1. Funciones matriciales. Matriz exponencial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Funciones matriciales. Matriz exponencial"

Transcripción

1 Dpto. Matemátia Apliada, Faultad de Informátia, UPM EDO Sistemas Lineales. Funiones matriiales. Matriz exponenial.. Funiones vetoriales Sea el uerpo IK que puede ser IC ó IR y sea I IR un intervalo. Entones C 0 (I, IK n designará al onjunto de todas las funiones definidas en I y on valores en IK n que sean ontinuas. O sea, C 0 (I, IK n {X (x,..., x n T : x i : I IK ontinua i, i n}. C (I, IK n denotará al onjunto de todas las funiones vetoriales de I a IK n difereniables on ontinuidad. Así, C (I, IK n {X (x,..., x n T : x i : I IK ontinua i, i n}. Es inmediato omprobar que estos onjuntos tienen estrutura de espaio vetorial sobre el uerpo IK on las operaiones suma de funiones vetoriales, (X + Y (t X(t + Y (t, y produto por esalares, (λx(t λx(t..2. Funiones matriiales Denotamos por M(n, IK al espaio vetorial sobre IK de dimensión n 2 de todas las matries n n de elementos de IK. Consideramos una funión A : IR M(n, IK t A(t (a ij (t i,j n Diremos que A(t es ontinua en t 0 si todas las omponentes a ij (t son ontinuas en t 0. Si A(t es ontinua en ada punto t I se die que A(t es ontinua en I. Representaremos por C 0 (I, M(n, IK al onjunto de todas las funiones de I a M(n, IK ontinuas, esto es, C 0 (I, M(n, IK {A(t (a ij (t i,j n : a ij : I IK ontinua, i, j n} Diremos que A(t es difereniable en t 0 si todas las omponentes a ij (t son derivables en t 0 y se define su derivada omo la matriz da dt (t 0 A (t 0 (a ij(t 0 i,j n. Si A(t es difereniable en ada t I diremos que A es difereniable en I. Representaremos por C (I, M(n, IK al onjunto de todas la apliaiones de I a M(n, IK difereniables on ontinuidad. Así, C (I, M(n, IK {A(t (a ij (t i,j n : a ij : I IK ontinua i, j n}. Del mismo modo, diremos que A(t es integrable en un intervalo (, d IR si todas las omponentes a ij (t son integrables en (, d y se define la integral de A(t sobre (, d omo la matriz d ( d A(tdt a ij (tdt. i,j n

2 Dpto. Matemátia Apliada, Faultad de Informátia, UPM EDO Sistemas Lineales 2 LLamaremos primitiva de A(t a la matriz ( A(tdt a ij (tdt. i,j n Propiedades.. Sean A(t (a ij (t i,j n y B(t (b ij (t i,j n difereniables en un punto t 0. Entones se verifia: (i (A + B (t 0 A (t 0 + B (t 0. (ii (λa (t 0 λa (t 0 λ IK. (iii (AB (t 0 A (t 0 B(t 0 + A(t 0 B (t 0. (iv (P A (t 0 P A (t 0 P M(n, IK..3. Norma de una matriz En el espaio vetorial M(n, IK de las matries uadradas n n on oefiientes reales (IK IR o omplejos (IK IC se define : M(n, IK [0, que a ada matriz A (a ij i,j n, le hae orresponder la suma de los módulos de todos sus elementos, es deir, n n A a ij. ( i Se puede omprobar fáilmente que umple las propiedades de una norma: Sean A, B M(n, IK y λ IK.. A 0 si, y sólo si, A (0, donde (0 es la matriz idéntiamente nula. 2. λa λ A. 3. A + B A + B. Además, se verifia la siguiente propiedad: 4. AB A B. En efeto, esribiendo A (a ij i,j n y B (b ij i,j n tenemos AB ( n k a ikb kj i,j n, así que n n n n n n n n AB a ik b kj a ik b jk a ik B A B. i j k i k Esta norma onvierte al espaio M(n, IK en un espaio vetorial normado. Así, se puede hablar de límite matriial estableiendo que una suesión de matries {A n } n onverge a una matriz A si lím A n A 0. n Puesto que se tiene A n 2 máx y j j i,j n a ij A máx i,j n a ij resulta que la definiión de onvergenia matriial dada equivale a la onvergenia omponente a omponente. i k

3 Dpto. Matemátia Apliada, Faultad de Informátia, UPM EDO Sistemas Lineales 3 Lema.2. Sea A M(n, IK. Para todo k IN, se verifia A k A k. Demostraión: Si apliamos la propiedad 4. de la norma uno tomando B A, la desigualdad mostrada allí se onvierte en Por induión se sigue trivialmente que para todo k IN. A 2 A 2. A k A k,.4. Funión exponenial ompleja de variable real Dado λ a + ib IC se define la funión exponenial ompleja de variable real omo e λt e at (os bt + i sen bt t IR y tendremos que Re(e λt e at os bt y Im(e λt e at sen bt. De estas definiiones se obtienen fáilmente las siguientes propiedades. Propiedades Sean λ a + ib, λ, λ 2 IC y (, d IR, se verifia: (i e λ t e λ 2t e (λ +λ 2 t para todo t IR. En partiular, e λt e λt. (ii dx d ( e λt λe λt para todo t IR. (iii Si λ 0, entones una primitiva de e λt es la funión λ eλt para todo t IR y d e λt dt λ eλ(d. (iv e λt e at para todo t IR, donde la notaión representa el módulo de un número omplejo..5. Matriz exponenial Denotaremos por I n la matriz identidad en el espaio M(n, IK y, por onvenio, A 0 I n. Proposiión.3. Dada A M(n, IK, IK IR o IC, la serie matriial Ak es onvergente en el espaio M(n, IK. A su suma, que denotaremos por e A, le llamaremos matriz exponenial.

4 Dpto. Matemátia Apliada, Faultad de Informátia, UPM EDO Sistemas Lineales 4 Demostraión: Teniendo en uenta que M(n, IK es un espaio vetorial normado de dimensión finita, esto es, M(n, IK es un espaio de Banah, para probar la onvergenia de la serie es sufiiente on ver que la suesión de las sumas pariales {S N } N, donde Ak, es de Cauhy en M(n, IK on la norma uno definida por (. Se trata S N N pues de probar que para todo ε > 0 existe un k ε IN tal que Apliando el lema.2 se obtiene que S S N Ahora omo se tiene S S N < ε, N k ε. Ak kn+ lím k kn+ kn+ A k 0, Ak kn+ A k. puesto que la serie k A k es onvergente en IR a e A, se sigue que para todo ε > 0 existe un k ε IN tal que S S N kn+ A k < ε, N k ε. Por lo tanto, {S N } N es una suesión de Cauhy en M(n, IK. Observaión: La matriz exponenial satisfae e A Ak A k e A y, en onseuenia, la serie e A es absolutamente onvergente. Propiedades.4. Sean A, B M(n, IK, se verifia: (i e (0 I n. (ii e In e I n para todo IK. (iii Si AB BA entones e A+B e A e B. (iv e A es siempre inversible y su inversa es e A. (v e P AP P e A P para toda P M(n, IK inversible. Demostraión: Las propiedades (i y (ii se verifian trivialmente. Probemos (iii. Puesto que A y B onmutan y dado que las series e A y e B son absolutamente onvergentes son válidas las siguientes identidades ( ( ( e A e B Ak Bk i!j! Ai B j ( i+jk ( k i A i B j i+jk (A + Bk e A+B

5 Dpto. Matemátia Apliada, Faultad de Informátia, UPM EDO Sistemas Lineales 5 (iv Apliando la propiedad anterior resulta on lo que se tiene e A e A e (0 I n (e A e A. Por tanto, la matriz e A es siempre inversible. (v Observemos que se umple (P AP k P A k P, luego ( e P AP (P AP k P AK P P Ak P P e A P, lo que onluye la demostraión de las propiedades. En general, si A es una matriz n n diagonal on los oefiientes λ, λ 2,..., λ n en su diagonal prinipal, A diag(λ,..., λ n, entones A k diag(λ k,..., λ k n para todo k 0,, 2,.... Por onsiguiente e A es una matriz diagonal dada por e A diag ( λ k,...,.6. Funión matriz exponenial λ k n diag(e λ,..., e λn. Si A es una funión matriial definida sobre I podemos definir mediante la exponenial la siguiente apliaión: e A( : I M(n, IK t e A(t (A(t k A esta apliaión le llamaremos funión exponenial matriial. Teorema.5. Sea A C (I, M(n, IR tal que A(tA (t A (ta(t, entones e A(t es difereniable en I y d dt ea(t A (te A(t. Demostraión: Observemos en primer lugar que ((A(t k k(a(t k A (t omo se puede demostrar fáilmente por induión teniendo en uenta la fórmula de derivaión para el produto de matries y usando la hipótesis de que A(t ommuta on A (t. Así, se tiene que S N ( N (A(tk N k k(a(tk A (t A (ts N. Entones, lím N S N lím N (A (ts N A (te A(t. Por el teorema de onvergenia de series se tiene que (lím N S N lím N S N onseuenia, (e A(t A (te A(t omo queriamos probar. y, en

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

Matriz Inversa. 1. Transpuesta de una matriz. 2. Matriz identidad. 3. Matriz inversa

Matriz Inversa. 1. Transpuesta de una matriz. 2. Matriz identidad. 3. Matriz inversa Matriz Inversa Transpuesta de una matriz Si A es una matriz m x n entones la transpuesta de A denotada por A T se dene omo la matriz n x m que resulta de interambiar los renglones y las olumnas de A Si

Más detalles

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca 30 de junio de 2015 Matriz de m por n Definimeros a una matriz A de orden m por n como un arreglo de números de m filas y n columnas. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = a 31 a 32 a 33 a 3n....

Más detalles

Notas de Cálculo Avanzado I y II. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa

Notas de Cálculo Avanzado I y II. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa Notas de Cálulo Avanzado I y II Rihard G. Wilson Departamento de Matemátias, Universidad Autónoma Metropolitana-Iztapalapa Marzo del 2005 2 Contenido 1 La onstruión de los Números Reales 5 1.1 Los Números

Más detalles

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar:

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar: Pensamiento lgebraio Temas que debe dominar: GUÍ DE PR LOS SPIRNTES L MME-06 Definiión, operaiones y propiedades de: Números Naturales Números Enteros Números raionales Números irraionales Números omplejos

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente

Más detalles

Seminario de problemas. Curso Hoja 18

Seminario de problemas. Curso Hoja 18 Seminario de problemas. Curso 016-17. Hoja 18 111. Demuestra que una ondiión neesaria y sufiiente para que un triángulo sea isóseles es que tenga dos medianas iguales. Soluión: Vamos a utilizar un resultado

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Atividades iniiales. Expresa en notaión matriial y resuelve por el método de Gauss los sistemas de euaiones siguientes: Las resoluión de los sistemas puede expresarse de la forma

Más detalles

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA 4. RLACIONS CONSTITUTIVAS. LY D HOOK GNRALIZADA 4. Ley de Hooke. Robert Hooke planteó en 678 que existe proporionalidad entre las fuerzas apliadas a un uerpo elástio y las deformaiones produidas por dihas

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

Matemática 2 MAT022. Clase 1 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Matrices

Matemática 2 MAT022. Clase 1 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Matrices Matemática 2 MAT022 Clase 1 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María Tabla de Contenidos 1 Matrices Propiedades Tabla de Contenidos Matrices 1 Matrices Propiedades

Más detalles

1. INTRODUCCIÓN A LAS ESTRUCTURAS ALGEBRAICAS

1. INTRODUCCIÓN A LAS ESTRUCTURAS ALGEBRAICAS Introduión a las estruturas algebraias 1. INTRODUCCIÓN A LAS ESTRUCTURAS ALGEBRAICAS SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA 1.- Conjuntos y Subonjuntos. 2.- Operaiones on Conjuntos. Propiedades.

Más detalles

3. Sistemas de n ecuaciones diferenciales lineales de primer orden

3. Sistemas de n ecuaciones diferenciales lineales de primer orden Dpto Matemática Aplicada, Facultad de Informática, UPM EDO Sistemas Lineales 1 3 Sistemas de n ecuaciones diferenciales lineales de primer orden Se define un sistema de ecuaciones diferenciales lineales

Más detalles

Espacio de Funciones Medibles

Espacio de Funciones Medibles Capítulo 22 Espacio de Funciones Medibles Igual que la σ-álgebra de los conjuntos medibles, la familia de funciones medibles, además de contener a todas las funciones razonables (por supuesto son medibles

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauhy Fórmula integral de Cauhy. Si una funión f es analítia en una región que ontiene a urva simple errada y a su interior, entones para ada punto z 0 enerrado por, dz = 2πi f(z 0

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

EJERCICIOS DE ALGORITMIA. FUNDAMENTOS DE PROGRAMACIÓN (GRADO EN BIOTECNOLOGÍA)

EJERCICIOS DE ALGORITMIA. FUNDAMENTOS DE PROGRAMACIÓN (GRADO EN BIOTECNOLOGÍA) EJERCICIOS DE ALGORITMIA. UNDAMENTOS DE PROGRAMACIÓN (GRADO EN BIOTECNOLOGÍA) 1. Realizar un organigrama para dividir un segmento [a,b] en N subintervalos iguales. Como datos de entrada se emplearán a,

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville.

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 4. Proiedades algebraias de las soluiones. Fórmulas de Abel y Liouville. A lo largo de esta seión suondremos que P, Q y R son funiones ontinuas en un intervalo

Más detalles

UNIDAD 1.- PROBABILIDAD

UNIDAD 1.- PROBABILIDAD UNIDAD 1.- PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. Definiión: Un fenómeno o experienia se die aleatorio uando al repetirlo en ondiiones análogas no se puede predeir el resultado. Si

Más detalles

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 4 Matrices con coeficientes en un cuerpo 1. Matrices Sean I = {1,

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

El Teorema de Cauchy

El Teorema de Cauchy El Teorema de Cauhy Deimos que una urva es errada si termina en el mismo punto donde empieza. Deimos que una urva es simple si no tiene autointerseiones. Uno de los primeros teoremas de topología del plano,

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Singularidades. Una serie de Laurent es una serie de potencias que pueden ser positivas y/o negativas: a n (z z 0 ) n =

Singularidades. Una serie de Laurent es una serie de potencias que pueden ser positivas y/o negativas: a n (z z 0 ) n = Singularidades Hay muhas funiones que son analítias en una región on exepión de algunos puntos aislados donde no están definidas. Por ejemplo, /z es analítia en C {0} y os(z) es analítia en C {0, ±π, ±π,

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

1. Matrices. Operaciones con matrices

1. Matrices. Operaciones con matrices REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Definición: se llama matriz de m filas y n columnas sobre un cuerpo K (R ó C), a una ordenación rectangular de la forma Notación: a11 a...... a1n a21 a...... a2n A = M M M donde cada elemento a ij Є K

Más detalles

El cuerpo de los números reales

El cuerpo de los números reales Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir

Más detalles

TEMA 7. Matrices y determinantes.

TEMA 7. Matrices y determinantes. TEMA 7 Matrices y determinantes. 1. Matrices. Generalidades Definición 1 Sea E un conjunto cualquiera, m, n IN. Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12... a 1n a 21

Más detalles

MATRICES. Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas. o simplemente A = (a.

MATRICES. Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas. o simplemente A = (a. MATRICES Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas A= 2 1 5 0 3 8 A es de dimensión 2 3. a a a En general una matriz de dimensión 2 3

Más detalles

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral xamen final de Cálulo Integral 6 de septiembre de 1 (Soluiones) Cuestiones C 1 Apliando el teorema 1.15 y definiión 1. de los apuntes se onluye inmediatamente que el valor de la integral oinide on la longitud

Más detalles

Semana 14 [1/28] Matrices. 22 de julio de Matrices

Semana 14 [1/28] Matrices. 22 de julio de Matrices Semana 14 [1/28] 22 de julio de 2007 Definiciones básicas Semana 14 [2/28] Definiciones básicas Matriz Una matriz A, de m filas y n columnas con coeficientes en el cuerpo à (en este apunte à será Ê ó C)

Más detalles

Chapter 1. Matrices. 1.1 Introducción y definiciones

Chapter 1. Matrices. 1.1 Introducción y definiciones Chapter 1 Matrices 1.1 Introducción y definiciones Los conceptos de las matrices y determinantes se remonta al siglo segundo BC, incluso antes. Pero no es hasta el siglo XVII cuando las ideas reaparecen

Más detalles

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1 Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que

Más detalles

Espacios Normados (Normas en R n )

Espacios Normados (Normas en R n ) Espacios Normados (Normas en R n ) Uno de los conceptos más importantes del cálculo y del analisis matemático es el de métrica o distancia. En R n la noción de metrico depende a su vez del concepto de

Más detalles

Luis Zegarra A. Sucesiones, inducción y sumatorias 97

Luis Zegarra A. Sucesiones, inducción y sumatorias 97 Luis Zegarra A. Sucesiones, inducción y sumatorias 97 Note que a i representa a una suma desde el primer término de la sucesión i a para i hasta el último término que en este caso es a n para i n. Es decir,

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ INVERSA DE UNA MATRIZ Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Sean x = x 1 x n y y = y 1 y n vectores de n componentes, definimos el producto interno o producto

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

Introducción a la Química Computacional

Introducción a la Química Computacional Introduión a la Químia Computaional MÉTODO D LA VARIACION PARA ROLVR APROXIMADAMNT LA CUACIÓN D CRÖDINGR Reservados todos los derehos de reproduión. Luis A. Montero Cabrera y Rahel Crespo Otero, Universidad

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice la cadena Tabla de Dada una función f : D R R,

Más detalles

23/10/14. Algebra Matricial $ $ ' ' ' $ & & & # # I 3 I 2 = 1 0 $ DEFINICION DE MATRIZ 2.1 CONCEPTOS DE MATRICES CONCEPTOS DE MATRICES. $ n. ! a.

23/10/14. Algebra Matricial $ $ ' ' ' $ & & & # # I 3 I 2 = 1 0 $ DEFINICION DE MATRIZ 2.1 CONCEPTOS DE MATRICES CONCEPTOS DE MATRICES. $ n. ! a. /0/ Algebra Matricial. OPERACIONES DE DEFINICION DE MATRIZ Si A es una matriz de m x n (esto es una matriz con m filas y n columnas) la entrada escalar en la i-ésima fila y la j-ésima columna de A se denota

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Matrices y sistemas de ecuaciones

Matrices y sistemas de ecuaciones Matrices y sistemas de ecuaciones María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Matrices y sistemas de ecuaciones Matemáticas I 1 / 59 Definición de Matriz Matrices

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

Carmen Torres Blanc, Gloria Sánchez Torrubia DMATIC, ETSIInf, U.P.M. Álgebra Lineal. 1 TEMA 1.1: MATRICES Y SISTEMAS DE ECUACIONES LINEALES

Carmen Torres Blanc, Gloria Sánchez Torrubia DMATIC, ETSIInf, U.P.M. Álgebra Lineal. 1 TEMA 1.1: MATRICES Y SISTEMAS DE ECUACIONES LINEALES Carmen Torres Blanc, Gloria Sánchez Torrubia DMATIC, ETSIInf, UPM Álgebra Lineal TEMA : MATRICES Y SISTEMAS DE ECUACIONES LINEALES Definición de cuerpo conmutativo Definición Un Cuerpo Conmutativo es un

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Objetivos: Distinguir y realizar los cálculos con las operaciones matriciales básicas. Introducción: Las operaciones matriciales permiten el abordaje de los métodos del álgebra

Más detalles

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar. UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

Dependencia e independencia lineal

Dependencia e independencia lineal CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto

Más detalles

Matrices triangulares y matrices ortogonales

Matrices triangulares y matrices ortogonales Matrices triangulares y matrices ortogonales Problemas para examen Matrices diagonales 1. Sea a R n. Se denota por diag(a) la matriz diagonal con entradas a 1,..., a n : diag(a) = [ a j δ j,k ] n j,k=1.

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

2 2 2 x. Solución: Ya que la integración es una curva cerrada y la integral esta representada por funciones reales, empleamos el teorema de Green

2 2 2 x. Solución: Ya que la integración es una curva cerrada y la integral esta representada por funciones reales, empleamos el teorema de Green Elaborado por: Jhonny hoquehuana Lizarraga Variable ompleja Exámenes esueltos Segundo Parial. alular x y { xln( y ) x ( y) } dx y ( x ) dy y, donde es el uadrado de vérties ± i ± i. Soluión: Ya que la

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

Matrices. Definiciones básicas de matrices. José de Jesús Angel Angel.

Matrices. Definiciones básicas de matrices.  José de Jesús Angel Angel. Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2009 Contenido 1 Matrices 3 11 Matrices cuadradas 5 12 Matriz transpuesta 5 13 Elementos de

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij

Más detalles

Diferenciciación en R n

Diferenciciación en R n Diferenciciación en R n R. Álvarez-Nodarse Universidad de Sevilla Cómo definir la derivada? Definición Sea A un abierto de R n, a A y f : A R n R m. La derivada parcial i-ésima (1 i n) de f en a se define

Más detalles

Matemáticas III Andalucía-Tech. Integrales múltiples

Matemáticas III Andalucía-Tech. Integrales múltiples Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble

Más detalles

Matrices. Primeras definiciones

Matrices. Primeras definiciones Primeras definiciones Una matriz es un conjunto de elementos números ordenado en filas y columnas. En general una matriz se nombra con una letra mayúscula y a sus elementos con letras minúsculas indicando

Más detalles

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden Lección 11 Ecuaciones Diferenciales de Segundo Orden 1 En forma normal: Ejemplo: Ecuaciones de segundo orden x = f (t, x, x ) 2tx x + 1 x = 0 x = (x ) 2 1 2tx Casos Particulares Ecuaciones en las que no

Más detalles

ALGEBRA y ALGEBRA LINEAL

ALGEBRA y ALGEBRA LINEAL 520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean

Más detalles

A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn

A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn Máster en Materiales y Sistemas Sensores para Tecnologías Medioambientales Erasmus Mundus NOTAS DE CÁLCULO NUMÉRICO Damián Ginestar Peiró ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

si este límite es finito, y en este caso decimos que f es integrable (impropia)

si este límite es finito, y en este caso decimos que f es integrable (impropia) Capítulo 6 Integrales impropias menudo resulta útil poder integrar funciones que no son acotadas, e incluso integrarlas sobre recintos no acotados. En este capítulo desarrollaremos brevemente una teoría

Más detalles

Luego, en el punto crítico

Luego, en el punto crítico Matemáticas Grado en Química Ejercicios propuestos Tema 5 Problema 1. Obtenga y clasique los puntos críticos de las siguientes funciones: a fx, y = x +y, b fx, y = x y, c fx, y = x 3 + y. Solución del

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables.

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables. Capítulo 7 Formas cuadráticas. Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado de la norma de un vector

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

Anillos y Cuerpos. a(b + c) = ab + ac (a + b)c = ac + bc

Anillos y Cuerpos. a(b + c) = ab + ac (a + b)c = ac + bc Anillos y Cuerpos Anillos Sea un conjunto R con dos operaciones internas que llamaremos suma (+) y producto ( ). Diremos que (R, +, ) es un anillo si verifica: (R, +) es un grupo abeliano. (R, ) es un

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Sistemas de ecuaciones lineales. Matrices

Sistemas de ecuaciones lineales. Matrices Dpto de MATEMÁTICA APLICADA A LOS RECURSOS NATURALES Sección departamental en la ETSI de Montes Algebra Sistemas de ecuaciones lineales Matrices Sistemas lineales Solución de un sistema lineal Sistemas

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

1 Clase sobre determinantes

1 Clase sobre determinantes 1 Clase sobre determinantes Una herramienta muy útil cuando trabajamos con matrices y con el producto de matrices, es su interpretación como: una colección de números, A = [a ij ] ; como una colección

Más detalles

1. Matrices. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza. 1 Introducción y definiciones 2

1. Matrices. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza. 1 Introducción y definiciones 2 1. Matrices. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Contents 1 Introducción y definiciones 2 2 Algebra matricial. 3 3 Matrices por bloques.

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J

Más detalles

1. Espacio producto tensorial

1. Espacio producto tensorial ENTRELAZAMIENTO Espaio produto tensorial. Sistemas Compuestos. Entrelazamiento. Sistema de n qubits. La base de Bell. Fotones entrelazados: La Conversión Paramétria a la baja. . Espaio produto tensorial

Más detalles

Tema 4. Relatividad especial

Tema 4. Relatividad especial 1. Masa relativista Tema 4. Relatividad espeial Terera parte: Dinámia relativista La ineria de un uerpo es onseuenia de su resistenia al ambio en su estado de movimiento, y se identifia usualmente on la

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Definición de las operaciones con matrices

Definición de las operaciones con matrices Definición de las operaciones con matrices Ejercicios Objetivos Aprender a hacer las operaciones aritméticas con matrices Aprender las definiciones formales de operaciones con matrices Requisitos Operaciones

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Estructuras algebraicas

Estructuras algebraicas Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B

Más detalles

Tema 3: Conjuntos y Funciones

Tema 3: Conjuntos y Funciones Tema 3: Conjuntos y Funciones Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2008 09 LC, 2008 09 Conjuntos y Funciones 3.1 Conjuntos Escribimos

Más detalles

3.- Límites y continuidad

3.- Límites y continuidad 3.- ímites y ontinuidad El límite de una unión está íntimamente unido a su representaión gráia y a la interpretaión de la misma debido a que lo que nos india es el omportamiento o tendenia de la gráia.

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji 16 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 1 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado,

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

Matrices Particionadas Traza de una Matriz

Matrices Particionadas Traza de una Matriz CAPÍTULO Matrices Particionadas Traza de una Matriz Este capítulo consta de tres secciones Las dos primeras versan sobre matrices particionadas La tercera sección trata sobre la traza de una matriz En

Más detalles

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos

Más detalles