5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc..

Tamaño: px
Comenzar la demostración a partir de la página:

Download "5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc.."

Transcripción

1 écncs Computconles Cuso 7-8. Pedo lvdo 5.- juste de cuvs El juste de cuvs es un poceso mednte el cul ddo un conjunto de pes de puntos { } sendo l vble ndependente e l dependente se detemn un uncón mtemátc de tl mne que l sum de los cuddos de l deenc ente l mgen el l coespondente obtend mednte l uncón justd en cd punto se mínm: mn Genelmente se escoge un uncón genéc en uncón de uno o más pámetos se just el vlo de estos pmetos de l mne que se mnmce el eo cudátco. L om más típc de est uncón justd es l de un polnomo de gdo ; obtenendose p un juste lnel o egesón lnel p un juste pbólco etc.. Po oto ldo podemos tene un conjunto de dtos multdmensonles; es dec un conjunto de puntos en un espco k-dmensonl del tpo { k }. L uncón que justemos estos puntos seá un uncón de k vbles k El juste multdmensonl más sencllo es consde un dependenc lnel de l uncón especto cd un de ls vbles de que depende; es dec justndo un uncon del tpo k de tl mne que se mnmce el eo cudátco especto l conjunto de pámetos {.. k }. Es lo que se conoce como juste o egesón multlnel. k k En est seccón veemos que el juste lnel el de un polnomo de gdo el juste multlnel se pueden epes dento de un msmo omlsmo de mne que ls espectvs solucones l poblem se pueden detemn mednte lgotmos páctcmente nálogos.

2 écncs Computconles Cuso 7-8. Pedo lvdo 5.. Regesón lnel upongmos que tenemos un conjunto de puntos en el plno { }. El objetvo es detemn l ecucón de l ect tl que mnmz el eo cudátco clc mn mn especto los pámetos odend l ogen pendente. temátcmente: mplcndo ls ecucones nteoes vemos que se debe cumpl que o ben dvdendo mbs ecucones po el numeo totl de puntos e ntoducendo vloes medos En om mtcl podemos escb po lo que detemn los pámetos de l ect se esume esolve el sstem de ecucones lneles de dos ecucones dos ncógnts nteo.

3 écncs Computconles Cuso 7-8. Pedo lvdo lgotmo genel mtcl Consdeemos ho el msmo poblem desde ot pespectv. Vmos supone que los puntos pueden ps ectmente po l ect que buscmos. En este cso plnteímos el sguente sstem de ecucones con ncógnts o ben en om mtcl Como hemos vsto un mne dect de esolve los sstems de ecucones epesdos en om mtcl es l de multplc po l zqued mbos ldos de l guldd po l nves de l mtz de coecentes. sn embgo en este cso l tene ms ecucones que ncógnts l mtz de coecentes no es un mtz cudd tendá dmensón po lo que no est dend su nves. Un posble estteg segu es multplc l ecucón mtcl nteo po l tnspuest de l mtz de coecentes el poducto de un mtz po su tnspuest es sempe un mtz cudd smétc de mne que tendemos z El sstem de ecucones dos ncógnts ncl lo hemos condensdo en oto sstem de dos ecucones dos ncógnts ddo po z ho ben l mtz es un mtz cudd de dmensón smétc po lo que es nvetble sí que podemos escb po tnto el vecto que buscmos nos quedí de l om

4 écncs Computconles Cuso 7-8. Pedo lvdo ho ben epesent est estteg un solucón deente l poblem de l que hemos deducdo nteomente mednte mnmzcón del eo cudátco? Veemos contnucón que no es el cso. pt de l estuctu de l mtz el poducto de su tnspuest po ell msm esult en Del msmo modo el poducto de po el vecto de témnos ndependentes qued z po lo que l ecucón mtcl nteo l podemos escb ms eplctmente como. Dvdendo cd ecucón po utlzndo l notcón típc p el vlo medo llegmos que es ectmente el msmo sstem de ecucones l que hbímos llegdo nteomente mponendo l condcón de mínmo eo cudátco. sí pues podemos plnte el sguente lgotmo p el juste lnel Lectu de los pes de vloes { } constuccón de ls mtz vecto. b Constuccón de l tnspuest de l mtz : c Constuccón de l mtz mednte el poducto mtcl d Constuccón del vecto z mednte el poducto mtz po vecto e Invesón de mtz : - Poducto mtz po vecto - z p obtene el vecto de solucones nl.

5 écncs Computconles Cuso 7-8. Pedo lvdo po puede pece un lgotmo demsdo complcdo p un poblem tn smple como l egesón lnel p el que esten ómuls dects de mplementcón sencll. n embgo vmos ve que podemos etende este lgotmo de mne tvl oto tpo de justes. 4

6 écncs Computconles Cuso 7-8. Pedo lvdo juste polnómco po mínmos cuddos. De mne nálog l cso lnel el objetvo es detemn l ecucón del polnomo de gdo que mnmz el eo cudátco clc mn mn especto los pámetos pámetos. Po ejemplo p un juste pbólco l condcón de mínmo del eo cudátco llev ls ecucones sguentes: 4 Pocedendo de mne nálog l cso lnel llegmos que l detemncón de los pámetos del polnomo ps po l esolucón de un sstem de ecucones de l om: 4 P el cso genel de un polnomo de gdo podemos ntu que l solucón vendá dd po un sstem de ecucones lneles de dmensón de l om Un mne de mplement el juste polnoml genel es l de escb un

7 écncs Computconles Cuso 7-8. Pedo lvdo 6 subpogm uncón genel de l om q p q p q p p detemn todos los pomedos de potencs de poductos de ésts po que pecen en l mtz de coecentes de témnos ndependentes. n embgo es mucho ms sencllo plc el lgotmo genel mtcl descto nteomente p el cso lnel. ho p el juste de un polnomo de gdo plnteímos un sstem de ecucones con ncógnts ncluendo el témno ndependente o ben en om mtcl sí pues un vez constud l mtz de dmensón el vecto de coecentes pt de los pes de puntos { } smplemente plcmos los psos b desctos nteomente. Un lgotmo genel de juste de un uncón polnómc debeí solct úncmente: el numeo de totl de pes de puntos de que dsponemos b el gdo del polnomo que se petende just pt de quí debeemos den en nuesto pogm l mtz de coecentes de dmensón el vecto de coecentes de dmensón. Los deentes psos

8 écncs Computconles Cuso 7-8. Pedo lvdo del lgotmo equeen el uso de l mtz tnspuest de dmensón l mtz esultnte del poducto de l tnspuest de po ell msm su nves de dmensón mbs el vecto tnsomdo po l tnspuest de de dmensón sí como el vecto de solucones de dmensón. 5.. Regesón multlnel El lgotmo mtcl nteo se puede dpt de mne sencll p el cso de l egesón multlnel. En este cso dsponemos de un conjunto de dtos multdmensonles; es dec un conjunto de puntos en un espco k-dmensonl del tpo { k }. L uncón que justemos estos puntos seá del tpo k k k plntemos el sstem de ecucones ecucones con k ncógnts p l solucón ect tendemos o ben en om mtcl k k k k k k k k k k donde ls columns de l mtz de coecentes coesponden smplemente los vloes de entd de cd dmensón o ctegoí ncluendo un column et de eltv l témno ndependente. En este punto podemos plc el lgotmo mtcl genel ectmente de l msm mne que lo hímos p just un polnomo de gdo k un conjunto de pes de puntos. 7

9 écncs Computconles Cuso 7-8. Pedo lvdo 5.. Coecente de detemncón El coecente de detemncón R dendo ente nos d un de de l bondd del juste de mne que p vloes cecnos el juste es peecto ments que p vloes cecnos ceo ndc nestenc de elcón ente e con el modelo de juste popuesto. El coecente R vene ddo po l elcón ente l vnz de los dtos eplcd con el modelo l vnz de los dtos epementles. En conceto R clc donde epesent el vlo medo de los vloes de l vble ndependente e clc los vloes clculdos p cd punto usndo el modelo justdo los dtos. L mplementcón computconl de este índce es mu sencll un vez justdo el modelo ts esolve el sstem de ecucones que plnte el lgotmo mtcl genel. En el cso de l egesón lnel el coecente de detemncón tene l msm epesón que el coecente de egesón que ndc tmbén cómo de coelconds estdístcmente están ls vbles letos e. Es mpotnte ve que mbos coecentes tene sgncdos e ntepetcones deentes que slvo en el cso de l egesón lnel no concden. sí se puede compob que p el cso de l egesón lnel este índce concde con el coecente de egesón dendo pt de l elcón ente l covnz de ls vbles letos e el poducto de l íz cudd de ls vnzs ndvdules desvcón típc de mbs vbles con el n de obtene un pámeto dmensonl Cov XY σ σ Como se puede ve el vlo de este coecente es ndependente del modelo justdo que úncmente ndc l elcón estdístc ente el conjuntos de dtos. 8

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

No entraremos en detalle ni en definiciones demasiado formales sino que veremos únicamente aquellos conceptos que necesitaremos durante el curso.

No entraremos en detalle ni en definiciones demasiado formales sino que veremos únicamente aquellos conceptos que necesitaremos durante el curso. Técncs Computconles, Cuso 007-008. Pedo Sldo.- Álgeb lnel o entemos en detlle n en defncones demsdo fomles sno que eemos úncmente quellos conceptos que necestemos dunte el cuso.. Espcos ectoles Un espco

Más detalles

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo.

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo. educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (, ). Los númeos eles y se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

2.1- Nociones de Álgebra lineal

2.1- Nociones de Álgebra lineal écncs Computconles, Cuso 7-8. Pedo Sldo.- ocones de Álgeb lnel o entemos en detlle n en defncones demsdo fomles sno que eemos úncmente quellos conceptos que necestemos dunte el cuso... Espcos ectoles Un

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL. 1.4.1. Introducción

X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL. 1.4.1. Introducción Fndmentos y eoís Físcs ES Aqtect. MECÁNCA GENERAL.4. FUNDAMENOS DE ANÁLSS ENSORAL.4.. ntodccón L myoí de ls mgntdes físcs y elcones mtemátcs ente ls msms qedn pefectmente defnds tbjndo con escles y ectoes.

Más detalles

NÚMEROS COMPLEJOS. r φ. (0,0) a

NÚMEROS COMPLEJOS. r φ. (0,0) a Educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (,b). Los númeos eles y b se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES TALLER VERTICAL DE MATEMÁTICA VECTORES Cets mgntudes, que quedn pefectmente defnds po un solo númeo el su medd o módulo) se denomnn MAGNITUDES ESCALARES pudendo epesentse po segmentos tomdos soe un ect.

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC MECÁNIC NEWTNIN Cuso 009 áctco I Cnemátc de l tícul y Movmento eltvo NT: Los sguentes eeccos están odendos po tem y, dento de cd tem, en un oden cecente de dfcultd lgunos eeccos se encuentn

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Sstems de Ecucones Lneles www.tgors.es SISTEMS DE ECUCIONES LINELES Estudr un Sstem de Ecucones Lneles S.E.L.) es responder ls pregunts: tene solucón?. s es sí,, cuánts tene cuáles son?. l vst de ests

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

Distribuciones de corriente axiales con simetría de revolución.

Distribuciones de corriente axiales con simetría de revolución. Electc Mgnetsmo 1/11 Mgnetostátc Defncón. El potencl vecto mgnétco. Meos nefnos. Popees. Le e ot vt. Le e Ampèe. mpo en puntos lejos. Momento mgnétco. ompotmento en el nfnto. oentes lgs. Enegí Mgnétc.

Más detalles

Distribuciones de corriente axiales con simetría de revolución.

Distribuciones de corriente axiales con simetría de revolución. Electc Mgnetsmo 1/11 Mgnetostátc Defncón. El potencl vecto mgnétco. Meos nefnos. Popees. Le e ot vt. Le e Ampèe. mpo en puntos lejos. Momento mgnétco. ompotmento en el nfnto. oentes lgs. Enegí Mgnétc.

Más detalles

Sistemas de Reacciones Múltiples

Sistemas de Reacciones Múltiples stems de eccones Múltples eccones Químcs mples Un sol ecucón cnétc Múltples En ee En Plelo EJEMPLO. Poduccón de nhíddo ftálco pt de o-xleno: o toluldehdo O, O o xleno ftld nhíddo ftálco Esto se puede epesent

Más detalles

Sistemas de Conductores.

Sistemas de Conductores. Electcdd y Mgnetsmo uso 009/00 stems de onductoes - ondensdoes Eym E- stems de onductoes. Los sstems de conductoes epesentn l páctc myoí de los polems ue se pueden encont en los sstems de telecomunccón.

Más detalles

CINEMÁTICA Y DINÁMICA DE ROTACIÓN

CINEMÁTICA Y DINÁMICA DE ROTACIÓN Uel Fcult e Cencs Cuso e Físc I p/lc. Físc y Mtemátc Cuso CINEMÁTICA Y DINÁMICA DE OTACIÓN. Momento e otcón- Un cuepo ígo se muee en otcón pu s c punto el cuepo se muee en tyecto ccul. Los centos e estos

Más detalles

8. 3 2a = 0 a = 3 / 2 3b 4 = 0 b = 4 / 3. Página a) (2, 4) b) (4, 1) c) ( 3, 4) d) (5, 0)

8. 3 2a = 0 a = 3 / 2 3b 4 = 0 b = 4 / 3. Página a) (2, 4) b) (4, 1) c) ( 3, 4) d) (5, 0) TEMA. NÚMEROS COMPLEJOS SOLUCIONES DE LAS ACTIVIDADES Págs. 9 55 Págn 9. S x es un número dferente de 0, x > 0. S x 0, x 0. Por lo tnto, no exste nngún número rel cuyo cudrdo se.. Debe ser menor que 0.

Más detalles

APÉNDICE 1 1. Sistemas de coordenadas

APÉNDICE 1 1. Sistemas de coordenadas APÉNDICE. Sstemas de coodenadas El naldad de un sstema de coodenadas es la de consegu una adecuada descpcón de un punto de una cuva o de una supece en el espaco. De los dstntos tpos de sstemas de coodenadas

Más detalles

Unidad I - Electroestática

Unidad I - Electroestática Undd I - Electoestátc Intoduccón ues de nteccón: ccones dstnc ues Electomgnétcs ues Eléctcs Un poco de hsto El témno eléctco, tene su ogen en ls expeencs elds en l ntgüedd donde se obsevo ue cundo se fotd

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Sistemas de Conductores.

Sistemas de Conductores. Electcdd y gnetsmo uso 005/006 stems de onductoes. os sstems de conductoes epesentn l páctc myoí de los polems ue se pueden encont en los sstems de telecomunccón. e cctezn po: Un númeo de de conductoes

Más detalles

ALGORITMOS DE AJUSTE DE CURVAS PARA MÁQUINAS DE MEDICIÓN POR COORDENADAS

ALGORITMOS DE AJUSTE DE CURVAS PARA MÁQUINAS DE MEDICIÓN POR COORDENADAS ALGORITMOS DE AUSTE DE CURVAS PARA MÁQUINAS DE MEDICIÓN POR COORDENADAS clos glván Cento Nconl de Metologí Apdo. Postl 1-100 CP 7600 Queéto Méco cglvn@cenm.m Resumen: Dunte mucho tempo el softwe de ls

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

Hacia la universidad Geometría

Hacia la universidad Geometría Hc l unvesdd Geomeí OPCIÓN A Solucono ) Clcul es vecoes que sen pependcules u ) peo que no sen plelos ene sí. b) Clcul un veco que se pependcul l ve u l pmeo que hs ddo como eemplo del pdo neo. ) Los vecoes

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

LA RIOJA / JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO

LA RIOJA / JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO LA RIOJA / JUNIO 1. LOGS / FÍSICA / XAMN COMPLTO l luno elegá un de ls opcones de pobles y cuto de ls cnco cuestones popuests. Cd poble puntú sobe tes puntos y cd cuestón sobe uno. Opcón de pobles 1 A.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Tem : Sstems de ecucones lneles A Condconmento del prolem. Cá álculo umérco Tem : Resolucón de sstems lneles B Métodos terdos: Jco, Guss-Sedel Reljcón C Métodos drectos: Fctorzcón LU Fctorzcón QR D Sstems

Más detalles

Tema 7. Regresión Lineal

Tema 7. Regresión Lineal Análss de Datos I Esquema del Tema 7 Tema 7. Regesón Lneal 1. INTRODUCCIÓN. IDENTIFICACIÓN DEL MODELO 3. VALORACIÓN DEL MODELO Coefcente de detemnacón Descomposcón de la vaanza del cteo. APLICACIÓN DEL

Más detalles

TEMA 1 MÉTODOS DE MINIMIZACIÓN

TEMA 1 MÉTODOS DE MINIMIZACIÓN TEMA MÉTODOS DE MINIMIZACIÓN A) INTRODUCCIÓN MATEMÁTICA Genelmente el poblem se ceñá un mnmzcón de un funcón el [f()] de n vbles Se sume que l funcón f() es un funcón contnu y que demás posee l pme y segund

Más detalles

Unidad 3 Sistemas de Ecuaciones Lineales

Unidad 3 Sistemas de Ecuaciones Lineales Unidd 3 Sistems de Ecuciones Lineles Popedéutico 8 D. Ruth M. Aguil Ponce Fcultd de Ciencis Deptmento de Electónic Popedéutico 8 Fcultd de Ciencis Popedéutico 8 Fcultd de Ciencis Sistem de Ecuciones Lineles

Más detalles

POTENCIAL ELECTROSTÁTICO

POTENCIAL ELECTROSTÁTICO letos Físc p Cencs e Ingeneí 4.1 4.1 Potencl electostátco Al estud el cmpo electostátco, se demostó que se tt de un cmpo consevtvo, y, po tnto, l ccón de ls uezs electostátcs se puede susttu, cundo conveng,

Más detalles

TEORÍA (3 p). (a) Calcular el momento de inercia de una esfera homogénea de masa M y radio R

TEORÍA (3 p). (a) Calcular el momento de inercia de una esfera homogénea de masa M y radio R EM 1 ( p) Un b delgd de longtud está tculd en el punto fo mednte un psdo lededo del cul g en sentdo nthoo con elocdd ngul (ése fgu 1). En el punto está und ot b delgd de longtud cuyo extemo se deslz lo

Más detalles

Campos Eléctricos estáticos

Campos Eléctricos estáticos Cpos éctcos estátcos cucones de Mxwe p e cso estátco. S os cpos son estátcos s funcones ue os descben no dependen de be tepo t ueo se efc en todos os csos ue s cones de os sos seán nus es dec ue t ntoducendo

Más detalles

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso Físc y Mecánc de ls Constccones ES Aqtect/ Cso 8-9 AMLACÓN DE MECÁNCA DEL SÓLDO. FUNDAMENOS DE ANÁLSS ENSORAL.. ntodccón L myoí de ls mgntdes físcs y elcones mtemátcs ente ls msms qedn pefectmente defnds

Más detalles

Un estudio sobre calibración de cámaras digitales en visión computacional y reconstrucción 3-D

Un estudio sobre calibración de cámaras digitales en visión computacional y reconstrucción 3-D Congeso de Mcoelectónc Aplcd 1 Un estudo sobe clbcón de cáms dgtles en vsón computconl econstuccón 3-D Depol Robeto, Dìz Dnel, Fenndez Lus, Stockl Robeto Deptmento de Ingeneí e Investgcones Tecnológcs

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 2

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 2 INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tem FUNDAMENTOS PROPIEDADES ALGEBRAICAS DE LOS NÚMEROS REALES R.- Qué conjuntos epesentn N, Z, Q, R? R.- Qué elementos se encuentn en los conjuntos A = { m Z m

Más detalles

Tema 10: Variables aleatorias

Tema 10: Variables aleatorias Análss de Dtos I Esquem del Tem Tem : Vrbles letors. VARIABLES ALEATORIAS DISCRETAS FUNCIÓN DE PROBABILIDAD, f(x ) FUNCIÓN DE DISTRIBUCIÓN, F(x ) CARACTERÍSTICAS DE LAS VARIABLES DISCRETAS UNA VARIABLE:

Más detalles

En este capítulo se describe el problema de máxima cobertura sin capacidad (MCLP) y con

En este capítulo se describe el problema de máxima cobertura sin capacidad (MCLP) y con CAPITULO 3 Descrcón del roblem En este cítulo se descrbe el roblem de mám cobertur sn ccdd (MCLP) con ccdd (CMCLP). Posterormente se resentn los modelos de rogrmcón mtemátc r mbos. 3.1 Descrcón del MCLP

Más detalles

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2)

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2) IES ÁFRIC º BCHILLERTO CCNN EJERCICIOS DE REPSO TOD L MTERI (Fich ) Ejecicio nº.- Un estdo comp biles de petóleo tes suministdoes dieentes que lo venden 7,8 y dóles el bil, espectivmente. L ctu totl sciende

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integción 7 Integles imois Hst quí, l efeinos l integl definid en un intevlo cedo Œ; b, el cul tiene un longitud finit b f / considemos que f es un función continu Es deci, l integl

Más detalles

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades.

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Integles y licciones. 4. Integles imois: definición y oieddes. Hst este momento hemos clculdo integles definids de funciones con ngo finito en intevlos

Más detalles

TEMA 3. ENERGÍA MAGNÉTICA.

TEMA 3. ENERGÍA MAGNÉTICA. TEMA 3. ENEGÍA MAGNÉTIA. POLEMA. ENEGÍA MAGNÉTIA EN UN ILO ONDUTO. POLEMA. ENEGÍA MAGNÉTIA EN UN INDUTO. POLEMA 3. INDUTANIA TOOIDE. POLEMA 4. ENEGÍA ALMAENADA EN EL AMPO MAGNÉTIO DE UN TOOIDE. POLEMA

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A IE Mediteáneo de Málg olución Julio Jun Clos lonso Ginontti Opción Poblem.. Obtene ondmente escibiendo todos los psos del onmiento utilido que: El lo del deteminnte de l mti ( puntos l mti - que es l mti

Más detalles

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión). Exmen de Físc-1, 1 Ingenerí Químc Enero de 211 Cuestones (Un punto por cuestón). Cuestón 1: Supong que conocemos l poscón ncl x y l velocdd ncl v de un oscldor rmónco cuy frecuenc ngulr es tmén conocd;

Más detalles

CAPÍTULO III TRABAJO Y ENERGÍA

CAPÍTULO III TRABAJO Y ENERGÍA TRAJO Y ENERGÍA CAPÍTULO III "De todos los conceptos físcos, el de enegía es pobablemente el de más vasto alcance. Todos, con fomacón técnca o no, tenen una pecepcón de la enegía y lo que esta palaba sgnfca.

Más detalles

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB Cuso: FISICA II CB 3U Ley de Coulomb (1736-186). Si ls cgs se ten o epelen signific que hy un fuez ente ells. LEY DE COULOMB L fuez ejecid po un cg puntul sobe ot Está diigid lo lgo de l líne que los une.

Más detalles

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas:

Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas: VECTORES Y ESCLRES Las magntudes escalaes son aquellas que quedan totalmente defndas al epesa la cantdad la undad en que se mde. Eemplos son la masa, el tempo, el tabao todas las enegías, etc. Las magntudes

Más detalles

TEMA 1 Revisión de fundamentos de análisis tensorial

TEMA 1 Revisión de fundamentos de análisis tensorial EMA 1 Revsón de fundmentos de nálss tensol ESAM 1. 1. Intoduccón Escles, vectoes exsten ndependentemente de un sstem de efeenc Repesentcón: - sstem de efeenc - componentes que dependen del sstem de efeenc

Más detalles

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3.

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3. Edcaga.com VECTORES En este apatado amos a tabaa eclsamente con los ectoes en el espaco a los qe amos a llama F. VECTOR FIJO Lo pmeo tendemos qe sabe qe es n ecto. Así qe llamamos ecto fo AB a n ecto qe

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

a) El sistema puede ser visto como dos capacitores en paralelo, donde cada capacidad es de la forma C i = ε i A i /d i. Entonces se obtiene:

a) El sistema puede ser visto como dos capacitores en paralelo, donde cada capacidad es de la forma C i = ε i A i /d i. Entonces se obtiene: Julio 8 Exmen de Electomgnetismo Solución Poblem ) El sistem puede se visto como dos cpcitoes en plelo, donde cd cpcidd es de l fom C i ε i i /d i. Entonces se obtiene: ( ε ε ) L ε L ε L + C C + C + 4d

Más detalles

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA CURSO CERO DE FÍSIC PLICCIÓN DE VECTORES L FÍSIC Vness de Csto Susn i Deptmento de Físic CURSO CERO DE FÍSIC.UC3M PLICCIÓN DE VECTORES L FÍSIC CONTENIDO Mgnitudes escles vectoiles. Repesentción gáfic de

Más detalles

8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007

8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007 8º CNGRES ERAMERCAN DE NGENERA MECANCA Cusco, 23 l 25 de ctube de 27 DENTFCACÓN DE PARÁMETRS DNÁMCS DE RTS PARALELS: MÉTDS DE TENCÓN DE LAS VARALES CNEMÁTCAS A PARTR DE LA MEDCÓN DE LA PSCÓN Dí-Rodígue

Más detalles

Elementos de Aritmética de Computadoras Parte I

Elementos de Aritmética de Computadoras Parte I Elementos de Atmétca de Computadoas Pate I M. Vázquez, E. Todoovch, M. Tosn Aqutectua I - Cuso 3 UNICEN Cómputo Atmétco Las peguntas de fondo cuando se aboda el tema de la atmétca de computadoas son: Cómo

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

11. COMPENSACIÓN DEL RADIO

11. COMPENSACIÓN DEL RADIO Capítlo 3: Desaollo del poama. COMPENSACIÓN DEL RADIO. Intodccón Los pntos tomados dectamente po palpacón sobe la spece de la peza en cestón no son pntos eales de dcha spece, ya qe el pnto ecodo tene las

Más detalles

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES.

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES. Integcón ol lccones CÁLCUL DIFEENCIL E INTEGL I.. CMBI DE CDENDS ECTNGULES LES. Cooens oles El lno Euclno tene socs os ects eencules un hozontleje e ls scss X ot vetcleje e ls oens Y con nteseccón en un

Más detalles

Se le define como toda situación física producidapor una masa men el espacio que lo rodeay que es perceptible debido a la fuerza que ejerce sobre una

Se le define como toda situación física producidapor una masa men el espacio que lo rodeay que es perceptible debido a la fuerza que ejerce sobre una Cpo vtconl Se le defne coo tod stucón físc poducdpo un s en el espco que lo ode que es peceptble debdo l fuez que ejece sobe un s colocd en dco espco. Dd un s en el espco un s en dfeentes poscones lededo

Más detalles

Profesor Francisco R. Villatoro 15 de Noviembre de 1999 SOLUCIONES. Soluciones de los ejercicios de la tercera relación de problemas.

Profesor Francisco R. Villatoro 15 de Noviembre de 1999 SOLUCIONES. Soluciones de los ejercicios de la tercera relación de problemas. Tecea elacón de poblemas Técncas Numécas Pofeso Fancsco R. Vllatoo 5 de Novembe de 999 SOLUCIONES Solucones de los ejeccos de la tecea elacón de poblemas.. Se defne la taza de la matz cuadada A como la

Más detalles

PRÁCTICA 2. LEY DE LA REFRACCIÓN. Medida del índice de refracción de una lámina de vidrio

PRÁCTICA 2. LEY DE LA REFRACCIÓN. Medida del índice de refracción de una lámina de vidrio Coodnacón EVAU. Páctcas cuso 2017-18 P2 Objetvo: Detemna el índce de efaccón de un vdo. Fundamento: PRÁCTICA 2. LEY DE LA REFRACCIÓN. Medda del índce de efaccón de una lámna de vdo La ley de la efaccón,

Más detalles

Estructura de la materia 3 Serie 2 Modelo de Thomas-Fermi y Sistemas Atómicos Cátedra: Jorge Miraglia. Segundo cuatrimestre de 2013

Estructura de la materia 3 Serie 2 Modelo de Thomas-Fermi y Sistemas Atómicos Cátedra: Jorge Miraglia. Segundo cuatrimestre de 2013 Estuctua de la matea See Modelo de homas-fem y Sstemas Atómcos Cáteda: Joge Magla Segundo cuatmeste de Modelo de homas-fem en átomos En el modelo de homas-fem, la enegía potencal de un electón lgado a

Más detalles

CAPÍTULO 2. MARCO TEÓRICO

CAPÍTULO 2. MARCO TEÓRICO 8 CÍULO. MRCO EÓRCO.. Robótc L obótc es l cenc o estudo de ls tecnologís báscs socds con los obots. El estudo nclue tnto l nvestgcón teóc como l plcd, dvdéndose en el dseño del obot, su mecánc, l plnecón

Más detalles

FUNDAMENTOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES

FUNDAMENTOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES FUNDAMENTOS MATEMÁTICOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES CÁLCULO INTEGRAL DE FUNCIONES DE UNA VARIABLE Integrl defnd Dd un funcón f, exste otr F tl que F = f? Integrcón

Más detalles

Aplicación del Dominio Armónico Extendido al Análisis de Estado Quasi-Estacionario de los Sistemas Eléctricos de Potencia

Aplicación del Dominio Armónico Extendido al Análisis de Estado Quasi-Estacionario de los Sistemas Eléctricos de Potencia RIEE&C, REVISA DE INGENIERÍA ELÉCRICA, ELECRÓNICA Y COMPUACIÓN, Vol. 5 No. 2, DICIEMBRE 28 Alccón del Domno Amónco Extenddo l Análss de Estdo Qus-Estcono de los Sstems Eléctcos de Potenc 13 Lázo C. Isdo,

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO INTEGRACIÓN IV

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO INTEGRACIÓN IV UNIESIDD ENOLÓGI NIONL ULD EGIONL OSIO INEGIÓN I Ejemplo e Moelo e Equpos e un lnt en Esto Dnámco Se el gm e lujo e l gu. Luego e nomb ls vbles estntes se ese plnte un moelo en esto námco que lo epesente

Más detalles

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese:

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese: EJERIIOS DE OPERAIONES DE AMORTIZAIÓN Eercco Se concede un réstmo ersonl de 8.000 euros mortzble en 0 ños mednte térmnos mortztvos semestrles, donde ls cuots de mortzcón son déntcs en todos y cd uno de

Más detalles

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales TEMA : Métodos tertvos de resolucón TEMA. Métodos tertvos de resolucón de Sstems de Ecucones Lneles. Métodos tertvos: ntroduccón Aplcr un método tertvo pr l resolucón de un sstem S A b, consste en trnsformrlo

Más detalles

CAPÍTULO VII LEY DE AMPERE Y LEY DE BIOT-SAVART

CAPÍTULO VII LEY DE AMPERE Y LEY DE BIOT-SAVART Tócos de Electcdd y Mgnetsmo J.Pozo y R.M. Chobdjn. CAPÍTULO VII LEY DE AMPERE Y LEY DE IOT-SAVART 7.. Ley de Amee Oested en 8 fue quen descubó eementlmente, que un coente que ccul en un lmbe oduce efectos

Más detalles

Práctica 2: Codificación Aritmética.

Práctica 2: Codificación Aritmética. TRANMÓN DE DATO 006/07 Práctc : Codfccón Artmétc. Apelldos, nombre Apelldos, nombre Grupo Puesto Fech 0 Octubre/ Novembre 006 El objetvo de est práctc es ntroducr l lumno en los fundmentos de ls codfccón

Más detalles

ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO

ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO Insttuto de Poesoes Atgas Físca Expemental 1 Guía páctca Nº ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO DISPOSITIVO EXPERIMENTAL El dspostvo expemental se muesta en la gua 1. Un egstado electónco o tme

Más detalles

6. CAPM: Capital Asset Pricing Model IN56A

6. CAPM: Capital Asset Pricing Model IN56A 6. CA: Captal Asset cng odel IN56A Otoño 009 Gonzalo atuana F. Recuedo cap. anteo Fontea de Invesón (Ecente) 5% 4% ed pestado Retono Espeado 3% % % 0% 9% esta 8% 7% 6% 0% 5% 0% 5% 0% 5% 30% 35% 40% 45%

Más detalles

Cantidad de movimiento en la máquina de Atwood.

Cantidad de movimiento en la máquina de Atwood. Cntidd de movimiento en l máquin de Atwood. esumen Joge Sved y Pblo Adián Nuñez. jogesved@topmil.com. pblo_nuniez2000@yhoo.com. ed pticiptiv de Cienci UNSAM - 2005 En el pesente tbjo se puso pueb l pedicción

Más detalles

Cinemática 1D 2D 3D (un enfoque para estudiar el movimiento)

Cinemática 1D 2D 3D (un enfoque para estudiar el movimiento) L cnemác es un m de l mecánc clásc que esud el mmen de ls cueps sn ene en cuen ls cuss (uezs) que l pducen. Se pecup p ls ecs en uncón del emp, p l cul ulz un ssem de cdends (ssem de eeenc). Además, esud

Más detalles

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS UNIVRSIDAD NACIONAL DL CALLAO FACULTAD D INGNIRÍA LÉCTRICA Y LCTRÓNICA SCULA PROFSIONAL D INGNIRÍA LÉCTRICA CURSO: TORÍA D CAMPOS LCTROMAGNÉTICOS PROFSOR: Ing. JORG MONTAÑO PISFIL PROBLMAS RSULTOS SOBR

Más detalles

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto.

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto. TRIGONOMETRÍA INTRODUCCIÓN En un sentido ásio, se puede fim que l Tigonometí es el estudio de ls eliones numéis ente los ángulos ldos del tiángulo. Peo su desollo l h llevdo tene un ojetivo más mplio,

Más detalles

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden.

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden. VECTOR FIJO TEM IV PLNO VECTORIL. PRODUCTO ESCLR. PLICCIONES. Un vecto fijo es un segento cuyos exteos vienen ddos en un cieto oden. Ejeplo: El segento de exteos y (en este oden). Se not con (, ) ó con.

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

Física de Materiales Tema 2. El cristal ideal

Física de Materiales Tema 2. El cristal ideal Físc de Mteles Tem. El cstl del.. Oden peódco: smetí de tslcón.. Redes de Bvs.. Estuctu cstln... Algunos ejemplos mpotntes de estuctus cstlns.4. Notcones cstlogáfcs: Indces de Mlle.5. L ed ecípoc.6. Dfccón

Más detalles

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO SCCIÓN ADVRSA Y RACIONAMINTO D CRDITO Biliofí Básic: Wlsh (003 º d.) Monety Theoy nd Policy. MIT ess. Citulo 7. SCCIÓN ADVRSA Cundo hy ieso de insolvenci l fijción del tio de inteés dee conteml tl osiilidd

Más detalles

TEMA 7. SUCESIONES NUMÉRICAS.

TEMA 7. SUCESIONES NUMÉRICAS. º EO Tem 7 TEMA 7. UCEIONE NUMÉRICA.. UCEIONE NUMÉRICA. Imgiemos el ecoido que efectú u bló que se h lzdo l suelo y midmos ls distcis ete bote y bote: Ls distcis fom u sucesió de úmeos: 0, 5, 0, 5,. U

Más detalles

Problema 4 del primer parcial de FT1-2do cuatri 2014

Problema 4 del primer parcial de FT1-2do cuatri 2014 Poblem 4 del pime pcil de FT - 2do cuti 204 Solución po imágenes Usulmente cundo nos plnten lgun geometí de conductoes tie, lo más común es pens en el método de imágenes, más que nd cundo se tt de lgun

Más detalles

Electromagnetismo II

Electromagnetismo II Electomgnetismo II Semeste: 215-1 EXAMEN PARCIAL 2: Solución D. A. Reyes-Coondo Poblem 1 (2 pts.) Po: Jesús Cstejón Figueo ) Escibe ls cuto ecuciones de Mxwell en fom difeencil, escibiendo el nombe de

Más detalles

TEMA 4: RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES. MÉTODOS ITERATIVOS.

TEMA 4: RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES. MÉTODOS ITERATIVOS. Tem 4: esolucón de sstems de ecucones lneles y no lneles. étodos tertvos. TEA 4: ESLUCIÓ DE SISTEAS DE ECUACIES LIEALES Y LIEALES. ÉTDS ITEATIVS. 4..- AS VECTIALES Y ATICIALES Tnto en el estudo del condconmento

Más detalles

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura Ejemplos de cálculo de crcutos equlentes. Aplccón de los teorems de Theenn y Norton Clculr el equlente Theenn y Norton entre los puntos y en el crcuto de l fgur Ω 4Ω 3 6Ω L Ω 5Ω V L Pr clculr el equlente

Más detalles

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121 Los números gnros: Clse-15 En hy stucones que no tenen solucón; por ejemplo no exste nngún número cuyo cudrdo se gul -1. Pr dr solucón est stucón recurrremos l conjunto de los números mgnros, donde se

Más detalles

Reflexión y Refracción

Reflexión y Refracción eflexón y efaccón Unvesdad de Pueto co ecnto Unvestao de Mayagüez Depatamento de Físca Actvdad de Laboatoo 8 La Ley de eflexón y La Ley de Snell Objetvos: 1. Detemna, paa una supefce eflectoa, la elacón

Más detalles

r f W = F dr r i F = F(r ) [2] c) Como consecuencia, el trabajo realizado a lo largo de una trayectoria cerrada es nulo, W = F(r )dr )dr = q ref ref

r f W = F dr r i F = F(r ) [2] c) Como consecuencia, el trabajo realizado a lo largo de una trayectoria cerrada es nulo, W = F(r )dr )dr = q ref ref letos Físc p Cencs e Ingeneí 1 8.04-1 Intoduccón El concepto de potencl electostátco suele ntoducse en los textos de Físc, de dos foms dfeentes: I.- En un nvel elementl se estlece, en pme lug, el concepto

Más detalles

Curso MATERIA: MATEMÁTICAS II (Fase general)

Curso MATERIA: MATEMÁTICAS II (Fase general) Cuso 9- MTERI MTEMÁTICS II (Fse genel) INSTRUCCIONES GENERLES Y VLORCIÓN El lumno contest los cuto ejecicios de un de l dos opciones ( o B) que se le oecen. Nunc deeá contest unos ejecicios de un opción

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y Un mgntud es culquer cos que puede ser medd medr no es más que comprr un mgntud con otr de l msm espece que se tom como referenc. Ls mgntudes se epresn con un número uns unddes. En lguns ocsones el número

Más detalles

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria.

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria. Númeos Complejos Un Defnón Llmemos númeo omplejo un númeo z que se ese e l fom, one y son númeos eles, e vef:. Al númeo se lo enomn pte el e z y l númeo, pte mgn e z. pte } pte } mgn Se esgn on Re ( z)

Más detalles

Cálculo con vectores

Cálculo con vectores Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset

Más detalles

Circulación sobre contornos cerrados

Circulación sobre contornos cerrados Elet Mgnetsmo - Gpo. so / Tem : Intoón onepto e mpo Repso e álge vetol stems e ooens tesno vlínes genels: líno esféo. Opeoes vetoles. Gente Dvegen Rotonl Dev tempol omnón e opeoes: Lpln Epesones on opeoes

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

EMPAQUETAMIENTO DE CUERPOS CIRCULARES

EMPAQUETAMIENTO DE CUERPOS CIRCULARES UNIVERSIDAD AUTONOMA DE NUEVO LEON Facultad de Ingeneía Mecánca Eléctca Pogama de Posgado en Ingeneía de Sstemas X VERANO DE INVESTIGACION CIENTIFICA EMPAQUETAMIENTO DE CUERPOS CIRCULARES CHRISTIAN GREGORIO

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defnón de pdt esl de vetes. Se denmn pdt esl de ds vetes ( ) y ( ) p l núme: s y l epesentms En el pdt esl se mltpln ds vetes pe el esltd es n núme (esl). S ls vetes peteneen l esp vetl

Más detalles

MATEMÁTICA 4º. Prof. Sandra Corti

MATEMÁTICA 4º. Prof. Sandra Corti L rdccón de se negtv e índce pr no tene solucón en el conjunto de los números reles ( 4; 25, 16, etc.), y que no exste nngún número rel que elevdo un potenc pr dé por resultdo un número negtvo. Se defne

Más detalles