Física y Mecánica de las Construcciones ETS Arquitectura/ Curso

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física y Mecánica de las Construcciones ETS Arquitectura/ Curso"

Transcripción

1 Físc y Mecánc de ls Constccones ES Aqtect/ Cso 8-9 AMLACÓN DE MECÁNCA DEL SÓLDO. FUNDAMENOS DE ANÁLSS ENSORAL.. ntodccón L myoí de ls mgntdes físcs y elcones mtemátcs ente ls msms qedn pefectmente defnds tbjndo con escles y ectoes. Ests mgntdes físcs exsten ndependentemente del clqe sstem de efeenc tempet, fezs.... No obstnte, p epesentls escogemos n sstem de efeenc y ls especfcmos po ss componentes. Ls componentes dependen del sstem de efeenc escogdo y po tnto es esencl conoce l ley de tnsfomcón qe nos pemt encont l elcón ente ls componentes de dch popedd físc en dstntos sstems de efeenc... nsfomcón de coodends Cndo n popedd físc está epesentd po n escl, el lo de ést no depende del sstem de ejes coodendos tlzdo. Cndo n popedd físc es de cácte ectol, s módlo no depende de l oentcón escogd p los ejes coodends, peo sí ss componentes según estos ejes. Vmos encont l elcón ente ls componentes de l popedd físc expesd en n sstem de efeenc otogonl OXYZ y n sstem de efeenc otogonl OXYZ otdo especto l pmeo: Z Z Y Y X X Sen, y los ectoes ntos qe defnen ls deccones del sstem de efeenc OXYZ y, y ls qe defnen ls deccones del sstem de efeenc OXYZ y sen,, ls componentes del ecto en el sstem de efeenc OXYZ y,, componentes en el sstem OXYZ. o tnto, podemos escb:

2 Físc y Mecánc de ls Constccones ES Aqtect/ Cso 8-9 meo encontemos l elcón ente los ectoes ntos qe defnen no y oto sstem de efeenc. Los ectoes ntos, y se peden escb como combncón lnel de los ectoes ntos, y del sstem OXYZ: donde el segndo índce de los coefcentes ndc de qe ecto nto del sstem OXYZ se tt y el pmeo ndc l componente ctesn. dedc el lo de los coefcentes bst mltplc esclmente ls expesones nteoes po cd no de los ectoes ntos del sstem OXYZ:... Y en genel podemos escb p sgente expesón p dedc los loes de los coefcentes : cos, j j j donde el podcto j epesent l poyeccón del ecto nto sobe l deccón dd po el ecto nto j. Como todos ellos son ectoes ntos, cd n de estos coefcentes no es más qe el coseno del ánglo qe fomn los dos ectoes ntos. A los cosenos de los ánglos qe fom n ecto con los ejes ctesnos del sstem de efeenc en el qe se escben ss componentes se les denomnn cosenos dectoes. En el cso ptcl de n ecto nto, ss componentes ctesns son ss cosenos dectoes. S tommos l expesón del ecto esct l nco de l demostcón y mltplcmos mbos membos de l gldd po obtenemos: De gl mne mltplcndo po y obtenemos: Expesones qe escts de fom mtcl dn lg :

3 Físc y Mecánc de ls Constccones ES Aqtect/ Cso 8-9 R donde R es l mtz de otcón cys componentes son los cosenos dectoes... Defncón de tenso y leyes de tnsfomcón L sgente pegnt es s con escles y ectoes es sfcente p descb tods ls mgntdes físcs y ls elcones qe exsten ente ells. L espest es negt, y qe exsten mgntdes físcs p ls qe el cácte escl o ectol es demsdo estngdo, y qe enen defnds po n myo númeo de componentes. Vemos nos ejemplos qe nttmente nos pemtn obse l necesdd de ope con mgntdes más complejs: - En n medo sótopo y elástco exste n elcón lnel ente esfezo y defomcón, F KX sendo K n escl. Qé scede s el medo es nsótopo? F yx seán de dfeente deccón y po ello hbá qe eemplz el escl K po n opedo mtemátco más genel cpz de modfc el módlo y sentdo de X. - El msmo poblem se plnte cndo se estd l otcón de n cepo especto n eje. S el cepo es n nllo delgdo qe g con elocdd ω especto n eje noml, se tene qe el momento ngl L ω, sendo n escl. S l fom del cepo es bt, no pede se escl, pes L y ω no tenen l msm deccón. o tnto de mne genel, podemos llm tenso n entdd mtemátc qe nos pemte descb ls mgntdes físcs y ls elcones qe exsten ente ells. Un tenso exste ndependentemente de clqe sstem de efeenc, no obstnte, p tbj más fáclmente con ellos peden se especfcdos po ss componentes especto n sstem de efeenc. El númeo de componentes o númeos qe se eqeen p epesent n tenso en n sstem de efeenc son n m, sendo n l dmensón del espco en el qe se tbj y m el oden del tenso. En este sentdo, dependendo de l complejdd de l mgntd físc necestemos más o menos componentes lo qe fjá el oden del tenso qe l epesente. Además de ss componentes, n popedd fndmentl qe se p descb n tenso es l ley de tnsfomcón de ss componentes, como y hemos sto p el cso de ectoes. Cndo se tt de tnsfomcones ente sstem de coodends geneles o btos, los tensoes defndos se conoce como tensoes geneles. Cndo ls tnsfomcones se elzn ente sstems de ejes ctesnos otdos ente sí, los tensoes qe nteenen son los tensoes ctesnos. Gn pte de l Mecánc se pede desoll en témnos de tensoes ctesnos, po lo qe s no se especfc lo conto tlz el témno tenso eqle consde n tenso ctesno. Como hemos delntdo, los tensoes se peden clsfc po s oden. En n espco tdmensonl, qe es donde mos tbj, n tenso de oden m tendá m componentes: - enso de oden ceo:, qed especfcdo en clqe sstem de efeenc po n componente. o tnto, n escl es n ejemplo de tenso de ngo más smple. El lo de l componente qe lo epesent no depende del sstem de coodends tlzdo.

4 Físc y Mecánc de ls Constccones ES Aqtect/ Cso enso de oden no:, qed especfcdo po tes componentes en el espco físco tdmensonl y se conocen comúnmente como ectoes. S módlo no depende de oentcón escogd p los ejes coodendos po sí ss componentes según estos ejes. L ley de tnsfomcón p los tensoes de oden no es l st nteomente p ectoes: sendo R l mtz de cosenos dectoes. R - enso de oden dos: 9, qed especfcdo po nee componentes, es dec, n mtz. L ley de tnsfomcón de n tenso de segndo oden es l msm qe l de n mtz fente n otcón: R R R R sendo R l mtz de los cosenos dectoes dedcd de los p l tnsfomcón de ectoes o tensoes de oden no. Conene señl qe en este ptdo hemos elzdo n ntodccón no excesmente técnc y gos de l de de tenso. Hy s mnes de cecse l defncón de tenso: - en témnos de objetos mtemátcos cys componentes se tnsfomn según cets egls, método tlzdo hbtlmente en físc y el qe nosotos hemos escogdo - l mne sl de ls mtemátcs qe defne cetos espcos ectoles y slz los tensoes como mtces n-dmensonles opedoes nosotos el pme enfoqe es sfcente pesto qe el objeto de este estdo es pode entende en l Mecánc del Medo Contno poqe es neceso ntodc los tensoes de tensones y defomcones, conoce ss popeddes y sbe como se ope mtemátcmente con ellos.... AENDCE. Demostcón de l expesón R R Los tensoes de oden dos pecen en expesones de este tpo: p q En el sstem de efeenc otdo l expesón se escbí de l fom: p q S en l pme expesón ntodcmos l mtz de otcón R mltplcd po s nes, debeá seg sendo áld: p q R R p S ho otmos el sstem de efeenc: R q R R R p 4

5 Físc y Mecánc de ls Constccones ES Aqtect/ Cso 8-9 enendo en cent qe R q q y R p p l expesón nteo es gl : q R R R p R R p Expesón qe compd con p q nos pemte dedc qe: R R, ley de tnsfomcón p n tenso de segndo oden pos de tensoes Algns popeddes de los tensoes: - enso smétco: n tenso smétco es qel p el cl j j. Dchos tensoes tenen ses componentes ndependentes. - enso ntsmétco: n tenso ntsmétco es qel p el cl j j, po lo qe. Dchos tensoes qedn detemndos po tes coodends ndependentes. - enso dgonl: es n tenso cys componentes no nls son ls de l dgonl. S tods ls componentes del tenso dgonl son gles, el tenso de denomn esféco. - enso ndd: es n tenso dgonl esféco cyos elementos son gles l ndd..5. Deccones pncples de n tenso de segndo oden Se denomnn ejes pncples de n tenso l sstem de ejes coodendos en el cl el tenso tene fom dgonl. Se denomnn ectoes pncples o toectoes los ectoes qe defnen ls deccones pncples. n toecto se cmple: es dec, cndo n ecto de plc sobe el ecto especto l qe se epesentn y λ le denomn tolo, lo popo o lo pncpl. está dgdo según n de ls deccones pncples, el ecto esltnte es popoconl l msmo, con ndependenc del sstem de efeenc peo con mbos expesdos especto del msmo sstem. A λ se Ls opecones con tensoes ctesnos de segndo oden son gles ls elzds con ls mtces socds. El cálclo de los loes popos y deccones pncples de n tenso se dentfc con los de l coespondente mtz. o tnto, s l eccón nteo l escbmos de l sgente mne: donde epesent l mtz dentdd. Al se de se ceo: n ecto no nlo, debe cmplse qe el detemnnte 5

6 Físc y Mecánc de ls Constccones ES Aqtect/ Cso 8-9 El poblem se edce l conocdo poblem de dgonlzcón de n mtz: Los loes popos o toloes λ, λ, λ son ls íces de l eccón esltnte del desollo del sgente detemnnte: L mtz dgonl qe epesent el tenso : λ λ λ Ls componentes, b, c de los tes ectoes,, qe fomn los ejes del neo sstem coodendo otogonl, llmdos ejes pncples, se clcln ssttyendo los loes de los tes toloes en el sgente sstem: b c Algnos tensoes de segndo oden qe nos n pece en Mecánc son, el tenso de tensones, el tenso de defomcones... y smplfcá enomemente el poblem pode edclos n mtz dgonl. El desollo del detemnnte consttye n polnomo de oden tes, denomndo polnomo ccteístco qe gldo ceo nos pemte clcl los tes loes popos del tenso λ, λ y λ. El desollo del polnomo ccteístco pede escbse de l sgente mne: det λ λ λ det Los tes coefcentes del polnomo son los denomndos nntes del tenso, esto es s loes es ndependente del sstem de efeenc escogdo p epesent ls componentes del tenso: z del tenso o nnte Lnel nnte Cdátco 6

7 Físc y Mecánc de ls Constccones ES Aqtect/ Cso 8-9 det nnte Cúbco.6. opeddes de los tensoes smétcos de segndo oden L myo pte de los tensoes de segndo oden qe descben popeddes físcs son smétcos. Los tensoes smétcos de segndo oden tenen n see de popeddes my mpotntes. Ests son: - Exste sempe n sstem de ejes en el cl el tenso tom l fom dgonl y los tes toloes son eles. - Como los nntes no dependen del sstem de coodends, en el cso de qe exstn tes toloes eles podemos expes los nntes tmbén en el sstem de ejes pncples de l sgente mne: λ λ λ λ λ λλ λλ λλλ.7. Cmpos tensoles En l Mecánc de Medos Contnos el nteés pmodl no esde úncmente en el estdo de ls elcones lgebcs ente tensoes, sno tmbén en el estdo de los cmpos qe defnen s dstbcón. Aho y de mne genel podemos hbl de cmpos tensoles en los qe cd pnto del espco se le soc n tenso. Un cmpo escl es n cmpo tensol de oden ceo, n cmpo ectol es n cmpo tensol de pme oden y n cmpo tensol de oden dos soc n mtz cd pnto del espco. 7

X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL. 1.4.1. Introducción

X X 1. MECÁNICA GENERAL 1.4. FUNDAMENTOS DE ANÁLISIS TENSORIAL. 1.4.1. Introducción Fndmentos y eoís Físcs ES Aqtect. MECÁNCA GENERAL.4. FUNDAMENOS DE ANÁLSS ENSORAL.4.. ntodccón L myoí de ls mgntdes físcs y elcones mtemátcs ente ls msms qedn pefectmente defnds tbjndo con escles y ectoes.

Más detalles

TEMA 1 Revisión de fundamentos de análisis tensorial

TEMA 1 Revisión de fundamentos de análisis tensorial EMA 1 Revsón de fundmentos de nálss tensol ESAM 1. 1. Intoduccón Escles, vectoes exsten ndependentemente de un sstem de efeenc Repesentcón: - sstem de efeenc - componentes que dependen del sstem de efeenc

Más detalles

Tema 0: Introducción al Cálculo Vectorial

Tema 0: Introducción al Cálculo Vectorial I.E. Jn Rmón Jméne Tem 0: Intodccón l Cálclo Vectol 1.- Mgntdes escles ectoles.- Vecto. Opecones con Vectoes 3.- Podcto escl 4.- Podcto ectol 5.- Decón Vectol 6.- Integcón Vectol 7.- Momento de n Vecto

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO VECTORES: MAGNITUDES ESCALARES Y VECTORIALES VECTORES TALLER VERTICAL DE MATEMÁTICA VECTORES Cets mgntudes, que quedn pefectmente defnds po un solo númeo el su medd o módulo) se denomnn MAGNITUDES ESCALARES pudendo epesentse po segmentos tomdos soe un ect.

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

No entraremos en detalle ni en definiciones demasiado formales sino que veremos únicamente aquellos conceptos que necesitaremos durante el curso.

No entraremos en detalle ni en definiciones demasiado formales sino que veremos únicamente aquellos conceptos que necesitaremos durante el curso. Técncs Computconles, Cuso 007-008. Pedo Sldo.- Álgeb lnel o entemos en detlle n en defncones demsdo fomles sno que eemos úncmente quellos conceptos que necestemos dunte el cuso.. Espcos ectoles Un espco

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo.

NÚMEROS COMPLEJOS. El vector así representado define un número complejo, y a dicha representación se le llama afijo de un número complejo. educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (, ). Los númeos eles y se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

Campos Eléctricos estáticos

Campos Eléctricos estáticos Cpos éctcos estátcos cucones de Mxwe p e cso estátco. S os cpos son estátcos s funcones ue os descben no dependen de be tepo t ueo se efc en todos os csos ue s cones de os sos seán nus es dec ue t ntoducendo

Más detalles

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E IES Pade Poeda (Gadx) Matemátcas II UNIDAD 8: VECTORES EN EL ESPACIO.. VECTORES FIJOS EN EL ESPACIO. Sea E el connto de pntos del espaco qe notaemos po A B C K Dados dos pntos A B de E se llama ecto fo

Más detalles

5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc..

5.- Ajuste de curvas. para M = 2 un ajuste parabólico, etc.. écncs Computconles Cuso 7-8. Pedo lvdo 5.- juste de cuvs El juste de cuvs es un poceso mednte el cul ddo un conjunto de pes de puntos { } sendo l vble ndependente e l dependente se detemn un uncón mtemátc

Más detalles

NÚMEROS COMPLEJOS. r φ. (0,0) a

NÚMEROS COMPLEJOS. r φ. (0,0) a Educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (,b). Los númeos eles y b se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente

Más detalles

CINEMÁTICA Y DINÁMICA DE ROTACIÓN

CINEMÁTICA Y DINÁMICA DE ROTACIÓN Uel Fcult e Cencs Cuso e Físc I p/lc. Físc y Mtemátc Cuso CINEMÁTICA Y DINÁMICA DE OTACIÓN. Momento e otcón- Un cuepo ígo se muee en otcón pu s c punto el cuepo se muee en tyecto ccul. Los centos e estos

Más detalles

TEMA 3.2 Mecánica del medio continuo: Análisis de deformaciones

TEMA 3.2 Mecánica del medio continuo: Análisis de deformaciones TEMA. Mecánca del medo contno: Análss de defomacones Físca Mecánca de las Constccones ... Intodccón ESTUDIO DE LOS SÓLIDOS DEFORMABLES: efectos de las feas aplcadas MÉTODO DE TRABAJO: las TENSIONES INTERIORES

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

Sistemas de Conductores.

Sistemas de Conductores. Electcdd y Mgnetsmo uso 009/00 stems de onductoes - ondensdoes Eym E- stems de onductoes. Los sstems de conductoes epesentn l páctc myoí de los polems ue se pueden encont en los sstems de telecomunccón.

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defncón de pdct escl de ectes. Se denmn pdct escl de ds ectes (, ) y (, ), l núme: cs α y l epesentms p En el pdct escl se mltplcn ds ectes, pe el esltd es n núme (escl). S ls ectes petenecen

Más detalles

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3.

VECTORES. En este apartado vamos a trabajar exclusivamente con los vectores en el espacio a los que vamos a llamar F 3. Edcaga.com VECTORES En este apatado amos a tabaa eclsamente con los ectoes en el espaco a los qe amos a llama F. VECTOR FIJO Lo pmeo tendemos qe sabe qe es n ecto. Así qe llamamos ecto fo AB a n ecto qe

Más detalles

I.E.S. Mediterráneo de Málaga Septiembre 2015 Juan Carlos Alonso Gianonatti OPCIÓN DE EXAMEN Nº 1

I.E.S. Mediterráneo de Málaga Septiembre 2015 Juan Carlos Alonso Gianonatti OPCIÓN DE EXAMEN Nº 1 I.E.S. editeáneo de álg Septiembe Jn Clos lonso Ginontti OCIÓN DE EXEN Nº Considee el sigiente sistem de ecciones dependiendo del pámeto [7 UNTOS] Clcle los loes de p qe el sistem teng solción. b [ UNTOS]

Más detalles

Sistemas de Conductores.

Sistemas de Conductores. Electcdd y gnetsmo uso 005/006 stems de onductoes. os sstems de conductoes epesentn l páctc myoí de los polems ue se pueden encont en los sstems de telecomunccón. e cctezn po: Un númeo de de conductoes

Más detalles

Interacción Magnética

Interacción Magnética nteccón Mgnétc Ls popeddes de los mnes y cómo ntectún ente sí. L ntlez de l fez qe n ptícl cgd en momento epement en n cmpo mgnétco. En qé se dfeencn ls línes de cmpo mgnétco de qells del cmpo eléctco.

Más detalles

Una magnitud física es todo aquello que se puede medir: masa, volumen, temperatura, velocidad...

Una magnitud física es todo aquello que se puede medir: masa, volumen, temperatura, velocidad... Fdmetos Teoís Físcs TS Aqtect.. CÁLCUL VCTIAL... INTDUCCIÓN L ecác es l pte de l Físc qe estd el eqlbo el mometo de los cepos. Se dde e Cemátc qe se ocp del mometo de los cepos depedetemete de ls fes qe

Más detalles

TEMA 0: FÍSICA DE 2º DE BACHILLERATO. CONTENIDOS PREVIOS DE MATEMÁTICAS.

TEMA 0: FÍSICA DE 2º DE BACHILLERATO. CONTENIDOS PREVIOS DE MATEMÁTICAS. TEMA 0: FÍSICA DE º DE BACHILLERATO. CONTENIDOS PREVIOS DE MATEMÁTICAS.. TRIGONOMETRÍA.. Raones tgonométcas de n ánglo agdo.. Raones tgonométcas de n ánglo calqea.. Relacones ente las aones tgonométcas.4.

Más detalles

r f W = F dr r i F = F(r ) [2] c) Como consecuencia, el trabajo realizado a lo largo de una trayectoria cerrada es nulo, W = F(r )dr )dr = q ref ref

r f W = F dr r i F = F(r ) [2] c) Como consecuencia, el trabajo realizado a lo largo de una trayectoria cerrada es nulo, W = F(r )dr )dr = q ref ref letos Físc p Cencs e Ingeneí 1 8.04-1 Intoduccón El concepto de potencl electostátco suele ntoducse en los textos de Físc, de dos foms dfeentes: I.- En un nvel elementl se estlece, en pme lug, el concepto

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA.

ALGEBRA Y GEOMETRIA ANALITICA. ALGEBRA Y GEOMETRIA ANALITICA. - ESPACIOS VECTORIALES. Aptes de l Cáted. Albeto Setell. Colboo Cst Mscett Ves Begoz Edcó Pe CECANA CECEJS CET Jí. UNNOBA Uesdd Ncol de Nooeste de l Pc. de Bs. As. P meses

Más detalles

CAPÍTULO VI CINÉTICA DEL RÍGIDO

CAPÍTULO VI CINÉTICA DEL RÍGIDO CÍULO CÉC DEL RÍDO CEMÁC Un cuepo ígdo puede consdese coo un sste de ss puntules cuys dstncs se ntenen constntes dunte el oento. Coenceos detenndo el núeo de coodends ndependentes necess p especfc su confgucón

Más detalles

POTENCIAL ELECTROSTÁTICO

POTENCIAL ELECTROSTÁTICO letos Físc p Cencs e Ingeneí 4.1 4.1 Potencl electostátco Al estud el cmpo electostátco, se demostó que se tt de un cmpo consevtvo, y, po tnto, l ccón de ls uezs electostátcs se puede susttu, cundo conveng,

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

Unidad I - Electroestática

Unidad I - Electroestática Undd I - Electoestátc Intoduccón ues de nteccón: ccones dstnc ues Electomgnétcs ues Eléctcs Un poco de hsto El témno eléctco, tene su ogen en ls expeencs elds en l ntgüedd donde se obsevo ue cundo se fotd

Más detalles

Para especificar la posición de un punto en el espacio, se utilizan sistemas de referencia. Esta posición se define en. sistema de referencia.

Para especificar la posición de un punto en el espacio, se utilizan sistemas de referencia. Esta posición se define en. sistema de referencia. P especfc l poscón de un puno en el espco, se uln ssems de efeenc. Es poscón se defne en fom elv lgún deemndo ssem de efeenc. 1 En un ssem de efeenc cesno, esen es ees denomndos ees cesnos X, Y, Z oogonles

Más detalles

SISTEMAS DE REFERENCIA

SISTEMAS DE REFERENCIA SISTEMS DE REERENCI P especfc l poscón de un puno en el espco, se uln ssems de efeenc. Es poscón se defne en fom elv lgún deemndo ssem de efeenc. 1 En un ssem de efeenc cesno, esen es ees denomndos ees

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO ) Defncón de ector fo y ector lre. Vector de poscón de n pnto. ) Módlo de n ector. Dstnc entre dos pntos. c) Opercones áscs con ectores. d) Prodcto esclr. Expresón nlítc. e) Propeddes

Más detalles

CAPITULO 8 INTEGRALES DE SUPERFICIE

CAPITULO 8 INTEGRALES DE SUPERFICIE CAPIULO 8 Nestas almas, cyas facltades peden compende la maallosa aqtecta del mndo, y med el cso de cada planeta agabndo, aún escalan tas el conocmento nfnto Chstophe Malowe. INEGRALE E UPERFICIE 8.. Paametacón

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

Hacia la universidad Geometría

Hacia la universidad Geometría Hc l unvesdd Geomeí OPCIÓN A Solucono ) Clcul es vecoes que sen pependcules u ) peo que no sen plelos ene sí. b) Clcul un veco que se pependcul l ve u l pmeo que hs ddo como eemplo del pdo neo. ) Los vecoes

Más detalles

TEMA 1 MÉTODOS DE MINIMIZACIÓN

TEMA 1 MÉTODOS DE MINIMIZACIÓN TEMA MÉTODOS DE MINIMIZACIÓN A) INTRODUCCIÓN MATEMÁTICA Genelmente el poblem se ceñá un mnmzcón de un funcón el [f()] de n vbles Se sume que l funcón f() es un funcón contnu y que demás posee l pme y segund

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defnón de pdt esl de vetes. Se denmn pdt esl de ds vetes ( ) y ( ) p l núme: s y l epesentms En el pdt esl se mltpln ds vetes pe el esltd es n núme (esl). S ls vetes peteneen l esp vetl

Más detalles

CAPÍTULO 2. MARCO TEÓRICO

CAPÍTULO 2. MARCO TEÓRICO 8 CÍULO. MRCO EÓRCO.. Robótc L obótc es l cenc o estudo de ls tecnologís báscs socds con los obots. El estudo nclue tnto l nvestgcón teóc como l plcd, dvdéndose en el dseño del obot, su mecánc, l plnecón

Más detalles

Sistemas de Reacciones Múltiples

Sistemas de Reacciones Múltiples stems de eccones Múltples eccones Químcs mples Un sol ecucón cnétc Múltples En ee En Plelo EJEMPLO. Poduccón de nhíddo ftálco pt de o-xleno: o toluldehdo O, O o xleno ftld nhíddo ftálco Esto se puede epesent

Más detalles

Métodos de la Química Cuántica - I

Métodos de la Química Cuántica - I Métodos de l Químc Cuántc - I us Seo Deptmento de Químc Unvesdd Autónom de Mdd http://www.um.es/umc/mp T g o n 0 0 6 Contendos. Funcones multelectóncs. poxmcón de Htee-Fock HF) 3. Métodos post-htee Htee-Fock

Más detalles

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO OBE LA APLICACIOE E E UTILIZAO EL ACOBIAO Ce ÁCHEZ ÍEZ Estdos qí ls codcoes báscs de deecbldd de ls coes deds desde e P ello seos l t cob costtd po ls deds pcles de ls coes copoetes de l plccó dd ls popeddes

Más detalles

ANÁLISIS CINEMÁTICO DE MECANISMOS PLANOS

ANÁLISIS CINEMÁTICO DE MECANISMOS PLANOS ÁLISIS IÁIO ISOS LOS nemátc de ecnsmos em 4 Itz tj López de Lozg Gmend eptmento de Ingeneí ecánc eknk Ingentz Sl ÁLISIS IÁIO ISOS LOS 1. undmento teóco. plccón con unones de otcón 3. plccón con pes psmátcos

Más detalles

2.1- Nociones de Álgebra lineal

2.1- Nociones de Álgebra lineal écncs Computconles, Cuso 7-8. Pedo Sldo.- ocones de Álgeb lnel o entemos en detlle n en defncones demsdo fomles sno que eemos úncmente quellos conceptos que necestemos dunte el cuso... Espcos ectoles Un

Más detalles

Preguntas 1 y 2: Vectores y operaciones con vectores. v w, queremos indicar que v r y w son dos vectores paralelos.

Preguntas 1 y 2: Vectores y operaciones con vectores. v w, queremos indicar que v r y w son dos vectores paralelos. Resmen Unidad 5: Vectoes en el espacio. Pegntas : Vectoes opeaciones con ectoes. En n ecto tenemos qe distingi: Módlo: es la longitd del ecto se epesenta po La flecha indica el sentido del ecto Diección:

Más detalles

Distribuciones de corriente axiales con simetría de revolución.

Distribuciones de corriente axiales con simetría de revolución. Electc Mgnetsmo 1/11 Mgnetostátc Defncón. El potencl vecto mgnétco. Meos nefnos. Popees. Le e ot vt. Le e Ampèe. mpo en puntos lejos. Momento mgnétco. ompotmento en el nfnto. oentes lgs. Enegí Mgnétc.

Más detalles

Distribuciones de corriente axiales con simetría de revolución.

Distribuciones de corriente axiales con simetría de revolución. Electc Mgnetsmo 1/11 Mgnetostátc Defncón. El potencl vecto mgnétco. Meos nefnos. Popees. Le e ot vt. Le e Ampèe. mpo en puntos lejos. Momento mgnétco. ompotmento en el nfnto. oentes lgs. Enegí Mgnétc.

Más detalles

CAPÍTULO 7. DINÁMICA DEL ROBOT PARALELO

CAPÍTULO 7. DINÁMICA DEL ROBOT PARALELO 2 CAPÍLO 7. DNÁMCA DEL ROBO PARALELO En est seccón se descbe el nálss dnáco del obot plelo: Se descben ls popeddes de s de los eleentos que lo confon; específcente, se obtene l s totl, el cento de s y

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC MECÁNIC NEWTNIN Cuso 009 áctco I Cnemátc de l tícul y Movmento eltvo NT: Los sguentes eeccos están odendos po tem y, dento de cd tem, en un oden cecente de dfcultd lgunos eeccos se encuentn

Más detalles

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E

el conjunto de puntos del espacio que notaremos por A, B, Dados dos puntos A, B de E IES Pade Poeda (Gadx Matemátcas II UNIDAD 8 VECTORES EN EL ESPACIO VECTORES FIJOS EN EL ESPACIO Sea E el connto de pntos del espaco qe notaemos po A B C K Dados dos pntos A B de E se llama ecto fo de ogen

Más detalles

MATEMÁTICAS Y CULTURA B O L E T Í N No. 262 COORDINACIÓN DE MATEMÁTICAS

MATEMÁTICAS Y CULTURA B O L E T Í N No. 262 COORDINACIÓN DE MATEMÁTICAS MTEMÁTIC Y CULTUR O L E T Í N..009 No. COORDINCIÓN DE MTEMÁTIC MTEMÁTIC MTEMÁTIC OPERDORE: DJUNTO Y NORML En n espco V con prodcto nterno cd operdor lnel tene n operdor llmdo s djnto tmén lnel qe representmos

Más detalles

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA UNVERSDD NCONL DEL CLLO FCULTD DE NGENERÍ ELÉCTRC Y ELECTRÓNC ESCUEL PROFESONL DE NGENERÍ ELÉCTRC CURSO: TEORÍ DE CMPOS ELECTROMGNÉTCOS PROFESOR: ng. JORGE MONTÑO PSFL PROBLEMS RESUELTOS DE CORRENTE ELÉCTRC

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 2

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 2 INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tem FUNDAMENTOS PROPIEDADES ALGEBRAICAS DE LOS NÚMEROS REALES R.- Qué conjuntos epesentn N, Z, Q, R? R.- Qué elementos se encuentn en los conjuntos A = { m Z m

Más detalles

Cartesiano Curvilíneas generalizadas: cilíndrico y esférico.

Cartesiano Curvilíneas generalizadas: cilíndrico y esférico. Electc Mgnetsmo - Gupo 2. uso 2/2 Tem : Intouccón oncepto e cmpo Repso e álge vectol Sstems e cooens tesno uvlínes genels: clínco esféco. Opeoes vectoles. Gente Dvegenc Rotconl Dev tempol omncón e opeoes:

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

ESPACIO EUCLÍDEO ESPACIO EUCLÍDEO

ESPACIO EUCLÍDEO ESPACIO EUCLÍDEO ESPACIO EUCLÍDEO.- PRODUCTO ESCALAR....- MODULO Y ÁNGULO....- PRODUCTO VECTORIAL...4 4.- PRODUCTO MIXTO DE TRES VECTORES...5 5.- ANGULO DE RECTA Y PLANO...6 6.- ÁNGULO DE DOS PLANOS....7 SI α : AX BY CZ

Más detalles

F ba CAMPOS ELÉCTRICOS LEY DE COULOMB. CAMPO ELÉCTRICO:

F ba CAMPOS ELÉCTRICOS LEY DE COULOMB. CAMPO ELÉCTRICO: íscguy AMPOS LÉTIOS LY D OULOMB. AMPO LÉTIO: n l ntulez exsten vs nteccones ue gen cómo deen de compotse los sstems físcs, y soe todo ue elcón exstá ente unos y otos. Un de ls cuto nteccones fundmentles

Más detalles

Electromagnetismo II

Electromagnetismo II Electomgnetismo II Semeste: 215-1 EXAMEN PARCIAL 2: Solución D. A. Reyes-Coondo Poblem 1 (2 pts.) Po: Jesús Cstejón Figueo ) Escibe ls cuto ecuciones de Mxwell en fom difeencil, escibiendo el nombe de

Más detalles

Flujo Potencial ( ) ( ) Flujos irrotacionales. Función n potencial: Campos conservativos. Campos de velocidades Conservativos y Solenoidales

Flujo Potencial ( ) ( ) Flujos irrotacionales. Función n potencial: Campos conservativos. Campos de velocidades Conservativos y Solenoidales Flujo Potencl Clse I) Regones no vscoss de un flujo Defncón: Regones donde ls fuezs vscoss son despecbles s se ls comp ls fuezs de pesón y/o nec ~0 s Re mpotnte Ecucón de Eule Los efectos de l vscosdd

Más detalles

ESPACIO VECTORIAL. 1. VECTORES EN EL ESPACIO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo).

ESPACIO VECTORIAL. 1. VECTORES EN EL ESPACIO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ESPACIO VECTORIAL. Vetores en el espo. Estrtr de espo etorl. Dependen e ndependen lnel. ses. Prodto eslr 5. Prodto etorl. Prodto mxto. VECTORES EN EL ESPACIO Un etor fo AB es n segmento orentdo qe del

Más detalles

TEORÍA (3 p). (a) Calcular el momento de inercia de una esfera homogénea de masa M y radio R

TEORÍA (3 p). (a) Calcular el momento de inercia de una esfera homogénea de masa M y radio R EM 1 ( p) Un b delgd de longtud está tculd en el punto fo mednte un psdo lededo del cul g en sentdo nthoo con elocdd ngul (ése fgu 1). En el punto está und ot b delgd de longtud cuyo extemo se deslz lo

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

Gráficamente se representan mediante un punto en una escala (de ahí el nombre).

Gráficamente se representan mediante un punto en una escala (de ahí el nombre). 1.- Intoducción. L Cinemátic es l pte de l ísic que descibe los movimientos de los cuepos sin bod ls cuss que los poducen, ls cules son objeto de ot pte de l ísic: l Dinámic. L Cinemátic esponde l necesidd

Más detalles

Matemáticas II. 2º Bachillerato. Capítulo 4: Geometría en el espacio Vectores LibrosMareaVerde.tk

Matemáticas II. 2º Bachillerato. Capítulo 4: Geometría en el espacio Vectores LibrosMareaVerde.tk Mtemátcs II. º Bchllerto. Cpítlo : Geometrí en el espco Vectores LrosMreVerde.t.pntesmreerde.org.es Atores: Letc González Pscl y Álro Vldés Menéndez Resor: Mlgros Lts Tods ls mágenes hn sdo creds por los

Más detalles

Coordenadas Generales.

Coordenadas Generales. oodenadas eneales. k cte. j cte. cte. Base catesana Base cíndca. j k cos, cos, φ cte. cte. cte. Base esféca Base geneal. cos cos En una base geneal, un elemento de aco está detemnado po llamando ds ds

Más detalles

ÁLGEBRA Y GEOMETRÍA MATRICES Y DETERMINANTES TIPOS DE MATRICES

ÁLGEBRA Y GEOMETRÍA MATRICES Y DETERMINANTES TIPOS DE MATRICES MTRIES Y ETERMINNTES TIPOS E MTRIES ÁLGER Y GEOMETRÍ Mti nl: O Todos los elementos son nlos. Mti tingl speio: Los elementos sitdos po debjo de l digonl pincipl son 0. Mti tingl infeio: Los elementos sitdos

Más detalles

Se le define como toda situación física producidapor una masa men el espacio que lo rodeay que es perceptible debido a la fuerza que ejerce sobre una

Se le define como toda situación física producidapor una masa men el espacio que lo rodeay que es perceptible debido a la fuerza que ejerce sobre una Cpo vtconl Se le defne coo tod stucón físc poducdpo un s en el espco que lo ode que es peceptble debdo l fuez que ejece sobe un s colocd en dco espco. Dd un s en el espco un s en dfeentes poscones lededo

Más detalles

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica.

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica. LEY DE COULOMB La Ley de Coulomb es la pmea ue se estuda en Electcdad ella consttuye una LEY UNIVERSAL poue es posble deducla del expemento y s ese expemento se ealza bajo las msmas condcones físcas cualuea

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

TEMA 3.1 Mecánica del sólido deformable: Análisis de tensiones

TEMA 3.1 Mecánica del sólido deformable: Análisis de tensiones TEMA. Mecánca del sóldo defomable: Análss de tensones Físca Mecánca de las Constuccones ... Intoduccón MECÁNICA DEL MEDIO CONTINUO OBJETIVO: - estudo del compotamento de los medos defomables - establece

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Sstems de Ecucones Lneles www.tgors.es SISTEMS DE ECUCIONES LINELES Estudr un Sstem de Ecucones Lneles S.E.L.) es responder ls pregunts: tene solucón?. s es sí,, cuánts tene cuáles son?. l vst de ests

Más detalles

Profesor Francisco R. Villatoro 15 de Noviembre de 1999 SOLUCIONES. Soluciones de los ejercicios de la tercera relación de problemas.

Profesor Francisco R. Villatoro 15 de Noviembre de 1999 SOLUCIONES. Soluciones de los ejercicios de la tercera relación de problemas. Tecea elacón de poblemas Técncas Numécas Pofeso Fancsco R. Vllatoo 5 de Novembe de 999 SOLUCIONES Solucones de los ejeccos de la tecea elacón de poblemas.. Se defne la taza de la matz cuadada A como la

Más detalles

Los vectores y sus operaciones

Los vectores y sus operaciones lasmatematcase Pedro Castro rtega Los ectores y ss operacones Un ector qeda determnado por dos pntos, el orgen, y el extremo Un ector qeda completamente defndo a traés de tres elementos: módlo, dreccón

Más detalles

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES 6 Unidd. Podcto ecl ectoil mito. Apliccione en el epcio. UNIDAD.PRODUCTO ESCALAR VECTORIAL Y MIXTO. APLICACIONES. Podcto ecl de do ectoe libe.. Definición.. Intepetción geométic.. Epeión nlític. Podcto

Más detalles

CURSO CERO DE FÍSICA CINEMÁTICA DEL PUNTO

CURSO CERO DE FÍSICA CINEMÁTICA DEL PUNTO CURSO CERO DE FÍSICA Ángel Muño Csellnos Depmeno de Físc CONTENIDO Momeno undmensonl Poscón, elocdd, celecón Momeno eclíneo unfome Momeno eclíneo unfomemene celedo Momeno en el espco Vecoes poscón, elocdd

Más detalles

Los vectores y sus operaciones

Los vectores y sus operaciones lasmatematcase Pedro Castro rtega Los ectores ss operacones Matemátcas I 1º achllerato Un ector qeda determnado por dos pntos, el orgen, el extremo Un ector qeda completamente defndo a traés de tres elementos:

Más detalles

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2)

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2) IES ÁFRIC º BCHILLERTO CCNN EJERCICIOS DE REPSO TOD L MTERI (Fich ) Ejecicio nº.- Un estdo comp biles de petóleo tes suministdoes dieentes que lo venden 7,8 y dóles el bil, espectivmente. L ctu totl sciende

Más detalles

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121 Los números gnros: Clse-15 En hy stucones que no tenen solucón; por ejemplo no exste nngún número cuyo cudrdo se gul -1. Pr dr solucón est stucón recurrremos l conjunto de los números mgnros, donde se

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

SOLUCIONARIO. UNIDAD 6: Números complejos. . Puede verse en el dibujo. soluciones. Por tanto, no hay puntos de corte. x y ACTIVIDADES-PÁG.

SOLUCIONARIO. UNIDAD 6: Números complejos. . Puede verse en el dibujo. soluciones. Por tanto, no hay puntos de corte. x y ACTIVIDADES-PÁG. MatemátcasI UNIDAD : Números complejos ACTIVIDADES-PÁG.. Las solcones de las ecacones dadas son: a) x x + = 0 x y x b) x + x = 0 x x y x 0. El vector resltante de grar 90º el vector v, es el vector,. Pede

Más detalles

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A IE Mediteáneo de Málg olución Julio Jun Clos lonso Ginontti Opción Poblem.. Obtene ondmente escibiendo todos los psos del onmiento utilido que: El lo del deteminnte de l mti ( puntos l mti - que es l mti

Más detalles

11. COMPENSACIÓN DEL RADIO

11. COMPENSACIÓN DEL RADIO Capítlo 3: Desaollo del poama. COMPENSACIÓN DEL RADIO. Intodccón Los pntos tomados dectamente po palpacón sobe la spece de la peza en cestón no son pntos eales de dcha spece, ya qe el pnto ecodo tene las

Más detalles

Reflexión y Refracción

Reflexión y Refracción eflexón y efaccón Unvesdad de Pueto co ecnto Unvestao de Mayagüez Depatamento de Físca Actvdad de Laboatoo 8 La Ley de eflexón y La Ley de Snell Objetvos: 1. Detemna, paa una supefce eflectoa, la elacón

Más detalles

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria.

a la componente imaginaria de z. Dos números complejos son iguales cuando tienen la misma parte real y la misma parte imaginaria. Númeos Complejos Un Defnón Llmemos númeo omplejo un númeo z que se ese e l fom, one y son númeos eles, e vef:. Al númeo se lo enomn pte el e z y l númeo, pte mgn e z. pte } pte } mgn Se esgn on Re ( z)

Más detalles

CAPÍTULO V SISTEMAS DE PARTÍCULAS

CAPÍTULO V SISTEMAS DE PARTÍCULAS CAPÍTULO V SISTEAS DE PARTÍCULAS 3 SISTEAS DE PARTÍCULAS La mayo pate de los objetos físcos no pueden po lo geneal tatase como patículas. En mecánca clásca, un objeto enddo se consdea como un sstema compuesto

Más detalles

Tema 10: Variables aleatorias

Tema 10: Variables aleatorias Análss de Dtos I Esquem del Tem Tem : Vrbles letors. VARIABLES ALEATORIAS DISCRETAS FUNCIÓN DE PROBABILIDAD, f(x ) FUNCIÓN DE DISTRIBUCIÓN, F(x ) CARACTERÍSTICAS DE LAS VARIABLES DISCRETAS UNA VARIABLE:

Más detalles

Unidad 3 Sistemas de Ecuaciones Lineales

Unidad 3 Sistemas de Ecuaciones Lineales Unidd 3 Sistems de Ecuciones Lineles Popedéutico 8 D. Ruth M. Aguil Ponce Fcultd de Ciencis Deptmento de Electónic Popedéutico 8 Fcultd de Ciencis Popedéutico 8 Fcultd de Ciencis Sistem de Ecuciones Lineles

Más detalles

ALGEBRA Y GEOMETRÍA I

ALGEBRA Y GEOMETRÍA I FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE MATEMÁTICA ALGEBRA Y GEOMETRÍA I Rect en el plno Inecciones lineles en dos vibles Ricdo Sgistá Ptici Có

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 50 "# Si α, qué elción tienen con los númeos α80º y 60º-α?! α80º [ cos( α 80º) i sen ( α 80º) ] (-cosα isenα ) -[(cosα isenα)] -( α ) -, luego son opuestos.! 60º-α [ cos( 60º- α) i sen (60º- α ) ] (cosα

Más detalles

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades.

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Integles y licciones. 4. Integles imois: definición y oieddes. Hst este momento hemos clculdo integles definids de funciones con ngo finito en intevlos

Más detalles

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en

Más detalles

Programación y Métodos Numéricos: Integración Numérica- Fórmulas de de tipo interpolatorio

Programación y Métodos Numéricos: Integración Numérica- Fórmulas de de tipo interpolatorio Progrmcón y Métodos Numércos: Integrcón Numérc- Fórmuls de de tpo nterpoltoro Prof. Crlos Conde LázroL Prof. Arturo Hdlgo LópezL Prof. Alfredo LópezL Mrzo, 27 Deprtmento de Mtemátc Aplcd y Métodos Informátcos

Más detalles

DEPARTAMENT DE FÍSICA APLICADA FI FFI. EXAMEN DE CUESTIONES (60% ) 2º parcial Nom: NOMBRE:

DEPARTAMENT DE FÍSICA APLICADA FI FFI. EXAMEN DE CUESTIONES (60% ) 2º parcial Nom: NOMBRE: Cognoms: APELLDOS: DEPATAMENT DE FÍSCA APLCADA F FF. EXAMEN DE CUESTONES (6% ) º cl Nom: NOME: 5 juny 3.- Desce eemente l estuctu en nds de los mteles semconducto ntínsecos y extínsecos. A t de est estuctu

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES.

11.1. CAMBIO DE COORDENADAS RECTANGULARES A POLARES. Integcón ol lccones CÁLCUL DIFEENCIL E INTEGL I.. CMBI DE CDENDS ECTNGULES LES. Cooens oles El lno Euclno tene socs os ects eencules un hozontleje e ls scss X ot vetcleje e ls oens Y con nteseccón en un

Más detalles

Los vectores y sus operaciones

Los vectores y sus operaciones lasmatematcas.e edro Castro rtega Los ectores ss operacones Un ector qeda determnado por dos pntos, el orgen, el etremo. Un ector qeda completamente defndo a traés de tres elementos: módlo, dreccón sentdo.

Más detalles

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y Un mgntud es culquer cos que puede ser medd medr no es más que comprr un mgntud con otr de l msm espece que se tom como referenc. Ls mgntudes se epresn con un número uns unddes. En lguns ocsones el número

Más detalles

Circulación sobre contornos cerrados

Circulación sobre contornos cerrados Elet Mgnetsmo - Gpo. so / Tem : Intoón onepto e mpo Repso e álge vetol stems e ooens tesno vlínes genels: líno esféo. Opeoes vetoles. Gente Dvegen Rotonl Dev tempol omnón e opeoes: Lpln Epesones on opeoes

Más detalles