y Teorema cetral del límite 1.1. Sucesioes i.i.d. E el capítulo aterior cosideramos variables X 1,...,X

Más detalles

DISTRIBUCIONES EN EL MUESTREO

DISTRIBUCIONES EN EL MUESTREO 7/9/08 DISTRIBUCIONES EN EL MUESTREO Uidad 4 08 Las estadísticas pesadas como variables aleatorias Ejemplo: u experimeto E cosiste e elegir =5 alícuotas de agua del río y medir la cocetració de arséico:

Más detalles

TEMA 4- MODELOS CONTINUOS

TEMA 4- MODELOS CONTINUOS TEMA 4- MODELOS CONTINUOS 4.1. Itroducció. 4.2. Distribució uiforme cotiua de parámetros a y b. X Ua, b 4.3. Distribució Gamma de parámetros y. X, Casos particulares: 4.3.1.Distribució Expoecial. X Exp

Más detalles

Notas de clase 2 Distribucion normal y teorema del limite central

Notas de clase 2 Distribucion normal y teorema del limite central Notas de clase Distribucio ormal y teorema del limite cetral Willie Heradez 05-I Motivació: La distribució ormal es, como mucho, la más importate de todas las distribucioes de probabilidad. Es ua distribució

Más detalles

1 Consistencia de M-estimadores

1 Consistencia de M-estimadores Cosistecia de M-estimadores Supogamos que se tiee ua familia de desidades p(x; ) discreta o cotiua dode 2 R. Tomemos ua fució (x; ) : R 2 R llamemos (; ) = E ( (x; )). Supodremos que para todo 2 se cumple

Más detalles

La ley de los grandes números

La ley de los grandes números La ley de los grades úmeros "El idicio de que las cosas estaba saliédose de su cauce ormal vio ua tarde de fiales de la década de 1940. Simplemete lo que pasó fue que etre las siete y las ueve de aquella

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

Propiedades de la funcion de distribucion empirica. Propiedades de la Función de distribución Empírica:

Propiedades de la funcion de distribucion empirica. Propiedades de la Función de distribución Empírica: Propiedades de la fucio de distribucio empirica Propiedades de la Fució de distribució Empírica: a. Fˆ es creciete de 0 hasta 1. b. Fˆ es ua fució escaloada co saltos e los distitos valores de X 1, X,...,

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición:

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición: Parcial de Probabilidad y Estadística : parte A Ejercicio 1: U embalaje cotiee 9 cajas de CDs. Las 9 cajas tiee la siguiete composició: 6 cajas cotiee 5 discos de música rock y 15 discos de música clásica

Más detalles

Tema 14: Inferencia estadística

Tema 14: Inferencia estadística Tema 14: Iferecia estadística La iferecia estadística es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. 1. Estimació de parámetros Cuado descoocemos

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

TEORÍA DE LA ESTIMACIÓN

TEORÍA DE LA ESTIMACIÓN TEORÍA DE LA ESTIMACIÓN Objetivo: El objetivo de la estimació putual es usar ua muestra para obteer úmeros (estimacioes putuales) que sea la mejor represetació de los verdaderos parámetros de la població.

Más detalles

Probabilidades y Estadística (M) Práctica 8 1 cuatrimestre 2012 Convergencias - Ley de los Grandes Números

Probabilidades y Estadística (M) Práctica 8 1 cuatrimestre 2012 Convergencias - Ley de los Grandes Números robabilidades y Estadística (M) ráctica 8 cuatrimestre 22 Covergecias - Ley de los Grades Números. Ua máquia produce artículos de 3 clases: A, B y C e proporcioes 25 %, 25 % y 5 % respectivamete. Las logitudes

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

3. Distribuciones de probabilidad

3. Distribuciones de probabilidad 3. Distribucioes de probabilidad Estudiamos a cotiuació las pricipales distribucioes de probabilidad que se ecuetra e las aplicacioes del cálculo de probabilidades. Clasificaremos las distribucioes atediedo

Más detalles

InIn Sistemas de Control de Calidad

InIn Sistemas de Control de Calidad Desity Desity II 78- Sistemas de Cotrol de Calidad Pla - Repaso de cotrol de calidad Gráficos de Cotrol - Herramieta que moitorea ua o más variables a lo largo del tiempo. (El sistema requiere itervecioes

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Convergencia de variables aleatorias

Convergencia de variables aleatorias Capítulo Covergecia de variables aleatorias El objetivo del presete capítulo es estudiar alguos tipos de covergecia de variables aleatorias. Iiciaremos co la defiició de los distitos modos de covergecia...

Más detalles

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496.

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496. GRADO GESTIÓN AERONÁUTICA: EXAMEN ESTADÍSTICA TEÓRICA 9 de Eero de 015. E-7. Aula 104 1.- La fució de desidad de ua variable aleatoria es: a b 0 f() 0 e el resto sabiedo que 1 P 1 0,1666. Determiar a y

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA X INFERENCIA ESTADÍSTICA Sea ua característica o variable aleatoria de la població objeto de estudio y sea ( X, X, X,..., X ) ua muestra aleatoria de dicha població. 1 3 U parámetro poblacioal es ua caracterizació

Más detalles

MAS obtenidas de una población N, son por naturaleza propia impredecibles. No esperamos que dos muestras aleatorias de tamaño n, tomadas de la misma

MAS obtenidas de una población N, son por naturaleza propia impredecibles. No esperamos que dos muestras aleatorias de tamaño n, tomadas de la misma MAS obteidas de ua població N, so por aturaleza propia impredecibles. No esperamos que dos muestras aleatorias de tamaño, tomadas de la misma població N, tega la misma media muestral o que sea completamete

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Repaso para el segundo parcial

Repaso para el segundo parcial Repaso para el segudo parcial Dr. Pastore, Jua Igacio Profesor Adjuto. Alguas Distribucioes Estadísticas Teóricas Distribució Cotiuas: a) Distribució Uiforme b) Distribució de Expoecial c) Relació etre

Más detalles

Tema 5. Sucesiones de Variables Aleatorias

Tema 5. Sucesiones de Variables Aleatorias CSA. Sucesioes de VA Tema 5. Sucesioes de Variables Aleatorias. CONCEPTO E muchos problemas de procesado de señal o image, cotrol digital y comuicacioes dispoemos de datos muestreados e u determiado orde

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

Clases 9-10: El proceso de Wiener y los paseos al azar: el teorema de Donsker *

Clases 9-10: El proceso de Wiener y los paseos al azar: el teorema de Donsker * Clases 9-10: El proceso de Wieer y los paseos al azar: el teorema de Dosker * 6 de oviembre de 2017 Ídice 1. Itroducció 1 2. Paseos al azar 1 3. Paseo al azar co variables gaussiaas 2 4. Paseo al azar

Más detalles

El método de Monte Carlo

El método de Monte Carlo El método de Mote Carlo El método de Mote Carlo es u procedimieto geeral para seleccioar muestras aleatorias de ua població utilizado úmeros aleatorios. La deomiació Mote Carlo fue popularizado por los

Más detalles

UNIDAD 4 MODELOS PROBABILÍSTICOS

UNIDAD 4 MODELOS PROBABILÍSTICOS Uiversidad Nacioal del Litoral Facultad de Igeiería y Ciecias Hídricas ESTADÍSTICA Igeiería Iformática TEORÍA Mg.Ig. Susaa Valesberg Profesor Titular UNIDAD 4 MODELOS PROBABILÍSTICOS Estadística - Igeiería

Más detalles

EJERCICIO 1. , a partir de las frecuencias observadas, nij. , que se dan en la tabla del ejercicio.

EJERCICIO 1. , a partir de las frecuencias observadas, nij. , que se dan en la tabla del ejercicio. EJERCICIO () Es u problema de idepedecia de criterios y se tedrá que costruir la tabla de cotigecia de frecuecias teóricas (esperadas), t ij, a partir de las frecuecias o observadas, ij, que se da e la

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribucioes de probabilidad discretas Departameto de Ciecias del Mar y Biología Aplicada Itroducció Iferecia estadística: Parte de la estadística que estudia grades colectivos a partir

Más detalles

UT-4: Distribuciones fundamentales de muestreo y descripción de datos

UT-4: Distribuciones fundamentales de muestreo y descripción de datos UT-4: Distribucioes fudametales de muestreo y descripció de datos Sub tema: Muestreo aleatorio. Distribucioes muestrales. Distribucioes muestrales de medias. Teorema del límite cetral. Aplicacioes. DF

Más detalles

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD ESTADÍSTICA, CURSO 008 009 TEMA : DISTRIBUCIONES DE PROBABILIDAD LEYES DE PROBABILIDAD. SUCESOS ALEATORIOS Experimetos aleatorios, espacio muestral. Sucesos elemetales y compuestos. Suceso imposible Ø,

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

Elementos de Teoria Asintotica

Elementos de Teoria Asintotica (wsosa@udesa.edu.ar) Uiversidad de Sa Adres El modelo lieal e otacio observacioal y i = x iβ + u i, i = 1, 2,..., x i = [ Mi Z i ] [, x i x Mi i = Z i ] [ Mi Z i ] = M 2 i Z i M i M i Z i Z 2 i M 2 x i

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

DISTRIBUCIONES MUESTRALES

DISTRIBUCIONES MUESTRALES UNIDAD II DISTRIBUCIONES MUESTRALES Competecia: -El estudiate debe saber utilizar las diferetes distribucioes muestrales,es decir las diferetes distribucioes de cualquier estadístico estimado a partir

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

Universidad MUESTREO de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Métodos Estadísticos para

Universidad MUESTREO de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Métodos Estadísticos para MÉTODOS ESTADÍSTICOS PARA LA EMPRESA TEMA 7: HERRAMIENTAS INFERENCIALES. DISTRIBUCIONES ASOCIADAS AL Uiversidad MUESTREO de Oviedo. Facultad de Ecoomía y Empresa. Grado e ADE. 7.1.- Distribucioes Métodos

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

2.2. Una versión elemental de la ley fuerte de los números grandes

2.2. Una versión elemental de la ley fuerte de los números grandes 34 CAÍTULO 2. LEY DE LOS NÚMEROS GRANDES Demostració. or el Teorema 2.0, vemos que basta probar que ( ) 2 2E (X,k E(X,k )) = 0. La esperaza e esta expresió se puede escribir como V ar(x,k ) + or la hipótesis

Más detalles

SOLUCIONES DE LA SEGUNDA PRUEBA DE EVALUACION CONTINUA (PEC 2)

SOLUCIONES DE LA SEGUNDA PRUEBA DE EVALUACION CONTINUA (PEC 2) Curso 2012-13 PEC2 Pág. 1 SOLUCIONES DE LA SEGUNDA PRUEBA DE EVALUACION CONTINUA (PEC 2) Gráfico 1: E ua ivestigació se compara la eficacia de tres tipos de tratamieto de las fobias, atediedo a si ha habido

Más detalles

( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( ) I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS INFERENCIA ESTADÍSTICA El coeficiete itelectual de los alumos de u cetro se distribuye N(110,15). Escogemos 5 alumos al azar. Cuál es la probabilidad

Más detalles

Introducción a la Inferencia Estadística. Material Preparado por Olga Susana Filippini y Hugo Delfino

Introducción a la Inferencia Estadística. Material Preparado por Olga Susana Filippini y Hugo Delfino Itroducció a la Iferecia Estadística Temario Diseño Muestral Teorema Cetral del Límite Iferecia estadística Estimació putual y por itervalos Test de hipótesis. DISEÑO MUESTRAL Porque utilizar muestras

Más detalles

Estimadores Puntuales: Propiedades de estimadores Sebastián Court

Estimadores Puntuales: Propiedades de estimadores Sebastián Court Estadística Estimadores Putuales: Propiedades de estimadores Sebastiá Court 1.Motivació Cosideremos ua variable aleatoria X co ciertas características, como por ejemplo, u parámetro θ, y ua muestra aleatoria

Más detalles

Práctica 2 VARIABLES ALEATORIAS CONTINUAS

Práctica 2 VARIABLES ALEATORIAS CONTINUAS Práctica. Objetivos: a) Apreder a calcular probabilidades de las distribucioes Normal y Chi-cuadrado. b) Estudio de la fució de desidad de la distribució Normal ~ N(µ;σ) c) Cálculo de la fució de distribució

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Estimación por intervalos

Estimación por intervalos Estimació por itervalos do C. 018 Mg. tella Figueroa Clase Nº 11 Para la media poblacioal Coociedo Partimos de ua població ormal X y de la distribució muestral de la media X ~ N, X ~ N, P( z Z z ) 1 /

Más detalles

Consideremos los siguientes experimentos aleatorios

Consideremos los siguientes experimentos aleatorios 69 Veremos e lo que sigue uevas variables aleatorias discretas. Estas variables y sus distribucioes se utiliza como modelos e muchas alicacioes estadísticas. Distribució Biomial Cosideremos los siguietes

Más detalles

Resumen No Distribución Conjunta de Variables Aleatorias (contin.) Ma34a Prob. y Proc. Estocásticos 29 de Junio, 2006

Resumen No Distribución Conjunta de Variables Aleatorias (contin.) Ma34a Prob. y Proc. Estocásticos 29 de Junio, 2006 Ma34a Prob. y Proc. Estocásticos 29 de Juio, 2006 Resume No. 3 Prof. Cátedra: M. Kiwi Prof. Auxiliares: A. Cotreras, R. Cortez 1. Distribució Cojuta de Variables Aleatorias (coti. Defiició 1 [Variables

Más detalles

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos

TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Introducción a la Inferencia Estadística Método de los momentos TEMA 5.-ESTIMACIÓN PUNTUAL.- (16/17) 5.1. Itroducció a la Iferecia Estadística. Método Estadístico. Defiicioes previas. 5.2. Estimació putual 5.3. Métodos de obteció de estimadores: 5.3.1. Método de los

Más detalles

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t.

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t. PROCESOS ROBABILIDADES ESTOCÁSTICOS (ITEL-3005) (80807) Tema 4. Los Procesos Tema. de Fudametos Poisso y otros de Estadística procesos asociados Descriptiva Semaa Distribució 5 Clase 07 de frecuecias Lues

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

Sobre los intervalos de confianza y de predicción Javier Santibáñez 7 de abril de 2017

Sobre los intervalos de confianza y de predicción Javier Santibáñez 7 de abril de 2017 Sobre los itervalos de cofiaza y de predicció Javier Satibáñez 7 de abril de 2017 Itervalos de cofiaza Se costruye itervalos de cofiaza para los parámetros poblacioales. Supogamos que teemos ua muestra

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios 1. Experimetos aleatorios U experimeto se llama aleatorio cuado o se puede predecir su resultado; además, si se repitiese el mismo experimeto e codicioes aálogas, los resultados puede diferir. a) El resultado

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

TEMA 7 DISTRIBUCIONES DE PROBABLIDAD CONTINUAS

TEMA 7 DISTRIBUCIONES DE PROBABLIDAD CONTINUAS www.iova.ued.es/webpages/ilde/web/idex.htm e-mail: imozas@elx.ued.es TEMA 7 DISTRIBUCIONES DE PROBABLIDAD CONTINUAS Distribució uiforme e el itervalo [a, b].-, a x b Fució de desidad: f(x) = b a 0, e el

Más detalles

Criterios de convergencia para series.

Criterios de convergencia para series. Criterios de covergecia para series. Para series e geeral, existe ua serie de criterios de covergecia:. Primer criterio de comparació.- Si ( ) y (b ) so dos sucesioes de úmeros reales tales que m N, tal

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Existen diversidad de aplicaciones que involucran poblaciones de datos cualitativos que deben compararse utilizando proporciones o porcentajes.

Existen diversidad de aplicaciones que involucran poblaciones de datos cualitativos que deben compararse utilizando proporciones o porcentajes. Existe diversidad de aplicacioes que ivolucra poblacioes de datos cualitativos que debe compararse utiliado proporcioes o porcetajes. Por Ejemplo: Educació.- Es mayor la proporció de los estudiates que

Más detalles

Estadística Aplicada a las ciencias Sociales Examen Febrero de 2008 segunda semana

Estadística Aplicada a las ciencias Sociales Examen Febrero de 2008 segunda semana Estadística Aplicada a las ciecias Sociales Exame Febrero de 008 seguda semaa Ejercicio 1.- E la siguiete tabla, se tiee el úmero de alumos de educació de adultos matriculados e el curso graduado escolar

Más detalles

INTRODUCCION Teoría de la Estimación

INTRODUCCION Teoría de la Estimación INTRODUCCION La Teoría de la Estimació es la parte de la Iferecia Estadística que sirve para coocer o acercarse al valor de los parámetros, características poblacioales, geeralmete descoocidos e puede

Más detalles

TEMA 4. Algunos modelos de probabilidad de tipo continuo

TEMA 4. Algunos modelos de probabilidad de tipo continuo TEMA 4. Alguos modelos de probabilidad de tipo cotiuo Vamos a abordar e este capítulo el estudio de aquellas distribucioes de probabilidad de tipo cotiuo, que se os preseta co bastate frecuecia e el mudo

Más detalles

9.3. Contrastes de una proporción

9.3. Contrastes de una proporción 9.3. CONTRASTES DE UNA PROPORCIÓN 219 y el criterio que sumiistra el cotraste es si a teo χ 2 exp b teo = o rechazamos H 0 ; si χ 2 exp < a teo ó χ 2 exp > b teo = rechazamos H 0 y aceptamos H 1. Cotrastes

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

Mg. Ing. Susana Vanlesberg Profesor Titular

Mg. Ing. Susana Vanlesberg Profesor Titular Uiversidad Nacioal del Litoral Facultad de Igeiería y Ciecias Hídricas ESTADÍSTICA Igeierías: Recursos Hídricos-Ambietal-Agrimesura- Iformática Mg. Ig. Susaa Valesberg Profesor Titular MODELOS PARA VARIABLES

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal.

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal. Uidad 1. Iferecia estadística. Estimació de la media Matemáticas aplicadas a las Ciecias Sociales II Resuelve Págia 85 Lazamieto de varios dados Comprueba e la tabla aterior ue: ( = = 3 o = 4) A cotiuació

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA CONVOCATORIA DE MAYO (011) EJERCICIO 1 El director de publicacioes de ua editorial trata de decidir si debe publicar u uevo texto de estadística. Los ateriores libros

Más detalles

Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. 3.

Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. 3. Tema 3: Itroducció a la probabilidad Tema 3: Itroducció a la probabilidad 3.1 Itroducció Equiprobabilidad Métodos combiatorios Objetivos del tema: l fial del tema el alumo será capaz de: Compreder y describir

Más detalles