(elegir una blanca de I y una negra de II o elegir una negra de I y una negra de II)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(elegir una blanca de I y una negra de II o elegir una negra de I y una negra de II)"

Transcripción

1 Hos de olems stdístc V 44. Cosdeemos tes us que llmemos I, II y III. Cd u de ells cotee ols lcs y ols egs. temos u ol l z de l u I y l toducmos e l u II, cotucó etemos u ol l z de l u II y l toducmos e l u III. Cuál es el úmeo esedo de ols lcs e l u III desués de ls dos oecoes? ROLUCIO.- Desde luego, e l u III há ó ols lcs. hll el úmeo esedo os est ecot ls olddes co que ece cd uo de esos vloes. l cálculo o es muy comlcdo, st segu el esquem de l fgu 5.. que e l u III hy ols lcs es ecso que l ol elegd de l u II se eg, lo que tee u oldd gul : eleg u lc de I y u eg de II o eleg u eg de I y u eg de II Mets que l u III tedá ols lcs s l elegd de l u II es lc, lo que tee u oldd de ocu gul : o lo tto, el úmeo esedo de ols lcs e III seá 45. Más geel que el eecco teo us cotee, cd u, ols lcs y egs. e tom u ol l z de l me u y se toduce e l segud; luego, se tom u de l segud y se toduce e l tece y sí sucesvmete, hst que se ete u ol de l u -ésm y se toduce e l -ésm. Hll el úmeo esedo de ols lcs que há e l últm u. ROLUCIO.- Desde luego e l u -ésm há ó ols lcs. L oldd de que hy ols lcs es gul l oldd de ete u ol eg de l u -ésm. Aálogmete, l oldd de tee ols lcs e l últm u es gul l de ete u ol lc de l u -ésm. Clculemos meo ests olddes: e l me etccó esult lc co oldd /

2 L oldd de otee ol lc e l segud etccó es uesto que co oldd hy ols lcs, y e tl cso l oldd de que esulte lc e l segud etccó es /, y co oldd - hy ols lcs e l segud u tes de l segud etccó. L guldd sugee que l oldd de ete u ol lc de u u es costte, deedetemete de l u. Ttemos de olo o duccó. uuesto que l oldd de otee ol lc e l etccó de l u - ésm es, l oldd de ete u ol lc de l u -ésm seá Luego l oldd de ete u ol lc de culque u es costte e gul /. o lo tto, e l u -ésm há ols lcs co oldd / y ols lcs co oldd /, de dode el úmeo esedo de ols lcs seá 46. U u cotee ols lcs y ols egs. e hce etccoes s eemlzmeto hst que ece l me ol lc. Hll el úmeo esedo de ols etíds. ROLUCIO.- e el úmeo de l etccó e que se otee l me ol lc. e tedá, s ls mes so egs y l -ésm es lc. o lo tto,,,, seá /

3 3/ L y el úmeo esedo, µ, de ols etíds seá gul µ Aho e Cmmos los ídces de ls sums: e l me hcemos y e l segud. toces se tee µ y, uesto que esult: µ de lo que se sgue µ.

4 47. ols se coloc l z e us. Clcul el úmeo esedo de us que qued vcís. ROLUCIÓ.- cd u, o eemlo l -ésm, cosdemos u vle que tom el vlo cudo está vcí y el vlo cudo está ocud. l úmeo de us vcís seá gul K Aho, l oldd de que u u fd, o eemlo l -ésm, esté vcí es gul : y que cd ol uede se colocd co gul oldd e culque u, hy 3 L _ veces mes osles de coloc ls ols e ls us; ho e, que l u - ésm esté vcí, es ecso que ls ols se coloque e ls us esttes, lo que uede hcese de mes. Así, el vlo esedo de es, y el úmeo esedo de us vcís seá 48. U u cotee ols lcs y ols egs, etemos ols s eemlzmeto,, y s mls ls tmos. A cotucó elegmos l z u ols de l u, Cuál es l oldd de que se lc? ROLUCIO.- Llmemos l úmeo de ols lcs que hy ete ls elegds y µ l úmeo medo de ols lcs elegds. toces, l u cotee ols lcs y ols egs. L oldd de que l ol elegd se lc es gul µ L 4/

5 5/ e cosecuec, el zometo e med es váldo. te ls ols elegds há e med / ols lcs. o lo tto, e med, l u cotee / / ols lcs, de u totl de ols. o lo tto, l oldd de que l ol elegd se lc es / 49. Al lz u moed ece c co oldd. e lz veces l moed y se toduce e u u tts ols lcs como cs se hy otedo y tts ols egs como cuces. Desués, se ete < ols de l u s eemlzmeto. Hll l dstucó del úmeo de ols lcs que se otee. se h otedo ols lcs, hll l oldd de que e l u quede ols lcs. ROLUCIO.- Llmemos l úmeo de ols lcs que cotee l u y l úmeo de ols lcs que esult de l etccó. eá...,,, y, s,,, se tedá seme que, que hy sufcetes ols de cd colo e l u; ues e cso coto l oldd seí ceo. toces l l l l

6 6/ de me que l dstucó del úmeo de ols lcs etíds de l u es oml de ámetos y. l esultdo uede zose s gú cálculo; suogmos que meo se sote los úmeos de ls, ete ls ols, que seá etíds; u vez detemdos, se lz u moed o cd ol decd su colo. L oldd de que se lcs es gul l oldd de que ezc cs l lz veces u moed. o tto: clcul l oldd de que e l u huese ols lcs, suuesto que e l etccó se h otedo, es dec lcemos l defcó de oldd codcod. Lo que demuest que el úmeo de ols lcs que qued e l u es deedete del úmeo de ols lcs oteds y tee dstucó oml de ámetos y. Ot vez, l zó es evdete: s se sote de temo ls ols que quedá e l u, y se les tuye colo lzdo l moed, el úmeo de ols lcs e l u seá ml e deedete del úmeo de ols lcs ete ls etíds. 5. U ugdo lz u ddo y g, e l me td, s otee u esultdo múltlo de 3. cso coto, tee que cotu tdo hst que se et el esultdo del me lzmeto o se oteg u múltlo de 3. el me cso el ugdo g y e el segudo ede. llmmos l úmeo de lzmetos que elz, hll. ROLUCIÓ.-

7 7/ l ugdo g e l me td co oldd /3. o es sí, desde l segud td hy oldd gul / de que el uego teme e ese lzmeto oldd /6 de que ge y /3 de que ed; l dstucó de es:, cd 3 /3, o tto, l esez mtemátc de seá gul : l cálculo de l sum K, es u eecco stte elemetl, eo o está de más ecod lguos métodos. l más smle utlz l msm de que emte clcul l sum de u ogesó geométc. Cosdeemos l sum dode < <, etoces estmos los coefcetes de los témos e, esult; see geométc que sum /, luego se tee: Oto ocedmeto; cosdeemos l see geométc sguete como fucó de < < f uede demostse que l devd de est fucó es gul l see de ls devds de cd témo. e tee sí

8 luego de dode f ' f ' < < culque cso, s lcmos el esultdo teo uest see, esult: / ; / o lo tto, 3 y 7 / 3. u vle leto, que tome t sólo vloes eteos o egtvos, odemos d u eesó ltetv l esez mtemátc que esult útl e umeoss ocsoes. L ue es e smle, st eode los témos de l see: es dec Los témos de est sum uede eodese luego > > >... esume: es u vle leto que tom vloes e los eteos o egtvos,,, se tee: > 5. U u cotee ols umeds de. Tommos ols s eemlzmeto. es el meo de los úmeos que ece e ls ols etíds, clcul l dstucó de y su esez mtemátc. ROLUCIÓ.- 8/

9 9/ Los vloes osles de l vle so,,,. Clculemos meo >,...,,,. que >, gu de ls ols que etemos dee eteece l couto,,,, esto es: tods dee eteece l couto,, ; e cosecuec, hy mes dstts de eleg ls ols, de suete que el meo de los úmeos que llev mesos se myo que, y ddo que hy csos osles ttos como mes dstts de eleg ls ols que etemos ete ls que hy e l u, esult -, > o ot te > > luego l dstucó está dd o - clcul l med de l vle emleemos l eesó teo, se tee

10 / > uesto que U u cotee u ol lc. e l u ddo y se toduce e l u tts ols egs como dque el esultdo. A cotucó se ete l z dos ols, smultáemete, de l u. Cuál es el úmeo esedo de ols lcs ete ls dos etíds? ROLUCIÓ.- Llmemos l vle leto defd o eg es ésm - ol l s lc es ésm - ol l s l úmeo de ols lcs ete ls dos etíds seá. l úmeo esedo de ols lcs seá clcul emleemos l esez codcod. Llmemos Y l esultdo de lz el ddo. Y, etoces l u cotee u ol lc y egs, luego Y Y Y o lo tto

11 6 6 Y Y o smetí,. e tee sí que el úmeo esedo de ols lcs es Osévese cómo emlemos l esez codcod educ l comledd. l olem se sudvde e vos más smles, l fómul 6.4 emte otee l esez codcol t de los esultdos cles. 53. ums de u úmeo letoo de vles e lz u ddo y, cotucó, tts moeds como dque el esultdo del lzmeto. Cuál es el úmeo esedo de cs que se otedá? ROLUCIÓ.- Llmemos l esultdo que ece l lz el ddo. L vle dc el úmeo de moeds que se lzá, o ello, s llmmos l úmeo totl de cs que ece, se uede descomoe como... dode es u vle que tom el vlo s l lz l moed -ésm ece c y el vlo s ece cuz. U eo fecuete cosste e lc l leldd de l esez l descomoscó de. sto es, l eesó es fls. L leldd de l esez es cet cudo el úmeo de sumdos es fo. emgo l sum... tee u úmeo de sumdos letoo. Codcoemos o el vlo de., etoces el úmeo de sumdos es fo: vle, luego odemos lc l leldd de l esez y esult /

12 /... o lo tto ste esultdo se uede hce geel.

Definición. una sucesión, definimos la sumatoria de los n primeros

Definición. una sucesión, definimos la sumatoria de los n primeros MATEMATICA GENERAL 00, HERALDO GONZALEZ S SUMATORIAS Suto sle Defcó U sucesó el es tod fucó co doo u sucouto de los úeos tules y co vloes e, sólcete, l sucesó es : N tl que Osevcó Deotos l sucesó o N,

Más detalles

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2.

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2. Hojs de Problems Algebr III 8. ) Demostrr que s es r, los úmeros turles y so rmos etre s. b) Demostrr que s m, etoces l ctdd de úmeros eteros ostvos dsttos de cero que o so myores que m y que o se dvde

Más detalles

LABORATORIO DE PROGRAMACIÓN EN LENGUAJE ENSAMBLADOR x86-16bits

LABORATORIO DE PROGRAMACIÓN EN LENGUAJE ENSAMBLADOR x86-16bits LBORTORIO DE PROGRMCIÓN EN LENGUJE ENSMBLDOR x86-6ts Covesó o-scii Ojetvo El ojetvo de est páctc es l pogcó del códgo eceso p covet u úeo eteo o lcedo e eo l cde SCII coespodete su codfccó e u vedd de

Más detalles

TEMA 7. SUCESIONES NUMÉRICAS.

TEMA 7. SUCESIONES NUMÉRICAS. º EO Tem 7 TEMA 7. UCEIONE NUMÉRICA.. UCEIONE NUMÉRICA. Imgiemos el ecoido que efectú u bló que se h lzdo l suelo y midmos ls distcis ete bote y bote: Ls distcis fom u sucesió de úmeos: 0, 5, 0, 5,. U

Más detalles

Algunas series e integrales con funciones trigonométricas

Algunas series e integrales con funciones trigonométricas Revst Tecocetífc URU Uvesdd Rfel Udet Fcultd de Igeeí Nº Julo - Dcembe ISSN: 44-775X / Depósto legl pp ZU86 Algus sees e tegles co fucoes tgoométcs Alfedo Vlllobos y Gley Gcí Uvesdd del Zul. Fcultd de

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA (Aputes s revsó pr oretr el predzje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Sumtor Pr represetr e form revd determdo tpo de sums, se utlz como símolo l letr greg sgm. Ejemplos.

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS 1 Epresoes Algebrcs es l uó de úmeros y vrbles medte opercoes de sum, rest, multplccó, dvsó, poteccó y rdccó. Epresó lgebrc rcol: se llm sí quells e ls que ls vrbles está fectds

Más detalles

= 41. =, halla los términos primero, quinto, b n

= 41. =, halla los términos primero, quinto, b n Sucesioes. 00 Ejecicios p pctic co solucioes E ls sucesioes de témio geel y b, hll los témios pimeo, segudo y décimo. 0 0 b b b 0 0 0 Hll los cico pimeos témios de l sucesió 0 9 9 6 6 Compueb que es el

Más detalles

SUCESIONES Y SERIES. a 2. Ej): Encuentre la fórmula general, es decir el n-ésimo término de la sucesión 1, 3, 7, 15,.?

SUCESIONES Y SERIES. a 2. Ej): Encuentre la fórmula general, es decir el n-ésimo término de la sucesión 1, 3, 7, 15,.? UCEONE Y ERE U sucesó es u fucó cuyo domo es u cojuto de eteos postvos cosecutvos. El domo de u sucesó ft so los eteos postvos y el codomo o go es el cojuto de los úmeos eles. Co fecuec epesetmos ls sucesoes

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada Ju Atoo Gozález Mot Poeso de Mtemátcs del Colego Ju XIII Zdí de Gd INTEGRAL DEFINIDA Se u ucó cotu y postv e el tevlo [,]. L gác de l ucó, y ls ects, e y, detem u egó del plo que ece el ome de tpeco mtlíeo.

Más detalles

Tema 5: Operación de amortización. Préstamos

Tema 5: Operación de amortización. Préstamos Te 5: Opecó de otzcó. Péstos.- Plteeto geel de l opecó de otzcó co teeses pospgbles. Recbe est deocó tod opecó de pestcó úc y cotpestcó últple: Pestcó - { 0,t 0 } otpestcó -{, t, t..., t } El cptl de l

Más detalles

INTEGRAL DEFINIDA. b A =, es decir, la tercera parte 3 1.- INTRODUCCIÓN

INTEGRAL DEFINIDA. b A =, es decir, la tercera parte 3 1.- INTRODUCCIÓN INTEGRAL DEFINIDA.- INTRODUCCIÓN E este tem estudremos u cocepto uevo, el de tegrl defd. Auque será ecesro defrl de form eseclmete complcd, l tegrl vee formlzr u cocepto secllo, tutvo: el de áre. Ahor

Más detalles

ejemplo j 4 j 2 Tanto de interés nominal, tanto efectivo y tanto periódico.-

ejemplo j 4 j 2 Tanto de interés nominal, tanto efectivo y tanto periódico.- Tto e teés ol, tto efectvo y tto peóco.- El tto e teés ol o tee e cuet l evesó e los teeses cobos o pgos peócete ute los peoos posteoes. Poeos epeset l tto ol ul cptlzble c / e ño coo. Se poí tepet el

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información Leguje humo Represetcó de l formcó Utlz u cojuto de símbolos lfumércos Crcteres lfbétcos:, B, C,.Z,, b, c,...z Símbolos umércos 9 sgos de putucó... Puede represetr Iformcó umérc lfumérc Leguje del ordedor

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Pogesioes itétics y geoétics Pogesioes itétics U pogesió itétic es scesió de úeos, tles qe l difeeci ete dos cosectivos clesqie de ellos es costte, po ejeplo, l scesió de los úeos ipes,,, dode l difeeci

Más detalles

Tema 5: Operación de amortización. Préstamos

Tema 5: Operación de amortización. Préstamos Tem 5: Opecó de motzcó. Pétmo. Pltemeto geel de l opecó de motzcó co teee popgble. Recbe et deomcó tod opecó de petcó úc y cotpetcó múltple: Petcó: {(, t } otpetcó: {(, t, (, t,, (, t } El cptl de l petcó

Más detalles

de las veces, lo haremos estableciendo la relación que existe entre el valor del término

de las veces, lo haremos estableciendo la relación que existe entre el valor del término PROGRESIONES U sucesió uméic es u cojuto odedo de úmeos, cd uo de los cules ecibe el ombe de témio. P desig cd témio se utiliz l otció i, dode el subídice idic el lug que ocup el témio. Se llm témio geel

Más detalles

1º ITIS Matemática discreta Relación 4 NÚMEROS NATURALES Y ENTEROS

1º ITIS Matemática discreta Relación 4 NÚMEROS NATURALES Y ENTEROS º ITIS Mtemátic discet Relció 4 NÚMEROS NATURALES Y ENTEROS. Pob po iducció que si c es u úmeo el, c, y N, etoces ( + c) + c.. Pob ) c) c) d) ( + ) ( + )(+ ) i = 6 3 ( + ) i = 4 (i+ ) = ( + ) 7 ( ) e)

Más detalles

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces.

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces. POTENCIAS.- determi l oteci de se y exoete, sigific ue hemos de multilicr or si mismo veces. Defiició: L otció Bse Exoet El exoete,, idic ls veces ue se reite l se e el roducto de ést or si mism. L se,,

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A.

está localizado en el renglón i-ésimo y la j-ésima columna del arreglo A. Pág del Colego de temátcs de l ENP-UN trces y ermtes utor: Dr. José uel ecerr Espos RICES Y DEERINNES E V V. DEFINICIÓN DE RIZ U mtrz es u cojuto de úmeros, ojetos u operdores, dspuestos e u rreglo dmesol

Más detalles

ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS

ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS TEMA 5: RENTA. INTRODUCCIÓN Llmmos ret u sucesó de cptles que se hce efectvos e vecmetos peródcos. Ejemplo: lquler, slros, préstmos, etc. A cd uo de estos cptles se le deom térmos o ulddes (A. Llmmos durcó

Más detalles

3. Unidad Aritmética Lógica (ALU)

3. Unidad Aritmética Lógica (ALU) 3. Udd rtmétc Lógc (LU) bordremos los spectos que permte l mplemetcó de l rtmétc de u computdor, trbuto fucol de l Udd rtmétc Lógc (LU). Prmero se revstrá lo relcodo l form de represetr los úmeros como

Más detalles

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO SCCIÓN ADVRSA Y RACIONAMINTO D CRDITO Biliofí Básic: Wlsh (003 º d.) Monety Theoy nd Policy. MIT ess. Citulo 7. SCCIÓN ADVRSA Cundo hy ieso de insolvenci l fijción del tio de inteés dee conteml tl osiilidd

Más detalles

INTRODUCCIÓN. Mucho éxito en su aprendizaje. Heraldo González Serrano Coordinador Matemática General 10.052

INTRODUCCIÓN. Mucho éxito en su aprendizaje. Heraldo González Serrano Coordinador Matemática General 10.052 INTRODUIÓN El pesete pute el pmeo de dos so los putes de clse que he elzdo e l sgtu Mtemátc Geel códgo 0.05 e el pl comú de Igeeí de Ejecucó de l Fcultd de Igeeí de l Uvesdd de Stgo de hle sgtu que tee

Más detalles

{ }: en determinado término. Por ejemplo, en la primera sucesión el primer término ( ), es 10. El término enésimo o general es a

{ }: en determinado término. Por ejemplo, en la primera sucesión el primer término ( ), es 10. El término enésimo o general es a Pági del Colegio de Mtemátics de l ENP-UNAM Pogesioes Auto: D. José Muel Bece Espios PROGRESIONES UNIDAD I I. SUCESIÓN Y SERIE U sucesió es u list de úmeos que sigue u egl detemid: { { i Fomlmete ls sucesioes

Más detalles

,,,, { }: en determinado término. Por ejemplo, en la primera sucesión el primer término (

,,,, { }: en determinado término. Por ejemplo, en la primera sucesión el primer término ( Fcultd de Cotduí y Admiistció. UNAM Pogesioes Auto: D. José Muel Bece Espios MATEMÁTICAS BÁSICAS PROGRESIONES SUCESIÓN Y SERIE U sucesió es u list de úmeos que sigue u egl detemid: { { i Fomlmete ls sucesioes

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

4. METODOLOGÍA DE RESOLUCIÓN

4. METODOLOGÍA DE RESOLUCIÓN 4.Metodologí de esoluó 4. METODOLOGÍA DE RESOLUCIÓN E este ítulo se lzá los sos metodológos eesos l esoluó del olem de sgó de flujos de meís e l ed tol de u emes de queteí, ooedo u hemet mtemát osstete

Más detalles

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Aulr: Igco Domgo Trujllo Slv Uversdd de Chle Guí ejerccos resueltos Sumtor y Bomo de Newto Solucó: ) Como o depede de j, es costte l sumtor. b) c) d) Aulr: Igco Domgo Trujllo Slv Uversdd de Chle e) f)

Más detalles

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr . OPERIONES ON MRIES.. Sum de mtrices Pr oder sumr dos mtrices ésts debe teer l mism dimesió. Etoces se sum térmio térmio: b b m m m Proieddes de l sum de mtrices: socitiv: omuttiv: Elemeto eutro: L mtriz

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

a es la parte real, bi la parte imaginaria.

a es la parte real, bi la parte imaginaria. CAPÍTULOIX 55 NÚMEROS COMPLEJOS Coocmetos Prevos Supoemos coocdo que: ) El cojuto de úmeros complejos está e correspodec buívoc co el cojuto de los putos de u plo. b) U úmero complejo expresdo e form boml

Más detalles

ELECCIÓN ÓPTIMA DEL PLAZO DE UN PRÉSTAMO EN FUNCIÓN DE PREFERENCIAS INDIVIDUALES

ELECCIÓN ÓPTIMA DEL PLAZO DE UN PRÉSTAMO EN FUNCIÓN DE PREFERENCIAS INDIVIDUALES ELECCÓN ÓPTM DEL PLZO DE UN PRÉSTMO EN FUNCÓN DE PREFERENCS NDVDULES Jesús Mª Sáchez Motero jsmoter@us.es Mª Ágeles Domíguez Serro doser@us.es Jver Gmero Rojs jgm@us.es Deprtmeto Ecoomí plcd Uversdd de

Más detalles

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es: POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble

Más detalles

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l

Más detalles

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n

1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n . SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos

Más detalles

No entrarem en detalls ni en definicions massa formals sinó que veurem únicament aquells conceptes que necessitarem durant el curs.

No entrarem en detalls ni en definicions massa formals sinó que veurem únicament aquells conceptes que necessitarem durant el curs. Mètodes Mtemàtcs Aplcts l Químc, Cus 006-007. Pedo Sldo.- Àlgeb lel o etem e detlls e defcos mss fomls só que euem úcmet quells coceptes que ecesstem dut el cus.. Esps ectols U espco ectol es u estuctu

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES. PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,

Más detalles

TEMA III ELEMENTOS DEL ÁLGEBRA MATRICIAL

TEMA III ELEMENTOS DEL ÁLGEBRA MATRICIAL TE III EEENTS DE ÁGER TRICI E este tem vmos repsr los coocmetos de mtrces que predmos e cursos terores y que vmos ecestr e est sgtur. I.- TRICES Qué es u mtrz? U mtrz es u dsposcó de úmeros pr l cul este

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2

POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2 POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel x es: f x = x + x + + x + x+, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

Unidad 7: Sucesiones. Solución a los ejercicios

Unidad 7: Sucesiones. Solución a los ejercicios Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

Aplicaciones prácticas de la antiderivación y la Integral Definida. Universidad Diego Portales CALCULO II

Aplicaciones prácticas de la antiderivación y la Integral Definida. Universidad Diego Portales CALCULO II Aplccoes práctcs de l tdervcó y l Itegrl Defd Uversdd Dego Portles Aplccoes práctcs A cotucó se preset lguos prolems e que se cooce l rzó de cmo de u ctdd y el ojetvo es hllr u epresó pr l ctdd msm. Como

Más detalles

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis

Más detalles

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales SUCESIONES DE NÚMEROS REALES. LÍMITE DE SUCESIONES. INTRODUCCIÓN.- Relció - Relció es tod propiedd que comuic los elemetos de dos cojutos o bie comuic etre sí los elemetos de u mismo cojuto. E geerl u

Más detalles

Algoritmos generales de convergencia y sumación. Teorema 1. Si una matriz infinita de números reales o complejos =

Algoritmos generales de convergencia y sumación. Teorema 1. Si una matriz infinita de números reales o complejos = Este rtículo form rte de Nots l Cítulo V del gotdo Tomo I de Aálisis Mtemático de Julio Rey Pstor, Pi Cllej y Césr A Trejo, 330 y ss E est rimer etreg se itroduce ls mtrices de Toelitz y se muestr l eorme

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

Ecuaciones de recurrencia

Ecuaciones de recurrencia Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

[ ] [ ] { } LONGITUD DE ARCO. n entonces: = [ ] dy dx dx. Demostración: Se tiene usando las definiciones previas con sumas de Riemann.

[ ] [ ] { } LONGITUD DE ARCO. n entonces: = [ ] dy dx dx. Demostración: Se tiene usando las definiciones previas con sumas de Riemann. pccoes de te ded CÁLCULO DIFEENCIL E INTEGL I.. LONGITUD DE CO. e u ucó ded soe co devd cotíu soe. e deás u ptcó I... etoces podeos otee poo od po uó de seetos co eteos P P ;... etoces: L I { } P P es

Más detalles

Juegos de Azar y Probabilidad/Estadística

Juegos de Azar y Probabilidad/Estadística Juegos de Az y PobbiliddEstdístic Dí. Puo Az Mixtos Esttegi Rulet Poke Ajedez Ddos Bidge Ds Loteí Doió Ds Chis Blckjck Go Ludo Bckgo Loteí tdiciol: e co u boleto co úeos iesos. Poc viedd de elecció. Peio

Más detalles

FUNDAMENTOS DE LA TEORÍA DE LA

FUNDAMENTOS DE LA TEORÍA DE LA Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios FCULTD DE INGENIERÍ U N M PROBBILIDD Y ETDÍTIC Iee Paticia Valdez y lfao ieev@sevido.uam.mx FUNDMENTO DE L TEORÍ DE L PROBBILIDD CONCEPTO

Más detalles

Las reglas de divisibilidad

Las reglas de divisibilidad Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Uiversidd Itermeric de Puerto Rico e el Recito de Poce Itroducció Desde l escuel elemetl los estudites

Más detalles

Las reglas de divisibilidad Por: Enrique Díaz González

Las reglas de divisibilidad Por: Enrique Díaz González Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Itroducció Desde l escuel elemetl los estudites se les eseñ cudo u etero es divisible, por ejemplo,

Más detalles

Neper ( ) Lección 2. Potencias, radicales y logarítmos

Neper ( ) Lección 2. Potencias, radicales y logarítmos Neer (0-7) Lecció Potecis, rdicles y logrítmos º ESO MATEMÁTICAS ACADÉMICAS Potecis, rdicles y logritmos LECCIÓN. POTENCIAS, RADICALES, LOGARITMOS. Potecis de exoete etero Recuerd l defiició de oteci co

Más detalles

= se cumplen todas las igualdades: Por tanto, una solución del sistema se puede considerar como un vector ( s s s s )

= se cumplen todas las igualdades: Por tanto, una solución del sistema se puede considerar como un vector ( s s s s ) SISTEMAS DE ECUACIONES LINEALES Todo problem cuyo eucdo somete úmeros descoocdos vrs codcoes, es susceptble de ser epresdo por medo de gulddes o desgulddes que form u sstem de ecucoes o ecucoes. De hí

Más detalles

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo.

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo. educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (, ). Los númeos eles y se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

PROBLEMAS Y EJERCICIOS RESUELTOS

PROBLEMAS Y EJERCICIOS RESUELTOS PROGRESIONES 3º ESO PÁGINA EJERCICIOS RESUELTOS DE PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS UN POCO DE HISTORIA: UN NIÑO LLAMADO GAUSS Hce poco más de dos siglos, u mestro lemá que querí pz y trquilidd e

Más detalles

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS. Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,

Más detalles

EJERCICIOS PENDIENTES 3º E.S.O. NÚMEROS ENTEROS Y RACIONALES

EJERCICIOS PENDIENTES 3º E.S.O. NÚMEROS ENTEROS Y RACIONALES º E.S.. Clculr NÚMERS ENTERS Y RACINALES PERACINES CN NÚMERS ENTERS Y RACINALES RDEN DE LAS PERACINES º Se clcul los prétesis de detro hci fuer. º Cudo N HAYA PARÉNTESIS se efectú ls opercioes siguiedo

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8 Repúlic Bolivri de Veezuel Miisterio de l Defes Uiversidd Nciol Eperietl Politécic de l Fuerz Ard Núcleo Crcs Curso de Iducció Uiversitri CIU Cátedr: Rzoieto Mteático EXPRESIONES ALGEBRAICAS RACIONALES

Más detalles

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES.

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES. Integcón ol lccones CÁLCUL DIFEENCIL E INTEGL I.. CMBI DE CDENDS ECTNGULES LES. Cooens oles El lno Euclno tene socs os ects eencules un hozontleje e ls scss X ot vetcleje e ls oens Y con nteseccón en un

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS Pág.: ÍNDICE:.- FUNCIÓN PRIMITIVA..- INTEGRAL INDEFINIDA..- INTEGRALES INMEDIATAS...- INTEGRACIÓN INMEDIATA DE ALGUNAS FUNCIONES. 4.- PROPIEDADES DE LA INTEGRAL INDEFINIDA. 5.- MÉTODOS

Más detalles

Operaciones en el conjunto de los números racionales Q

Operaciones en el conjunto de los números racionales Q lsteátics.eu Pedo Csto Oteg teiles de teátics Fccioes. Núeos eles. Potecis. Ríces. º ESO Opecioes e el cojuto de los úeos cioles Q Opeció Su c d bc b d bd Rest (difeeci) c d bc b d bd b) ) Ejeplo 5 5 5

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

2.1 SUCESIONES 2.2 SUMAS Y NOTACIÓN SIGMA

2.1 SUCESIONES 2.2 SUMAS Y NOTACIÓN SIGMA Sucesoes. SUCESIONES. SUMAS Y NOTACIÓN SIGMA Objetvos: Se pretede que el estudte: Determe covergec o dvergec de sucesoes. Alce Mootoí de sucesoes. Coozc ls propeddes de l otcó sgm. 5 Sucesoes.. SUCESIONES..

Más detalles

( )( 2) 6 ( )( 2) 10 ( )( 3)( 2) 30

( )( 2) 6 ( )( 2) 10 ( )( 3)( 2) 30 Fcultd de Cotdurí y Admiistrció. UNAM Fctorizció Autor: Dr. José Muel Becerr Esios MATEMÁTICAS BÁSICAS FACTORIZACIÓN CONCEPTO DE FACTORIZACIÓN U fctor es cd uo de los úmeros ue se multilic r formr u roducto.

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración. Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos)

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos) Escuel Técic Superior de Iformátic Covoctori de Juio - Primer Sem Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA 27 de Myo de 2-8, hors Durció: 2 hors. Por qué se crcteriz u operció ficier? (, putos)

Más detalles

10 problemas Sangaku con triángulos

10 problemas Sangaku con triángulos 0 poblems Sgku co tiágulos Ricd Peió i Estuch Eeo 009 Itoducció Los Sgku so us tbls de mde co eucidos de poblems de geometí euclíde cedos e Jpó e el peíodo Edo 603-867 E este peíodo Jpó estb isldo de occidete

Más detalles

TEMA1: MATRICES Y DETERMINANTES:

TEMA1: MATRICES Y DETERMINANTES: TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

C n i V0 V10 V'0 V'10 1.000 10 0,05 7721,73493 12577,8925 8107,82168 13206,7872

C n i V0 V10 V'0 V'10 1.000 10 0,05 7721,73493 12577,8925 8107,82168 13206,7872 9. lcúlese los vlores cl y fl de u ret dscret, medt, formd por térmos de cutí. y vlord u tto perodl del %. Dstgur los csos prepgble y pospgble. Solucó: 7.7,7 ;.77,9 ; (pospgble).7, ;.,79 ; (prepgble).....

Más detalles

ÁLGEBRA DE MATRICES. * Tenemos aquí el mapa de una ciudad (Konigsberg) que está atravesada por un río sobre el que hay varios puentes:

ÁLGEBRA DE MATRICES. * Tenemos aquí el mapa de una ciudad (Konigsberg) que está atravesada por un río sobre el que hay varios puentes: º Bchilleto Mteátics II Dvid Miguel del Río IES Euop (Móstoles) Vos coside ls tices coo u disposició ectgul de úeos que cotiee ifoció. Si se quiee es u fo de ode ifoció. Po ejeplo: * Teeos quí el p de

Más detalles

10. Optimización no lineal

10. Optimización no lineal 0. Optzcó o lel Coceptos báscos Prcpos y teores pr l búsqued de óptos lobles Optzcó s restrccoes e desó Optzcó s restrccoes e desó > Modelos co restrccoes de uldd Codcoes de uh-tucker Alortos uércos báscos

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES E l epresió c, puede clculrse u de ests tres ctiddes si se cooce dos de ells resultdo de este odo, tres opercioes diferetes: º Poteci º Rdicció º Logrito c pr clculr,

Más detalles

Operaciones con fracciones

Operaciones con fracciones Uidd. Númeos eles lsmtemtics.eu Pedo Csto Oteg mteiles de mtemátics Opecioes co fccioes Mtemátics I - º Bchilleto Opeció Sum c d c d d Rest (difeeci) c d c d d ) ) Ejemplo 5 5 5 5 7 7 7 7 OJO! Osev como

Más detalles

3) El espacio fuera de la esfera de radio b. Al potencial en toda esa región lo denotaremos como V 3 (r; ) y lo escribiremos

3) El espacio fuera de la esfera de radio b. Al potencial en toda esa región lo denotaremos como V 3 (r; ) y lo escribiremos . U esfer coductor de rdio se mtiee potecil V. Está roded por u cscró esférico cocétrico, de rdio, que tiee u desidd super cil de crg () = cos, dode es u costte co ls uiddes propids es l coorded polr..

Más detalles

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x) FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos

Más detalles

Sistemas de Conductores.

Sistemas de Conductores. Electcdd y Mgnetsmo uso 009/00 stems de onductoes - ondensdoes Eym E- stems de onductoes. Los sstems de conductoes epesentn l páctc myoí de los polems ue se pueden encont en los sstems de telecomunccón.

Más detalles

5- VARIABLES ALEATORIAS BIDIMENSIONALES

5- VARIABLES ALEATORIAS BIDIMENSIONALES Parte Varables aleatoras bdmesoales Prof aría B Ptarell 5- VARIABLS ALATORIAS BIDISIOALS 5 Geeraldades Hasta ahora hemos cosderado el caso de varables aleatoras udmesoales sto es el resultado del eermeto

Más detalles

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES IES Jun Gcí Vldemo Deptmento de Mtemátics º Bchilleto de CCSS. SUMA Y RESTA DE FUNCIONES Dds g unciones eles de vile el se deine l unción sum g como: g g con Dom g Dom Dom g Es deci, l unción g hce coesponde

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

TEMA 1: MATEMÁTICAS FI F NAN A CI C ER E AS A

TEMA 1: MATEMÁTICAS FI F NAN A CI C ER E AS A TEMA : MATEMÁTIAS FINANIERAS ONTENIDO. pitles ficieos. Leyes de cpitlizció: simple y compuest; fcciod y cotiu. Vlo Actul y vlo Futuo. Tss Equivletes. Tss Nomiles y Efectivs de Iteés.. Rets ficies. Seies

Más detalles