e1) Si X denota una VA definida como la suma de los resultados en el lanzamiento de 2 dados, entonces: 12 1 = P { {X=n}} = P(X=n) n=2 n=2

Tamaño: px
Comenzar la demostración a partir de la página:

Download "e1) Si X denota una VA definida como la suma de los resultados en el lanzamiento de 2 dados, entonces: 12 1 = P { {X=n}} = P(X=n) n=2 n=2"

Transcripción

1 III. VARIABLS ALATORIAS. 3. Itroduccó Frecueteete e los eeretos el terés está e u fucó del resultdo del eereto y o e el resultdo roete dcho. Por ejelo, e el lzeto de dos ddos el terés est e que l su de los resultdos se gul 7 y se es dferete s este result de,6,,5, 3,4, 4,3, 5, o 6,. otr stucó, or ejelo, e el coteto de couccó trvés de esjes, el terés del lst odrí cetrrse e el uero de trssoes etoss de esjes e u teo ddo, s que e el estdo de l trssó de cd esje. Ls ctddes de terés y s forlete ls fucoes de vlores del esco uestrl: : ω -----> R, so coocds coo Vrles Aletors VA. Por ello, el vlor de l vrle letor es deterdo or el resultdo del eereto y esos vlores se les sgrá u roldd, coo se uestr co los sguetes ejelos. jelos e S deot u VA defd coo l su de los resultdos e el lzeto de ddos, etoces: : Ω -----> {,...,} dode: P P{,} /36 P3 P{,,,} /36 P4 P{,3,,,3,} 3/36 P5 P{,4,,3,3,,4,} 4/ P P{6,6} /36 e u VA que rereset el úero de trssoes co éto de esjes evdos e u tervlo de teo ddo, etoces: : Ω t -----> N, dode Ω t : cojuto de esjes trstdos etosete e u tervlo de teo t. e3 Se Y l VA que rereset el úero de crs que rece luego de lzr oeds. Luego l VA Y uede tor vlores 0, o, y sus vlores roílstcos so: PY0 P{s,s} /4 PY P{s,c,c,s} /4 PY P{c,c} / Σ e4 Suoedo que u oed est "crgd" y que l roldd de que slg cr es '', defos u VA N de l sguete er: N : Núero de lzetos ecesros r que slg cr or rer vez. P { {}} P toces: PN P{c}

2 PN P{s,c} - PN3 P{s,s,c} PN P{.s,s,...,s, c} - - Lo cul es u fucó roílstc, y que es ostv y P{ {N } } PN - - t 0 - t - - Todos los ejelos de VA hst hor lustrdos so VA dscrets. Por otro ldo u VA se dce cotu s to vlores de u cojuto cotuo de osles vlores. U ejelo de VA cotu es el teo de trssó de u esje, l vd útl de u otor, suedo que l vd útl del otor to u vlor e u tervlo, de los reles. Defcó Se F., u fucó defd r culquer vlor rel de u VA, co e el tervlo -, de l sguete er: F : P{ }, es coocd coo Fucó de dstrucó cuuld de y deot l roldd de que ued tor u vlor eor o gul. Proeddes de F. F es u fucó o decrecete e l F --> l F 0 --> - v F es estrctete cotu. S,,... es u sere decrecete co lte e, etoces l F F Oservcoes sore F.: S etoces el eveto { / } est e { / } y or lo tto F F roedd. Prolddes sore l VA tervlos uede ser deducds e fucó de F.. Por ejelo: Pro.{ < } F - F, r todo < ; y que -, ] -,]U,]. Pr VA dscrets defos l fucó de desdd de co P{}. S {,,... } e Z, etoces > 0 co,,... y 0 r todo que o est e. Adeás se dee culr que:

3 este cso F. uede ser defd e téros de de l er sguete: e Suogos que / ; /3 ; 3/6. F Fucó de desdd o s Prolstc VA Luego l fucó cuuld de es ddo or: F s < s < s < 3 s 3 Fucó de Dstrucó Acuuld F VA

4 Pr VA cotus l relcó etre l fucó de dstrucó cuuld F. y l fucó de desdd f. de u VA cotu es eresd trvés de F - ftdt y dferecdo os ldos tedreos: df d f l dervd de l fucó de dstrucó cuuld es l fucó de desdd. Not: Dedo que : P < f d, teeos : P f d 0 y e cosecuec : P < < P < P < P S ergo, r teer cosstec e l otcó, utlzreos P < coo e el cso dscreto. 3. serz Mteátc y Moetos Cso de VA Dscrets: Se u VA dscret ft que uede tor vlores,,..,, co ls rolddes,,..,. Defcó serz teátc o vlor eserdo edo de l VA dscret ft es l eresó: Defcó serz teátc o vlor edo de u fucó g de l VA es l eresó: jelos g g e l vlor eserdo de l VA : úero que result l lzr u ddo, será: recorddo: e Se : Su de los úeros resulttes del lzeto de ddos, etoces,

5 e3 Se : Núero de dvsores del úero otedo l scr de u ols eles uerdos del l. No. trído P / 5/ /6 /4 / toces, Moetos de u VA. uchs lccoes este l ecesdd de edr e lgu for l dsersó de los vlores de lrededor de su vlor edo. stos vlores suele ser eserz teátc de certs fucoes g, coo or ejelo: g - S ergo, el ejo de vlores solutos es cóodo y or ello se refere otecs de que d lugr los lldos oetos. Defcó Moeto de de grdo u orde es el vlor eserdo de elevdo l, es decr: rtculr,. Los oetos cetrdos se defe trvés de l ecucó: rtculr, coo edd de dsersó, es ortte el oeto cetrdo de orde defdo cotucó. Defcó Se cooce coo Vrz de u VA l sguete eresó: ' - - VAR σ σ - - l úero o egtvo σ, es decr, l ríz cudrd de l Vrz se le cooce coo l Desvcó Tíc ó Stdrd de l VA. Oservcó: Cudo l Vrz es grde ello dc que los vlores de está uy serdos de su vlor edo.

6 Cso de VA Cotus: S es u VA cotu co l fucó de desdd f, etoces: Le. Co, costtes se cule: - 0 c σ - d σ σ Fáclete deostrles ero lcdo ls resectvs defcoes Deostrcó Deostrcó 0 Deostrcó c ] σ or ] ] ] ] Deostrcó d ] ] ] c or σ ] ] c or σ 3.3 Fucó geerdor de Moetos fd - - VAR fd gfd g - -

7 Defcó L fucó geerdor de oetos se defe coo: φt e t ] e - t e t co fd co dscret cotu st fucó se le cooce coo geerdor de oetos dedo que los oetos de uede ser otedos trvés de sucesvs dervcoes de φt y evludo el resultdo e t0. Por ejelo r oteer se tee: φ t d dt e ] d t t t e ] e ] dt toces, evludo φ't e t0 tedreos: φ'0. Igulete: d d t t φ t φ t e e co t 0, φ 0 dt dt... t φ t e, φ 0, 3.4 Desguldd de Tcheycheff Se u VA dscret y ft co vlor edo y vrz σ, etoces k>0, P - k σ k. Deostrcó. Se g u fucó de, tl que g >0, r todo e, se > 0 costte, y se quellos vlores tles que: g. toces: Co el hecho sguete, odeos coclur que, g g g : Proldd de que g

8 g P{g } P{g } g rtculr, co g: tedreos l Desguldd de Mrkov P{ } el cso de Tcheychef otedreos l desguldd co g - y k tedreos, P{ - k } - k or ello, Pro { - k} σ k Oservcó. L ortc de ls desgulddes de Mrkov y Tcheychef resde e el hecho de que solo co el cooceto de y de σ e el cso de Tcheycheff se uede cotr l roldd desed. S ergo, est cot o result ue es decr, fortv e l yorí de los csos y or ello so usds ás frecueteete e deostrcoes de otrs hótess. jelos e u frc de cooetes, l roduccó sel es letor co u vlor edo gul 50 cooetes. Que se uede decr cerc de l roldd de que l roduccó eced ls 75 cooetes e u se. Solucó: Al lcr l desguldd de Mrkov se tee: P > e S l vrz de l roduccó sel del role teror es gul 5 que se uede decr cerc de l roldd de que l roduccó e u se ás de 40 y eos de 60 cooetes. Solucó: Alcdo l desguldd de Tcheychef tedreos: P{40 < < 60} P{ - 50 < 0 } - P{ -50 0} P { } σ 0 4

9 toces, P { - 50 < 0} %

10 3.5 Trsforcó de Vrles Aletors VA de to dscreto: Se l fucó de desdd roílstc de u VA. S otr VA Y es oted de l VA co u trsforcó Y U, cuy vers es WY. toces l fucó de desdd de Y vee dd or l sguete eresó: gy Wy 0 y e Y e cso cotrro jelo. Se u VA co l sguete fucó de desdd: - e! 0 0,,,3,.. e cso cotrro Se l trsforcó y 4 y U], luego l VA Y {0,4,8,,..}. Note que l trsforcó y 4 estlece u corresodec uo uo etre los escos e Y. Nuestro ojetvo cosste e hllr l f.d.. de l VA Y, dgos gypy y]. Osérvese que l relzcó del eveto Y y ó 4y se d s el eveto /4y ocurre. cosecuec: gy PYy P4y P y 4 y - 4 e y 4! y 0,4,8,... e 4 gy 0 y - y! 4 y 0,4,8.. e cso cotrro VA de to cotuo: Se f u f.d.. de u VA. S otr VA Y es oted de co l trsforcó Y U dferecle r todo dode f 0 etoces l ecucó Y U uede resolverse de er úc r co el f de roducr WY l vers de Y U, y e cosecuec l fucó de desdd de Y vee dd or l sguete eresó: gy fwy. W y 0 y e Y e cso cotrro

11 YU U y U - ywy Pr ostrr l frcó teror co yud gráfc, oserve que: { / U y } { / Wy } y que { / U y } { / U - y } ] Ahor, dedo que UY, Wy, tedreos PY y PU y P Wy P, dode U - Y y e cosecuec: or lo tto: F Y y F f Y y gy df Y y/dy df /d f Wy. W y jelo. Se u V.A. co fucó de desdd, Se Y 8 3, luego l V.A. Y { y / 0< y <8 } 0 < < f 0 e cso cotrro Se 0< < < 8, luego el eveto < y < ocurre s el eveto <8 3 < ocurre, es decr: /8 /3 < < /8 /3 ; P < Y < P < < coocer fy o P<Y<, teeos que hcer ls sguetes cosdercoes: d Ahor, s quséros

12 Coo: y U; Wy y y 8 3 > y 3 d 6 y - 3 dy Cosderdo los etreos de l tegrl: S >y, s 3 3 > y P < Y < y 3 6 y dy y dy s decr: gy 0 < y < 8 63 y 0 e cso cotrro Oserve que YU8 3 y e cosecuec Wy/y /3, de dode se uede dervr que d W'ydy

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA (Aputes s revsó pr oretr el predzje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Sumtor Pr represetr e form revd determdo tpo de sums, se utlz como símolo l letr greg sgm. Ejemplos.

Más detalles

INICIO. Elaborado por: Enrique Arenas Sánchez

INICIO. Elaborado por: Enrique Arenas Sánchez INICIO Elbordo or: Erque Ares Sáchez EL PROMEDIO El cálculo del romedo de u lst de vlores [,, K,,, ], 2 K ormlmete se clcul medte l coocd exresó: m...() U form geerl r clculr el romedo de u lst

Más detalles

Se puede observar que una partición de un intervalo lo divide en n subintervalos, y a cada uno de ellos se les llama también celda.

Se puede observar que una partición de un intervalo lo divide en n subintervalos, y a cada uno de ellos se les llama también celda. Itegrl defd. Fucó tegrle Sum de Rem Se el tervlo [, ]. E cojuto de putos: P = { 0,,......., } Dode 0 = ; = ; < ; =,,....., Se llm prtcó o red de tervlo [, ] Se puede oservr que u prtcó de u tervlo lo dvde

Más detalles

suma sucesiva de los primeros m términos como se ve a continuación m 1

suma sucesiva de los primeros m términos como se ve a continuación m 1 A veces se ecest deterr l su de uchos téros de u sucesó ft. Pr expresr co fcldd ess sus, se us l otcó de sutor. Dd u sucesó ft,,,...,... el síbolo represet l sutor o su sucesv de los preros téros coo se

Más detalles

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a 5 dsttos Cosecuetemete el cojuto de tods ls combcoes fes de dos putos R es tod l líe determd por estos dos putos metrs que el cojuto de tods ls combcoes coves es el segmeto de líe que ue y. Obvmete cd

Más detalles

INTRODUCCION AL ALGEBRA.

INTRODUCCION AL ALGEBRA. INTRODUCCION AL ALGEBRA. 6- COMBINATORIA. Aputes de l Cátedr. Ves Bergoz, Alerto Serrtell. Colorró: Crst Mscett Edcó Prev CECANA CECEJS CET Juí. UNNOBA Uversdd Ncol de Noroeste de l Pc. de Bs. As. Pr esjes:

Más detalles

a, b y POSITIVA, se puede hacer una aproximación del área

a, b y POSITIVA, se puede hacer una aproximación del área BLOQUE III: Aálss -ÁREA BAJO UNA CURVA Tem 5: Itegrles defds Dd u fucó (, y POSITIVA, se puede hcer u promcó del áre compredd etre el eje X y l gráfc de l fucó e el tervlo, del sguete modo: ) Se dvde el

Más detalles

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante Uversdd de Stgo de Chle Fcultd de Cecs Deprtmeto de Mtemátcs y Cecs de l Computcó Aputes y Ejerccos RESUMEN DE CONTENIDOS. Recordr: Proceso de ortogolzcó de Grm-Schmdt: Se defe, e prmer lugr, el operdor

Más detalles

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2 POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel x es: f x = x + x + + x + x+, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo

Más detalles

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial étodos Nuércos C 5: Iterolcó Arocó olol / Arocó ucol e Iterolcó Reresetcó edte ucoes lítcs seclls de: Iorcó dscret Resultte de uestreos Fucoes colcds Sedo u cert ucó de l que o se cooce u órul elíct o

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS 1 Epresoes Algebrcs es l uó de úmeros y vrbles medte opercoes de sum, rest, multplccó, dvsó, poteccó y rdccó. Epresó lgebrc rcol: se llm sí quells e ls que ls vrbles está fectds

Más detalles

INTEGRACION o CUADRATURA

INTEGRACION o CUADRATURA Puede ocurrr que NEGRACON o CUADRAURA d se u ucó cotu ácl de tegrr o u ucó cotu dícl o posle de tegrr drectete o que o coozcos l ucó tuld, solo u cojuto de vlores eddos. Los étodos se s e que, dd ecotrr

Más detalles

APROXIMACION DE FUNCIONES

APROXIMACION DE FUNCIONES APROXIMACION DE FUNCIONES Metodos Numercos 6 Fmls de Fucoes Bses - Moomos : 3 - Trgoométrcs: sωt cosωt sωt... - Fs. Sle: olomos trozos - Fs. Eoecles: e e 4 Metodos Numercos 6 Iterolcó Suogmos teer u cojuto

Más detalles

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores.

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores. Hojs de Prolems Estdístc I. Se cosder el expermeto letoro cosstete e trr tres ddos l re y otr los putos de ls crs superores. ) utos elemetos tee el espco de sucesos? ) lculr l proldd de scr l meos dos.

Más detalles

INTEGRACION o CUADRATURA. Regla del Trapecio. Regla del Rectángulo. Regla de Simpson. Si usamos polinomios interpolantes: Suma de Cuadratura:

INTEGRACION o CUADRATURA. Regla del Trapecio. Regla del Rectángulo. Regla de Simpson. Si usamos polinomios interpolantes: Suma de Cuadratura: Puede ocurrr que NEGRACON o CUADRAURA d se u ucó cotu ácl de tegrr o u ucó cotu dícl o posle de tegrr drectete o que o coozcos l ucó tuld, solo u couto de vlores eddos. Los étodos se s e que, dd ecotrr

Más detalles

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores.

e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores. Tem : Itegrcó umérc Tem : Itegrcó ó umérc Prolem Fórmuls de cudrtur. Fórmuls de Newto-Cotes. Fórmuls del trpeco Smpso. Errores. Clculr l sguete tegrl: e d Usremos l tegrcó umérc cudo, por el motvo que

Más detalles

Determinación del Número de Particiones de un Conjunto

Determinación del Número de Particiones de un Conjunto Determcó del Número de rtcoes de u Couto Lus E Ryber E el estudo de prtcoes estblecds e u couto A que posee elemetos se susct l cuestó del úmero totl de tles prtcoes Es evdete y el cálculo sí lo dc que

Más detalles

Definición. una sucesión, definimos la sumatoria de los n primeros

Definición. una sucesión, definimos la sumatoria de los n primeros MATEMATICA GENERAL 00, HERALDO GONZALEZ S SUMATORIAS Suto sle Defcó U sucesó el es tod fucó co doo u sucouto de los úeos tules y co vloes e, sólcete, l sucesó es : N tl que Osevcó Deotos l sucesó o N,

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS NÚMEOROS COMPLEJOS Defcó: El cojuto de los úmeros complejos es C R R {(, / R y b R} C está formdo por todos los pres ordedos de úmeros reles etre los que defmos u relcó, l guldd, y dos opercoes brs que

Más detalles

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1

PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1 PROBLEMS RESUELTOS Presetmos cotucó ls solucoes los problems,, del úmero de l Revst, que eví Crlos Mrcelo Css Cudrdo. Problem Resolver l ecucó e l cógt : (bsolutorl ufgbe, Bver, 87 Solucó l problem El

Más detalles

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ

UNIVERSIDAD DE GRANADA PONENCIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PONENTE: PROF. FRANCISCO JIMÉNEZ GÓMEZ UNIVERSIDD DE GRND ONENCI DE MTEMÁTICS LICDS LS CIENCIS SOCILES ONENTE: ROF FRNCISCO JIMÉNEZ GÓMEZ RUE DE CCESO R MYORES DE ÑOS CONVOCTORI DE ENUNCIDOS Y RESOLUCIÓN DE LOS EJERCICIOS ROUESTOS EN MTEMÁTICS

Más detalles

. De manera sucesiva, si x se multiplica por si misma n veces, se

. De manera sucesiva, si x se multiplica por si misma n veces, se Fcultd de Cotdurí Adiistrció UNAM Lees de eoetes ritos Autor: Dr José Muel Becerr Esios MATEMÁTICAS BÁSICAS LEYES DE EXPONENTES Y LOGARITMOS LEYES DE EXPONENTES Se u úero rel Si se ultilic or sí iso se

Más detalles

son las correspondientes probabilidades de que X tome los valores x1, x2,

son las correspondientes probabilidades de que X tome los valores x1, x2, CAÍTULO 6. VARIABLES ALEATORIAS L teorí de prolddes estud los sucesos letoros, ls vrles letors y los procesos letoros. Se llm vrle letor l cul cept u vlor que o puede predecrse co certez tes de u epermeto.

Más detalles

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es: POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble

Más detalles

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2.

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2. Hojs de Problems Algebr III 8. ) Demostrr que s es r, los úmeros turles y so rmos etre s. b) Demostrr que s m, etoces l ctdd de úmeros eteros ostvos dsttos de cero que o so myores que m y que o se dvde

Más detalles

Tema 4. Colas markovianas I: colas como procesos de nacimiento-muerte

Tema 4. Colas markovianas I: colas como procesos de nacimiento-muerte Te 4. Cols rovs I: cols coo rocesos de ceto-uerte 4. Procesos de ceto-uerte. Dstrbucó de equlbro Los rocesos de ceto-uerte costtuye u cso rtculr de rocesos de Mrov e teo cotuo co esco de estdos dscretos.

Más detalles

INTEGRAL DEFINIDA INTRODUCCIÓN

INTEGRAL DEFINIDA INTRODUCCIÓN INTRODUCCIÓN U medo potete de l vestgcó e mtemátc, físc, mecác y otrs rms de l cec es l tegrl defd. El cálculo de áres lmtds por curvs, de ls logtudes de rcos, volúmees, trjo, velocdd, espco, mometos de

Más detalles

Unidad 1 Fundamentos de Algebra Matricial Parte 1

Unidad 1 Fundamentos de Algebra Matricial Parte 1 Udd Fudetos de lger trcl Prte Dr. Ruth. gulr Poce Fcultd de Cecs Deprteto de Electróc Propedeutco 8 Fcultd de Cecs trces U trz de es u rreglo rectgulr dspuesto e regloes y colus Trgulr feror O Trgulr superor

Más detalles

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ]

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ] TCNOLOGÍ DL HBL. CUSO 9/ TM : PDICCIÓN LINL. Los vlores de se uede romr or u combcó lel de ls últms muestrs. co.. Método de l utocorrelcó. rror e Mmzdo el error cudrátco medo se clcul los coefcetes : e

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Enseñanza Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Enseñanza Secundaria) TEAS DE ATEÁTICAS (Oposcoes de Eseñz Secudr TEA ITEGRACIÓ UÉRICA. ETODOS Y APLICACIOES.. Itroduccó.. Itegrcó co css dds... Fóruls de tegrcó terpoltor.. Error de ls óruls de tegrcó terpoltor... Fórul de

Más detalles

1. ÁLGEBRA LINEAL Y VECTORES ALEATORIOS

1. ÁLGEBRA LINEAL Y VECTORES ALEATORIOS . ÁLGEBRA LINEAL Y VECTORES ALEATORIOS Vetores Ortogolzó de Grm-Shmdt Mtres ortogoles Atovlores tovetores Forms dráts Vetores mtres letors Mtrz de dtos DAGOBERTO SALGADO HORTA ALGEBRA LINEAL Vetores Mtrz

Más detalles

UNIVERSIDAD DE BUENOS AIRES Maestría en Ingeniería Matemática

UNIVERSIDAD DE BUENOS AIRES Maestría en Ingeniería Matemática UNIVERSIDAD DE BUENOS AIRES Mestrí e Igeerí Mtemátc L tegrl de Rem-Steltjes. Aplccoes l teorí de prolddes Nots de Mtemátc Áre: Fudmetos y Aplccoes de Aálss Mtemátco Autor: Ferdo Suárez Ídce Itroduccó.

Más detalles

Definición.- Llamamos POTENCIA a la expresión abreviada usada para escribir un producto de n factores no necesariamente iguales.

Definición.- Llamamos POTENCIA a la expresión abreviada usada para escribir un producto de n factores no necesariamente iguales. POTENCIAS Y RAÍCES. 1.- POTENCIAS. Defiició.- Llos POTENCIA l expresió revid usd pr escriir u producto de fctores o ecesriete igules. Escriios: =... ( veces) dode es l BASE y el EXPONENTE. Ejeplo: 7 2

Más detalles

TEMA 4. REGRESIONES LINEALES Y NO LINEALES

TEMA 4. REGRESIONES LINEALES Y NO LINEALES TEMA 4. REGRESIONES LINEALES Y NO LINEALES. Itroduccó. Noecltur 3. Lelzcó de ecucoes 4. Ajuste lel 5. Regresó lel últple 6. Regresoes o leles 7. RESUMEN 8. Progrcó e Mtlb . Itroduccó E este te se lz coo

Más detalles

Resumen Unidades II-V

Resumen Unidades II-V Resume Uddes II-V II. Iterpolcó polomo de Newto uco que ps por todos los putos sple cuco - u vlor IV. Itegrcó Fucó tuld segmetos_desgules Fucó lítc - regls_smpso c Dereccó dervds_lt pr u sere de dtos sple_cuco

Más detalles

5. Interpolación, Diferenciación e Integración Numérica

5. Interpolación, Diferenciación e Integración Numérica . Iterpolcó Dereccó e Itegrcó uérc.. Derecs Fts Dds ls scss correspode vlores ( delte coo:. uoreete espcds: ls que se dee ls prers derecs ts c álogete puede derse ls seguds derecs: e geerl ls derecs ts

Más detalles

Aplicaciones prácticas de la antiderivación y la Integral Definida. Universidad Diego Portales CALCULO II

Aplicaciones prácticas de la antiderivación y la Integral Definida. Universidad Diego Portales CALCULO II Aplccoes práctcs de l tdervcó y l Itegrl Defd Uversdd Dego Portles Aplccoes práctcs A cotucó se preset lguos prolems e que se cooce l rzó de cmo de u ctdd y el ojetvo es hllr u epresó pr l ctdd msm. Como

Más detalles

20/06/2012 ECUACIONES QUE RIGEN EL FLUJO DE AGUA A TRAVÉS DE LA MASA DE SUELO. GRADIENTE HIDRAULICO CRÍTICO: Para flujo vertical ascendente:

20/06/2012 ECUACIONES QUE RIGEN EL FLUJO DE AGUA A TRAVÉS DE LA MASA DE SUELO. GRADIENTE HIDRAULICO CRÍTICO: Para flujo vertical ascendente: /6/ GRDIENTE HIDRUICO CRÍTICO Pr l codcó drostátc st + st (+) ( st - ) Pr flujo vertcl descedete st + st (+-) ( st - )+ Pr flujo vertcl scedete st + st (++) ( st - )- E el flujo vertcl scedete, es cudo

Más detalles

a es la parte real, bi la parte imaginaria.

a es la parte real, bi la parte imaginaria. CAPÍTULOIX 55 NÚMEROS COMPLEJOS Coocmetos Prevos Supoemos coocdo que: ) El cojuto de úmeros complejos está e correspodec buívoc co el cojuto de los putos de u plo. b) U úmero complejo expresdo e form boml

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr

Más detalles

MODELAJE DE SISTEMAS MECÁNICOS ROTACIONALES

MODELAJE DE SISTEMAS MECÁNICOS ROTACIONALES Deprteto de Proceo y Ste MODA D SISMAS MCÁICOS OACIOAS Pro. Alexder Hoyo uo 00 Crc, Veezuel Pro. Alexder Hoyo. Uverdd So Bolívr. Deprteto de Proceo y Ste. Pág. / ÍDIC Pág. Ste ecáco rotcol Servootor de

Más detalles

CAPÍTULO I: LA INTEGRAL

CAPÍTULO I: LA INTEGRAL CAPÍTULO I: LA INTEGRAL. Coceptos geerles. Atdervd. Sums de Rem. Itegrl ded.. Propeddes de l tegrl ded.. Clculo de l tegrl ded. Teorem Fudmetl del Cálculo. Coceptos Geerles Hstórcmete, el cálculo tegrl

Más detalles

GUÍA EJERCICIOS: NÚMEROS NATURALES

GUÍA EJERCICIOS: NÚMEROS NATURALES UNIVERSIDAD ANDRÉS BELLO DEPARTAMENTO DE MATEMÁTICAS ÁLGEBRA FMM COORD. PAOLA BARILE M. GUÍA EJERCICIOS: NÚMEROS NATURALES PROGRESIONES ARITMÉTICA Y GEOMÉTRICA EJERCICIOS CON RESPUESTAS.- Verfque s ls

Más detalles

3. Unidad Aritmética Lógica (ALU)

3. Unidad Aritmética Lógica (ALU) 3. Udd rtmétc Lógc (LU) bordremos los spectos que permte l mplemetcó de l rtmétc de u computdor, trbuto fucol de l Udd rtmétc Lógc (LU). Prmero se revstrá lo relcodo l form de represetr los úmeros como

Más detalles

INTEGRAL DEFINIDA. b A =, es decir, la tercera parte 3 1.- INTRODUCCIÓN

INTEGRAL DEFINIDA. b A =, es decir, la tercera parte 3 1.- INTRODUCCIÓN INTEGRAL DEFINIDA.- INTRODUCCIÓN E este tem estudremos u cocepto uevo, el de tegrl defd. Auque será ecesro defrl de form eseclmete complcd, l tegrl vee formlzr u cocepto secllo, tutvo: el de áre. Ahor

Más detalles

CAPÍTULO 8. APLICACIONES GEOMÉTRICAS Y MECÁNICAS DE LA INTEGRAL DEFINIDA 8.1. Cálculo de áreas en coordenadas cartesianas 8.2. Cálculo del área en

CAPÍTULO 8. APLICACIONES GEOMÉTRICAS Y MECÁNICAS DE LA INTEGRAL DEFINIDA 8.1. Cálculo de áreas en coordenadas cartesianas 8.2. Cálculo del área en CAPÍTULO 8. APLICACIONES GEOMÉTRICAS Y MECÁNICAS DE LA INTEGRAL DEFINIDA 8.. Cálculo de áres e coordeds crtess 8.. Cálculo del áre e coordeds prmétrcs 8.3. Cálculo del áre e coordeds polres 8.4. Cálculo

Más detalles

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A.

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A. Pág del Colego de temátcs de l ENP-UN trces y ermtes utor: Dr. José uel ecerr Espos RICES Y DEERINNES E V V. DEFINICIÓN DE RIZ U mtrz es u cojuto de úmeros, ojetos u operdores, dspuestos e u rreglo dmesol

Más detalles

Tema 2 Transformada Z y análisis transformado de sistemas LTI

Tema 2 Transformada Z y análisis transformado de sistemas LTI Tem Trsformd Z y álss trsformdo de sstems LTI rlos Óscr Sáche Soro 4º Ig. Telecomuccó EPS Uv. S Pblo EU Bblogrfí: Oppehem I p., Oppehem II p. 3, Pros p. 3 y Fucoes props de los sstems LTI x h h h h H x

Más detalles

Definimos renta financiera como un conjunto de capitales que han de hacerse efectivos en determinados vencimientos.

Definimos renta financiera como un conjunto de capitales que han de hacerse efectivos en determinados vencimientos. Te 3 lorcó e Rets lorcó e rets Defos ret fcer coo u cojuto e cptles que h e hcerse efectvos e eteros vecetos. (, t, ( 2, t 2,, (, t Llreos téros e l ret ls cutís e los cptles fceros que copoe l ret (,

Más detalles

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Guí ejerccos resueltos Sumtor y Bomo de Newto Solucó: ) Como o depede de j, es costte l sumtor. b) c) d) Aulr: Igco Domgo Trujllo Slv Uversdd de Chle e) f)

Más detalles

Dado el sistema de ecuaciones lineales de la forma

Dado el sistema de ecuaciones lineales de la forma Aálss del Error e Solucó de Sstems de Ecucoes Leles Ddo el sstem de ecucoes leles de l form R A b, dode A ; b R E reldd teemos: A δa δ b δb A Aδ δa δa δ A δb S desprecmosδa δ : δ A - δb δa Métodos Numércos

Más detalles

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

Clase-11. Raíces: Sea n número natural mayor que 1 con a, números reales. Si n =a, se tiene

Clase-11. Raíces: Sea n número natural mayor que 1 con a, números reales. Si n =a, se tiene Ríces: Clse- Se úero turl or que co, úeros reles. Si =, se tiee que es l ríz eési de l que se deot ; es decir: dode es el ídice; l ctidd surdicl es l ríz; es decir l ríz es quel rel tl que elevdo l ídice,

Más detalles

Resolución de sistemas de congruencias

Resolución de sistemas de congruencias Resolucó de sstems de cogruecs E este prtdo veremos cómo utlzr l rtmétc modulr pr resolver u problem muy tguo, coocdo como problem cho de los restos, que reformulremos hor utlzdo el leguje modero de ls

Más detalles

Cálculo integral Información general de la asignatura

Cálculo integral Información general de la asignatura Cálculo tegrl Iformcó geerl de l sgtur Uversdd Aert y Dstc de Méco Lcectur e Mtemátcs Progrm de l sgtur: Cálculo Itegrl Udd. Itegrles Cecs Ects, Igeerís y Tecologís Cálculo tegrl Iformcó geerl de l sgtur

Más detalles

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS

TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS Te : Opercioes ásics co úeros reles: Potecició, y sus propieddes, rdicció y logritos TEMA : POTENCIAS, RADICALES Y LOGARITMOS ser TEMA : POTENCIAS, RADICALES Y LOGARITMOS. POTENCIACIÓN..... POTENCIA DE

Más detalles

2.1 SUCESIONES 2.2 SUMAS Y NOTACIÓN SIGMA

2.1 SUCESIONES 2.2 SUMAS Y NOTACIÓN SIGMA Sucesoes. SUCESIONES. SUMAS Y NOTACIÓN SIGMA Objetvos: Se pretede que el estudte: Determe covergec o dvergec de sucesoes. Alce Mootoí de sucesoes. Coozc ls propeddes de l otcó sgm. 5 Sucesoes.. SUCESIONES..

Más detalles

CAPITULO I INTRODUCCION

CAPITULO I INTRODUCCION Coceptos de Estdístc. Presetcó. Qué es l estdístc? CAPITULO I INTRODUCCION Se suele pesr e u relcó de dtos umércos presetd de form orded y sstemátc. Est de es l cosecuec del cocepto populr que este sore

Más detalles

Multinomio de variables 0,1

Multinomio de variables 0,1 U PPL etero o PROLE DE PROGRIÓ ETER es quel e el que u o más vrles de decsó está restrgds sumr sólo vlores eteros. -Prolems puros. -Prolems mtos. U form de resolverlos cosste e gorr l codcó de PPL etero

Más detalles

Sistemas de ecuaciones lineales. Discusión y resolución

Sistemas de ecuaciones lineales. Discusión y resolución Sstes de ecucoes leles. Dscusó y resolucó Título: Sstes de ecucoes leles. Dscusó y resolucó. Trget: Profesores de Mteátcs. studtes de l Lcectur e Mteátcs.. sgtur: Mteátcs. utor: l Olvá Clzd Lcecd e Mteátcs

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

Cada uno de los resultados son los pares o ternas del producto cartesiano AxBxC

Cada uno de los resultados son los pares o ternas del producto cartesiano AxBxC OMBINTORI. 4º E.S.O. OLEGIO LSNIO. MDRID. RINIIO GENERL DEL REUENTO. S u expereto se copoe de vrs prtes y cd u de ells puede suceder de,, c posles ers, el úero de fors e que puede ocurrr el expereto copuesto

Más detalles

Para realizar esta evaluación, el ordenador realiza los siguientes pasos Representa x: x

Para realizar esta evaluación, el ordenador realiza los siguientes pasos Representa x: x Asgtur umércos Pág de Tem Artmétc Ft (Reresetcó Césr Meédez Ferádez Ejercco.- Mejdo rtmétc decml de cco dígtos co trucmeto, clculr el tervlo e que l reresetcó de l fucó f es uo. Pr relzr est evlucó, el

Más detalles

ELECCIÓN ÓPTIMA DEL PLAZO DE UN PRÉSTAMO EN FUNCIÓN DE PREFERENCIAS INDIVIDUALES

ELECCIÓN ÓPTIMA DEL PLAZO DE UN PRÉSTAMO EN FUNCIÓN DE PREFERENCIAS INDIVIDUALES ELECCÓN ÓPTM DEL PLZO DE UN PRÉSTMO EN FUNCÓN DE PREFERENCS NDVDULES Jesús Mª Sáchez Motero jsmoter@us.es Mª Ágeles Domíguez Serro doser@us.es Jver Gmero Rojs jgm@us.es Deprtmeto Ecoomí plcd Uversdd de

Más detalles

(elegir una blanca de I y una negra de II o elegir una negra de I y una negra de II)

(elegir una blanca de I y una negra de II o elegir una negra de I y una negra de II) Hos de olems stdístc V 44. Cosdeemos tes us que llmemos I, II y III. Cd u de ells cotee ols lcs y ols egs. temos u ol l z de l u I y l toducmos e l u II, cotucó etemos u ol l z de l u II y l toducmos e

Más detalles

{ } + S = = S, para S. a converge si su sucesión de sumas parciales converge, es decir,

{ } + S = = S, para S. a converge si su sucesión de sumas parciales converge, es decir, Esuel de Igeierí Cetro de Ciei Bási Cálulo de Vrile Rel Guí teóri Series Series Iiits: Deiiió: Se { } u suesió iiit. L epresió, se deoi serie iiit o serie y se deot por: { } S S S S S S S S - U serie es

Más detalles

El MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE ARITMÉTICO CRECIENTE

El MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE ARITMÉTICO CRECIENTE Mg Mrco oo Plz Vdurre El MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON RDIENTE RITMÉTICO CRECIENTE El resee documeo desrroll e delle el méodo ulzdo or el uor Jme rcí e su lro Memács cers co ecucoes e dferec

Más detalles

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación

21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación USACH ÁLGEBRA Gbrel Rbles R. Uversdd de Stgo de Chle Fcultd de Cec Depto. Mtemátc y Cec de l Computcó Prof. Gbrel Rbles R. SUMATORIAS EJERCICIOS RESUELTOS: Clculr: ) ) b) [ ) ) ] c) j j j d) el vlor de

Más detalles

Raíces. Son aquellas en las que el exponente es una fracción, se las denomina también raíces o radicales. p q. q p

Raíces. Son aquellas en las que el exponente es una fracción, se las denomina también raíces o radicales. p q. q p Dertmeto de Mtemátics Colegio Coo. Alcázr de Segovi Prof. Arturo Ay M. Mtemátics. º ESO Ríces. Poteci de se rciol y eoete rciol. So uells e ls ue el eoete es u frcció, se ls deomi tmié ríces o rdicles.

Más detalles

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes _ Defiició: Epoetes Pr u úero rel u etero positivo, veces se le deoi l se l poteci o epoete Ejeplos:..... Not: oserv que del segudo es. o so igules, el resultdo del priero es Lees de epoetes: Pr cd u de

Más detalles

Tema 61. Desigualdad de Tchebyschev. Coeficiente variación. Variable normalizada

Tema 61. Desigualdad de Tchebyschev. Coeficiente variación. Variable normalizada Tem 6. Desguldd de Tchebyschev. Coefcete vrcó. Vrble ormlzd TEMA 6. Desguldd de Tchebyschev. Coefcete de vrcó. Vrble ormlzd. Aplccó l álss terpretcó y comprcó de dtos estdístcos. Itroduccó L estdístc se

Más detalles

10. Optimización no lineal

10. Optimización no lineal 0. Optzcó o lel Coceptos báscos Prcpos y teores pr l búsqued de óptos lobles Optzcó s restrccoes e desó Optzcó s restrccoes e desó > Modelos co restrccoes de uldd Codcoes de uh-tucker Alortos uércos báscos

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

INTEGRAL DEFINIDA. b A =, es decir, la tercera parte INTRODUCCIÓN

INTEGRAL DEFINIDA. b A =, es decir, la tercera parte INTRODUCCIÓN INTEGRAL DEFINIDA - INTRODUCCIÓN E este tem estudremos u cocepto uevo, el de tegrl defd Auque será ecesro defrl de form eseclmete complcd, l tegrl vee formlzr u cocepto secllo, tutvo: el de áre Ahor y

Más detalles

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado,

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado, Fcultd de Cotdurí Adiistrció. UNAM Rdicles Autor: Dr. José Muel Becerr Espios MATEMÁTICAS BÁSICAS RADICALES OPERACIONES CON RADICALES U rdicl es culquier rí idicd de u expresió. L rdicció es l operció

Más detalles

Clase-09 Potencias: Una potencia es el producto de un número "a" por si mismo "n" veces lo que se denota por a n ; con a IR y n Z ; luego: n veces a

Clase-09 Potencias: Una potencia es el producto de un número a por si mismo n veces lo que se denota por a n ; con a IR y n Z ; luego: n veces a Clse-9 Potecis: U poteci es el producto de u úero "" por si iso "" veces lo que se deot por ; co IR y Z ; luego: dode "" se ll se, "" es el expoete y el producto oteer es l poteci.... veces Clculr plicdo

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES VALORES ABSOLUTOS Defiició: si 0 =, si < 0 = Por lo tto 0 R Teorem 2 = 2 Demostrció: si 0 2 = 2, si < 0 2 = ( ) 2 = 2 PROPIEDADES. =. = + + (desiguldd trigulr) = Teorem x x Demostrció: x x 2 2 x 2 2 x

Más detalles

M É T O D O S N U M É R I C O S

M É T O D O S N U M É R I C O S Fcultd de Igeerí Eléctrc Métodos Numércos M É T O D O S N U M É R I C O S OBJETIVOS GENERALES: Desrrollr lgortmos estetes y útles pr l resolucó de prolems que se preset e el estudo de l Igeerí. Propeder

Más detalles

Método del spline cúbico. Cuando un número grande de datos tiene que ajustarse a una curva suave, la interpolación de Lagrange no es adecuada.

Método del spline cúbico. Cuando un número grande de datos tiene que ajustarse a una curva suave, la interpolación de Lagrange no es adecuada. MÉTODO DEL PLINE CÚBICO PROGRAMACIÓN AVANZADA emestre 09- Método del sple úo. Cudo u úmero grde de dtos tee que justrse u urv suve l terpoló de Lgrge o es deud. Pr esto se emple el método del sple úo este

Más detalles

Métodos Numéricos. Resolución de sistemas de ecuaciones

Métodos Numéricos. Resolución de sistemas de ecuaciones Al flzr est udd el prtcpte estrá e cpcdd de resolver u sstem de ecucoes leles o o leles de ecucoes co cógts por los métodos drectos e tertvos. Itroduccó Prolem clásco del álger lel: se quere solucor u

Más detalles

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis se escrie

Más detalles

2) En cualquier intervalo de la recta real hay infinitos número racionales, por ello se dice que el conjunto Q es denso.

2) En cualquier intervalo de la recta real hay infinitos número racionales, por ello se dice que el conjunto Q es denso. TEMA : NÚMEROS REALES. Clsificció de los úeros reles.. Itervlos y seirrects.. Vlor bsoluto de u úero rel.. Potecis y rdicles. Propieddes.. Clsificció de los úeros reles. No olvideos: ) Los úeros rcioles

Más detalles

La Integral de Henstock-Kurzweil

La Integral de Henstock-Kurzweil L tegrl de Hestoc-Kurzwel Jver E. Herrer C. RESUMEN. E este trjo se expoe, l teorí de tegrcó de Hestoc-Kurzwel coo u l geerlzcó de l tegrl de Re. Se dscute ls propeddes y coceptos fudetles de est tegrl,

Más detalles

Matemáticas NS y Ampliación de Matemáticas NS: cuadernillo de fórmulas

Matemáticas NS y Ampliación de Matemáticas NS: cuadernillo de fórmulas Progrm del Dplom Mtemátcs NS y Amplcó de Mtemátcs NS: cuderllo de fórmuls Pr su uso durte el curso y e los eámees Prmeros eámees: 04 Publcdo e juo de 0 Orgzcó del Bchllerto Itercol, 0 5050 Ídce Coocmetos

Más detalles

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

Unidad 1: NÚMEROS REALES

Unidad 1: NÚMEROS REALES Resúees de Mteátics pr Bchillerto I.E.S. Ró Girldo Uidd : NÚMEROS REALES.- ALGUNOS NÚMEROS QUE NO SON RACIONALES El úero pi: L Lcircufere ci r d d El úero ríz de dos: d Cuál es l logitud de l digol? d

Más detalles

Seminario Universitario de Ingreso Números reales

Seminario Universitario de Ingreso Números reales Seirio Uiversitrio de Igreso 07 Núeros reles Si u úero posee ifiits cifrs deciles o periódics, o puede escriirse coo u cociete etre úeros eteros, es decir, o es u Núero Rciol. Estos úeros recie el ore

Más detalles

1.- POTENCIAS DE EXPONENTE ENTERO

1.- POTENCIAS DE EXPONENTE ENTERO º ESO - UNIDAD.- POTENCIAS Y RAÍCES OBJETIVOS MÍNIMOS DE LA UNIDAD.- Clculr potecis de se rciol y epoete etero.- Relizr opercioes co potecis de epoete etero usdo sus propieddes.- Epresr úeros e otció cietífic.-

Más detalles

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu y Tea 5: Equlbro Geeral Parte III OWC Ecooía para Mateátcos Ferado Perera Tallo ttp://bt.ly/8l8ddu Esteca de Equlbro Ferado Perera-Tallo A lo largo de esta presetacó os vaos a cocetrar e espacos Eucldos,

Más detalles

UNIVERSIDAD DE GRANADA. DEPARTAMENTO DE MATEMÁTICA APLICADA INTERPOLACIÓN José Martínez Aroza

UNIVERSIDAD DE GRANADA. DEPARTAMENTO DE MATEMÁTICA APLICADA  INTERPOLACIÓN José Martínez Aroza UNIVERSIDAD DE GRANADA DEPARTAMENTO DE MATEMÁTICA APLICADA www.ugr.es/locl/mtel INTERPOLACIÓN 6-7 José Mrtíez Aroz Itroduccó Iterolr D.R.A.E.: Avergur el vlor romdo de u mgtud e u tervlo cudo se cooce

Más detalles

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real.

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real. RADICALES Etre los úeros reles se euetr los rdiles, ue se uede exresr oo ríz de u ídie de u úero rel. Ríz eési de u úero rel. Si R y Ν, o, direos ue l ríz eési de es u úero rel r y lo otreos sí: r, si

Más detalles

Ejercicios resueltos. Bloque II. Aproximación Numérica. Tema 2. Integración Numérica. Solución

Ejercicios resueltos. Bloque II. Aproximación Numérica. Tema 2. Integración Numérica. Solución Bloque II. Apromcó Numérc Tem Itegrcó Numérc Ejerccos resueltos II.- Aprom el vlor de ls sguetes tegrles defds por los mét odos del rectágul o, del put o med o, del trpeco y de Smpso, t omdo pr todos los

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Aroxiió de deiles Itervlos. Ríes y oteis Notió ietífi. Oerioes Rdiió. Proieddes de ls oteis de exoete riol Rdiles equivletes Silifir rdiles Extrió

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Matemáticas NS y Ampliación de Matemáticas NS: cuadernillo de fórmulas

Matemáticas NS y Ampliación de Matemáticas NS: cuadernillo de fórmulas Progrm del Dplom Mtemátcs NS y Amplcó de Mtemátcs NS: cuderllo de fórmuls Pr su uso durte el curso y e los eámees Prmeros eámees: 04 Edcó de 05 (. versó) Orgzcó del Bchllerto Itercol, 0 5050 Ídce Coocmetos

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Oposcoes de Secudr) TEMA 3 POLINOMIOS. OPERACIONES. FÓRMULAS DE NEWTON. DIVISIILIDAD DE POLINOMIOS. FRACCIONES ALGERAICAS.. El Allo de los Poloos de u vrle... Su de Poloos... Producto

Más detalles

5.1 Problemas de frontera para ecuaciones diferenciales ordinarias. Clasificación de los métodos numéricos

5.1 Problemas de frontera para ecuaciones diferenciales ordinarias. Clasificación de los métodos numéricos CAPITULO V. PROBLEMAS DE CONTORNO PARA ECUACIONES DIFERENCIALES (6h) 5.1 Prolems de froter pr ecucoes dferecles ordrs. Clsfccó de los métodos umércos 5. Métodos de reduccó l prolem de Cuchy. Dspros y Brrdo

Más detalles