Algebra Lineal Tarea No 24: Aplicaciones de diagonalización de matrices Solución a algunos problemas de la tarea (al 29 de junio de 2014)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Algebra Lineal Tarea No 24: Aplicaciones de diagonalización de matrices Solución a algunos problemas de la tarea (al 29 de junio de 2014)"

Transcripción

1 Algebra Lineal Tarea No 4: Aplicaciones de diagonaliación de matrices a algunos problemas de la tarea (al 9 de junio de 4. Determine la solución al sistema Sujeto sujeto a las condiciones iniciales: ( 3 (.. El sistema se escribe en forma matricial: [ 3 ]. Se determinan los valores propios de la matri de coeficientes. El polinomio característico es: p A (λ λ 3λ 4 Los valores propios son entonces: λ, λ 4 3. Se determinan los vectores propios correspondientes son: v ( ( 3/, v El método que describiremos aplica cuando todos los valores característicos son reales cuando la totalidad de los vectores propios determinados es n: v, v,..., v n, siendo la matri de coeficientes n n. En este caso la solución general se escribe: n C i v i e λ it i 4. Se forma la solución general al sistema: (t (t ( C e t + C ( 3/ e 4t 5. Se determina la solución particular: determinación de C C usando ( 3 ( : ( 3 ( C e + C ( 3/ Para determinar las constantes resolvemos el sistema cua matri aumentada es: [ ] [ ] 3/ 3 /5 /5 e 4 5 ( e t + 5 ( 3/ e 4t O bien: ( /5 /5 ( 3/5 e t + /5 e 4t Hagámos los cálculos con una calculadora TI Voage. En la figura : se define la matri del sistema A; se determinan los valores propios; se obtienen los vectores propios correspondientes; se introducen las condiciones iniciales. Cabe observar que debe respetarse el orden de aparición de cada valor propio de cada vector propio: Para el valor propio 4, el vector <.83,.554 > genera el espacio invariante.

2 Ma9, Tarea No 4: Aplicaciones de diagonaliación de matrices Figura : Matri del sistema sus valores vectores propios. Figura : Cálculos para las condiciones iniciales. Para el valor propio, el vector <.77,.77 > genera el espacio invariante. Así la solución general quedaría: C ( e 4 t + C ( e t La constantes C C de la solución particular pueden ser determinadas resolviendo el sistema: VC C i donde V es la matri formada por los vectores propios C i es el vector de condiciones iniciales. Para obtener c i V i hacemos el truco del producto V diag(c, c. Estos cálculos se ilustran en la figura. Por tanto, la solución particular es: (.6.4 (.4 e 4 t +.4 Suponga que se desea determinar (. (.. En este caso, las operaciones pueden hacerse en forma sencilla utiliando la matri V diag(c, c el vector con los datos, como se ilustra en la figura e t. Determine la solución al sistema Sujeto sujeto a las condiciones iniciales: ( 3, ( (.. El sistema se escribe en forma matricial:. Se determinan los valores propios de la matri de coeficientes. El polinomio característico es: p A (λ (λ 3 3λ 9λ 5 (λ + (λ 5

3 Ma9, Tarea No 4: Aplicaciones de diagonaliación de matrices 3 Los valores propios son entonces: λ, λ, λ Se determinan los vectores propios correspondientes a λ : a λ 3 5: 4. La solución general al sistema es entonces: (t (t (t C v v 3, v e t + C e t + C 3 5. Determinación de la solución particular usando las condiciones iniciales ( 3, ( ( : 3 C e + C e + C 3 Para determinar las constantes resolvemos el sistema cua matri aumentada es: Por tanto, la solución particular es: O simplemente, 3 e t e t + e t + e 5t e 5t e 5t e 5 La figura 3 ilustra los valores vectores propios propios de la matri de coeficientes. La figura 4 muestra los valores de las constantes C, C C 3 relativas a las condiciones iniciales. La figura 5 muestra los vectores que acompañan a las eponenciales en las conidiciones iniciales la figura 6 muestra los valores de (.5 de (.5. De los cálculos de la figura 5 se deduce que la solución particular es: e 5 t + e 5 t e t + e t e t Para determinar los valores de (t.5, (t.5 (.5 podemos recurrir de nuevo a cálculos cons matrices como se ilustra en la figura 6

4 Ma9, Tarea No 4: Aplicaciones de diagonaliación de matrices 4 Figura 3: Vectores propios para la matri de coeficientes. Figura 4: Cálculo referente a las condiciones iniciales. Figura 5: Cálculo referente a las condiciones iniciales. Figura 6: Posición en t.5.

5 Ma9, Tarea No 4: Aplicaciones de diagonaliación de matrices 5 3. Supongamos que la probabilidad de que un fumador siga fumando al año siguiente es %65, mientras que la probabilidad de que un no fumador continue sin fumar es de %85. Determine los porcentajes de fumadores no fumadores a la larga. Describiremos el estado de la situación en el año i por medio de un vector columna: ( i X i donde i representa el porcentaje de no fumadores en el año i i representa el porcentaje de fumadores. Se supondrá que para calcular el estado en el año i + habrá que multiplicar el vector de estado en el año i por la matri de transición A: ( ( ( i pasó un año i+ i A La matri de transición es i A i i+ [ El elemento (,.35 indica que un fumador tiene un 35 % de dejar de fumar un año después, mientras que el elemento.5 quiere decir que un no fumador tiene un 5 % de probabilidades de volverse fumador. Esta matri puede ser utiliada para determinar el porcentaje en el año siguiente dados los porcentajes de fomadores no fumadores en el presente año. Por ejemplo, si en el año actual la relación fumadores no fumadores es 5 % 5 % entonces en el año siguiente será: [ ] (.5.5 ] (.4.6 En forma análoga, si por porcentajes actuales para los fumadores no fumadores son o % o % respectivamente, al año siguiente serán: [ ] (.65.5 o Y dentro de k años serán: X k A k X o o [ ]k ( o Los valores propios para la matri A son λ λ / vectores propios correspondientes son: ( ( 3 v, v 7 Por tanto, Por tanto, Así [ ] [ ] [ 3 3 A 7 / 7 [ ] [ ] [ 3 A k k 3 7 (/ k 7 [ 3 lím k Ak 7 ] [ [.3.3 X lím k Ak X o.7.7 ] [ 3 7 o ] o i ] ] [ ] ( ( o.3o +.3 o.7 o +.7 o ] (.3.7 Por consiguiente, a largo plao, los fumadores serán el 3 % de la población en comparación con el 7 % de no fumadores. Recuerde que o + o 4. Suponga que sólo eisten tres lecherías en el mercado Leche Lola, Leche Los Puentes, Leche ParmaLac. Suponga que de un mes a otro

6 Ma9, Tarea No 4: Aplicaciones de diagonaliación de matrices 6 Lola retiene el 8 % de sus clientes, atrae % de los clientes de Los Puentes, atrae % de los clientes de ParmaLac, Los puentes retiene 7 % de sus clientes, atrae % de los clientes de Lola, atrae 3 % de los clientes de ParmaLac, ParmaLac retiene 6 % de sus clientes, atrae el % de los clientes de Lola, atrae el % de los clientes de Los puentes. Suponga el tamaño de la población no cambia se mantiene fijo en de consumidores. Determine si eiste los porcentajes a largo plao de la distribución de clientes de Lola, Los puentes, ParmaLac. La matri de transición queda: El polinomio característico de A es: A p A (t (t 3. t +.4 t.3 Usando los cálculos reportados en las figuras 7 8, los valores propios son: los vectores propios correspondientes son: Por tanto Por tanto, P λ., λ.6, λ 3.5 v ( ,.57934,.334 v (.777, +.777,. v 3 (+.4848,.86497, D..6.5 A lím k Ak P A lím k Ak P Por tanto la ditribución del mercado de leche a largo plao sin importar la distribución actual es: 45 % 35 % %

7 Ma9, Tarea No 4: Aplicaciones de diagonaliación de matrices 7 Figura 7: Lecherías, cálculo de vectores propios de A. Figura 8: Lecherías, matri límite de A.

Algebra Lineal: Diagonalización de una Matriz Cuadrada. Departamento de Matemáticas. Intro. Diagonalizable

Algebra Lineal: Diagonalización de una Matriz Cuadrada. Departamento de Matemáticas. Intro. Diagonalizable una Matriz Algebra una Matriz una Matriz ducción En esta lectura veremos uno los temas más importantes l Álgebra Lineal que tiene aplicaciones fundamentales en Ingeniería. Éste es el tema la diagonalización

Más detalles

Solución de Sistemas de Ecuaciones Diferenciales Lineales

Solución de Sistemas de Ecuaciones Diferenciales Lineales Solución de Sistemas de Ecuaciones Diferenciales Lineales Departamento de Matemáticas, CCIR/ITESM 9 de febrero de Índice..Introducción.................................................Ejemplo.................................................3.Ejemplo................................................

Más detalles

Diagonalización de una Matriz

Diagonalización de una Matriz Diagonalización de una Matriz Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 19.1.Introducción............................................... 1 19.2.Matriz diagonalizable..........................................

Más detalles

Algebra Lineal Tarea No 23: Diagonalización de una matriz Solución a algunos problemas de la tarea (al 29 de junio de 2014)

Algebra Lineal Tarea No 23: Diagonalización de una matriz Solución a algunos problemas de la tarea (al 29 de junio de 2014) Algebra Lineal Tarea No 23: Diagonalización de una matriz a algunos problemas de la tarea (al 29 de junio de 2014) 1. Diga si la matriz [ 1 0 0 1 Claramente sí pues la matriz es una matriz diagonal. Pero

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva,

Más detalles

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014)

Algebra Lineal Tarea No 22: Valores y vectores propios Solución a algunos problemas de la tarea (al 29 de junio de 2014) Algebra Lineal Tarea No : Valores y vectores propios a algunos problemas de la tarea (al 9 de junio de 04. Para la matriz A A Indique cuáles vectores son vectores propios: ( ( ( v, v, v 3 3 Recordemos

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

Algebra Lineal: Valores y Vectores Propios. Departamento de Matemáticas. Intro. Eigenvalues. Multiplicidades

Algebra Lineal: Valores y Vectores Propios. Departamento de Matemáticas. Intro. Eigenvalues. Multiplicidades Algebra ducción Los valores y vectores propios son muy importantes en el análisis sistemas lineales. En esta presentación veremos su finición y cómo se calculan. vectores propios Sea A una matriz cuadrada,

Más detalles

,..., a 1n. ) y B. , a 12. A B a 11 b 11 a 12 b 21 a 1n b n1

,..., a 1n. ) y B. , a 12. A B a 11 b 11 a 12 b 21 a 1n b n1 93 Operaciones matriciales 373 El producto interno Definición: Producto interno Suponga que (a 11, a 1,, a 1n ) y expresado como, es b 11 b 1 b n1 ; entonces el producto interno, a 11 b 11 a 1 b 1 a 1n

Más detalles

FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES

FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES Una de las aplicaciones más famosas del concepto de determinante es el método para resolver sistemas de m ecuaciones con n incógnitas, aparece en en la publicación

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Ma1010 Departamento de Matemáticas ITESM Álgebra - p. 1/31 En este apartado se introduce uno de los conceptos más importantes del curso: el de combinación lineal entre vectores. Se establece la

Más detalles

ACTIVIDADES DE ECUACIONES MATRICIALES. 2º BACHILLERATO Profesor: Félix Muñoz Jiménez

ACTIVIDADES DE ECUACIONES MATRICIALES. 2º BACHILLERATO Profesor: Félix Muñoz Jiménez TIVIDDES DE EUIONES MTRIILES. º HILLERTO Profesor: Féli Muño Jiméne Las relaciones del equilibrio de dos mercados e Y vienen dadas en función de sus precios de equilibrio P P por las siguientes ecuaciones:

Más detalles

PROBLEMAS RESUELTOS del espacio vectorial curso

PROBLEMAS RESUELTOS del espacio vectorial curso PROBLEMAS RESUELTOS del espacio vectorial curso - - Consideremos el conjunto R formado por todas las parejas () de números reales Se define en R la operación interna ()( )( ) una de las operaciones eternas

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 7 Matrices y Determinantes Cursada 2014

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 7 Matrices y Determinantes Cursada 2014 ÁLGER Y GEOMETRÍ NLÍTIC Trabajo Práctico Nº 7 Matrices Determinantes Cursada Desarrollo Temático de la Unidad Matrices: Definición. Igualdad de Matrices. Álgebra Matricial: adición de matrices: propiedades.

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

Espacios de una Matriz

Espacios de una Matriz Espacios de una Matriz Departamento de Matemáticas, CSI/ITESM 31 de enero de 2008 Índice 4.1. Espacios de una Matriz........................................ 1 4.2. Espacios Lineales............................................

Más detalles

A 4. En los siguientes ejercicios, resuelva el sistema de ecuaciones utilizando la regla de Cramer.

A 4. En los siguientes ejercicios, resuelva el sistema de ecuaciones utilizando la regla de Cramer. 9. Encuentre el determinante de A. Encuentre el determinante de A 8 9 En los siguientes ejercicios, resuelva el sistema de ecuaciones utilizando la regla de Cramer.. x x 8. x x 8 x x x x 9. x x 8. x 8x

Más detalles

Unidad 2. Matrices Conceptos básicos 2.2. Operaciones con matrices 2.3. Matriz Inversa 2.4. El método de Gauss-Jordan 2.5.

Unidad 2. Matrices Conceptos básicos 2.2. Operaciones con matrices 2.3. Matriz Inversa 2.4. El método de Gauss-Jordan 2.5. Unidad. Matrices.. Conceptos básicos.. Operaciones con matrices.. Matriz Inversa.. El método de Gauss-Jordan.. Aplicaciones Objetivos particulares de la unidad Al culminar el aprendizaje de la unidad,

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices Álgebra Lineal Tema 6. Transformaciones lineales y matrices Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S.

Más detalles

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector UNIDAD I: MATRICES Vectores en el plano Un vector,, es un segmento con una dirección que va del punto A (origen) al punto B (etremo).un vector es un segmento orientado que va del punto A (origen) al punto

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Mínimos Cuadrados. Departamento de Matemáticas, CCIR/ITESM. 30 de junio de 2011

Mínimos Cuadrados. Departamento de Matemáticas, CCIR/ITESM. 30 de junio de 2011 Mínimos Cuadrados Departamento de Matemáticas, CCIR/ITESM 30 de junio de 011 Índice 4.1.Introducción............................................... 1 4..Error Cuadrático............................................

Más detalles

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Ejercicios Objetivos Comprender cómo se describe una transformación lineal (que actúa en espacios vectoriales de dimensiones finitas)

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : II / 7 UNIVERSIDAD SIMON BOLIVAR MA6 abril-julio de 29 Ejercicios sugeridos para : los temas de las clases del 28 y de abril de 29. Temas : Métodos de Gauss y Gauss-Jordan. Sistemas homogéneos y no homogéneos.

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos. Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

Matrices y operaciones con Matrices.

Matrices y operaciones con Matrices. Matrices y operaciones con Matrices En clases anteriores hemos usado arreglos rectangulares de números, denominados matrices aumentadas, para resolver sistemas de ecuaciones lineales Denición Una matriz

Más detalles

CAPÍTULO 2 TRANSFORMACIONES LINEALES

CAPÍTULO 2 TRANSFORMACIONES LINEALES CAPÍULO RANSFORMACIONES LINEALES ransformación Sean V W espacios vectoriales. La función : V W recibe el nombre de transformación, los espacios V W se llaman dominio codominio de la transformación, respectivamente.

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio 1. Valor: 2 puntos. Calcular las edades actuales de una madre y sus dos hijos sabiendo que hace 14 años la edad de la madre era 5 veces la suma de las edades de los hijos en aquel momento,

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva

Más detalles

Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Dependencia. Ejemplos a) Resultados. Ejemplos b) MA1019

Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Dependencia. Ejemplos a) Resultados. Ejemplos b) MA1019 Algebra MA119 ducción Otro los conceptos clave en Algebra es el concepto penncia lineal. Este concepto aplica a conjuntos vectores y significa que el conjunto tenga redundancia, es cir, que exista en el

Más detalles

3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta)

3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta) Operaciones con matrices Suma, resta, producto y traspuesta Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta operación de sumar se puede definir

Más detalles

LAS MATRICES. OPERACIONES CON MATRICES.

LAS MATRICES. OPERACIONES CON MATRICES. DP. - AS - Matemáticas ISSN: - X www.aulamatematica.com LAS MATRICES. OPERACIONES CON MATRICES. Escribe una matri A de dimensión señala cuál es el elemento a B Escribe una matri B de dimensión señala cuál

Más detalles

Capítulo 2. Determinantes Introducción. Definiciones

Capítulo 2. Determinantes Introducción. Definiciones Capítulo 2 Determinantes 2.1. Introducción. Definiciones Si nos centramos en la resolución de un sistema A x = b con A una matriz n n, podemos calcular A 1 y la resolución es inmendiata. El problema es

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan). Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales

Más detalles

Ba s e, d i M e n s i ó n y Mat r i z

Ba s e, d i M e n s i ó n y Mat r i z Unidad 4 Ba s e, d i M e n s i ó n y Mat r i z de transición Objetivos: Al inalizar la unidad, el alumno: Conocerá la deinición de base de un espacio vectorial Identiicará bases canónicas para algunos

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 s de Vectores y Matrices es Departamento de Matemáticas ITESM s de Vectores y Matrices es Álgebra Lineal - p. 1/44 En esta lectura veremos conjuntos y matrices ortogonales. Primero

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Diagonalización de matrices

Diagonalización de matrices Capítulo 6 Diagonalización de matrices 6.. Introducción 6... Un ejemplo preliminar Antes de plantearlo de manera general, estudiaremos un ejemplo que servirá para situar el problema. Supongamos que, en

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

Prácticas de Matemáticas II: Álgebra lineal

Prácticas de Matemáticas II: Álgebra lineal Prácticas de Matemáticas II: Álgebra lineal Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Prácticas de Matemáticas II: Álgebra lineal

Más detalles

Ejercicios resueltos del capítulo 4

Ejercicios resueltos del capítulo 4 Ejercicios resueltos del capítulo 4 Ejercicios impares resueltos..a Calcular los autovalores y subespacios invariantes asociados a la matriz: A = Calculamos el polinomio característico y resolvemos: λ

Más detalles

Cálculo Numérico. Curso Ejercicios: Preliminares I

Cálculo Numérico. Curso Ejercicios: Preliminares I Cálculo Numérico. Curso 07-08. Ejercicios: Preliminares I 1. (a) Compruebe que la inversa de una matriz, L, triangular inferior de orden n puede calcularse como sigue: Para j = 1,,..., n e i = j, j + 1,...,

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.5 Cadenas de Markov

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.5 Cadenas de Markov Cálculo científico y técnico con HP49g/49g+/48gII/5g Módulo 3: Aplicaciones Tema 3.5 Cadenas de Markov Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

En varias ramas de las matemáticas y de las ciencias sociales, es común

En varias ramas de las matemáticas y de las ciencias sociales, es común Introducción En varias ramas de las matemáticas de las ciencias sociales, es común representar fenómenos mediante modelos que emplean funciones de variable vectorial. Es decir, funciones entre espacios

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

La Geometría de la Programación Lineal

La Geometría de la Programación Lineal La Geometría de la Programación Lineal Basado en Bertsimas Tsitsiklis Introduction to Linear Optimization Chap. IN7 Modelamiento y Optimización Nelson Devia C. Introducción Se dice que un conjunto S en

Más detalles

Algebra Lineal Tarea No 2: Eliminación gaussiana y otros algoritmos para SEL Solución a algunos problemas de la tarea (al 29 de junio de 2014)

Algebra Lineal Tarea No 2: Eliminación gaussiana y otros algoritmos para SEL Solución a algunos problemas de la tarea (al 29 de junio de 2014) Algebra Lineal Tarea No 2: Eliminación gaussiana y otros algoritmos para SEL a algunos problemas de la tarea (al 29 de junio de 214) 1. Respecto a las matrices: 1 3 1 a) 1 3 1 2 2 b) 1 2 1 4 3 1 c) 1 d)

Más detalles

Tema 8: Aplicaciones. Ecuaciones en. diferencias: modelos en tiempo discreto. 1 Modelo de crecimiento exponencial. 2 Sucesión de Fibonacci

Tema 8: Aplicaciones. Ecuaciones en. diferencias: modelos en tiempo discreto. 1 Modelo de crecimiento exponencial. 2 Sucesión de Fibonacci 8 de diciembre de 20 Contexto: Bloque de Álgebra Lineal Tema 6. Sistemas de ecuaciones lineales y matrices. Tema 7. Valores y vectores propios. Tema 8. Aplicaciones del cálculo de los valores y vectores

Más detalles

Algebra Lineal: Transformaciones Lineales. Departamento de Matemáticas. Intro. T. Matricial. T. Lineal. Rango

Algebra Lineal: Transformaciones Lineales. Departamento de Matemáticas. Intro. T. Matricial. T. Lineal. Rango Algebra ducción Des el punto vista l Algebra Lineal, las funciones más importantes son las que preservan las combinaciones lineales. Estas funciones se llamarán. Es esta presentación se tratan con los

Más detalles

2 = 1 0,5 + = 0,5 c) 3 + = = 2

2 = 1 0,5 + = 0,5 c) 3 + = = 2 Trabajo Práctico N : SISTEMAS DE ECUACIONES LINEALES Ejercicio : Resuelva los siguientes sistemas de ecuaciones lineales empleando cuando sea posible: i) Método matricial. ii) Regla de Cramer. Interprete

Más detalles

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales PROLEMS RESUELTOS ÁLGER LINEL Tema. Transformaciones Lineales SUTEM: MTRICES SOCIDS UN TRNSFORMCIÓN Problema : Sean P P los espacios vectoriales de lo polinomios de grado menor o igual a dos menor o igual

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

MATEMÁTICAS I 13 de junio de 2007

MATEMÁTICAS I 13 de junio de 2007 MATEMÁTICAS I 13 de junio de 2007 2º EXAMEN PARCIAL Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Si

Más detalles

Aplicaciones de la teoría de grupos, anillos y cuerpos: Teoría de la Codificación

Aplicaciones de la teoría de grupos, anillos y cuerpos: Teoría de la Codificación Aplicaciones de la teoría de grupos, anillos y cuerpos: Teoría de la Codificación Como un ejemplo de aplicación de la teoría de las estructuras algebraicas vamos a ver en esta sección un aspecto de la

Más detalles

Transformaciones Lineales. Una función es una regla que asigna a cada elemento de un conjunto exactamente un elemento de otro conjunto

Transformaciones Lineales. Una función es una regla que asigna a cada elemento de un conjunto exactamente un elemento de otro conjunto UNIVESIDAD AUÓNOMA DE NUEVO LEÓN FACULAD DE INGENIEÍA MECÁNICA Y ELÉCICA ransformaciones Lineales Una función es una regla que asigna a cada elemento de un conjunto eactamente un elemento de otro conjunto

Más detalles

Matemática 2. Clase práctica de coordenadas y cambio de base

Matemática 2. Clase práctica de coordenadas y cambio de base atemática Clase práctica de coordenadas y cambio de base Nota iren este apunte por su cuenta y consulten las dudas que les surjan Ya pueden terminar la práctica Coordenadas en espacios vectoriales de dimensión

Más detalles

Composición de Aplicaciones. (c) 2012 Leandro Marin

Composición de Aplicaciones. (c) 2012 Leandro Marin 067.00 3 Composición de Aplicaciones 3 48700 670009 (c) 0 Leandro Marin . Aplicaciones Lineales y Matrices Una aplicación lineal f entre dos espacios vectoriales V y W es una forma de asignar a cada vector

Más detalles

Operatoria algebraica. Actividad Es muy potente!

Operatoria algebraica. Actividad Es muy potente! Nivel: 1º Medio Sector: Matemática Unidad temática: Operatoria algebraica. Actividad Los microscopios compuestos usan dos o más lentes para aumentar el tamaño de una imagen. Cómo lo harán? Qué ocurre si

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS . ESPACIO EUCLÍDEO. ISOMETRÍAS. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t R 4 : x y =, z + t = } Hallar: W 2 = L{(,, 2, 2, (,,, } a Las ecuaciones de

Más detalles

Tema 3: Forma canónica de Jordan de una matriz.

Tema 3: Forma canónica de Jordan de una matriz. Forma canónica de Jordan de una matriz 1 Tema 3: Forma canónica de Jordan de una matriz. 1. Planteamiento del problema. Matrices semejantes. Matrices triangularizables. El problema que nos planteamos en

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CSI/ITESM 20 de agosto de 2008 Índice 121 Introducción 1 122 Transpuesta 1 123 Propiedades de la transpuesta 2 124 Matrices

Más detalles

Capítulo 1: Diagonalización de matrices

Capítulo 1: Diagonalización de matrices Capítulo : Diagonalización de matrices Matrices y determinantes Definición Una matriz es un arreglo rectangular de números reales a a a m a A a a m a n a n a nm La matriz es de orden n m si consta de n

Más detalles

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 23 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 2 Dic 2013-8 Dic 2013 Introducción La existencia de bases ortonormales es los espacios es muy útil

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : UNIVERSIDAD SIMON BOLIVAR MA6 abril-julio de 29 I / Ejercicios sugeridos para : los temas de las clases del 2 y 23 de abril de 29. Tema : Matrices. Operaciones con matrices. Ejemplos. Operaciones elementales

Más detalles

Forma canónica de Jordan.

Forma canónica de Jordan. Práctica 3 Forma canónica de Jordan. Contenido: Matrices semejantes. Polinomio característico. Valores propios. Vectores propios. Forma canónica de Jordan. Forma real de la forma canónica de Jordan. Aplicaciones:

Más detalles

Algebra Lineal: Espacios Generados. Departamento de Matemáticas. Intro. E. Generado. Ejemplos. Contención. Ejemplos. Nota.

Algebra Lineal: Espacios Generados. Departamento de Matemáticas. Intro. E. Generado. Ejemplos. Contención. Ejemplos. Nota. Algebra ducción Después combinación lineal, el segundo concepto clave en Algebra Lineal es el concepto espacio generado. Existen dos formas llegar a este concepto. Si en lugar responr si el sistema [A

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Álgebra lineal II Examen Parcial 1

Álgebra lineal II Examen Parcial 1 UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA Álgebra lineal II Examen Parcial II Semestre 204 Nick Gill Instrucciones: Puede usar cualquier proposición de las lecciones, inclusive los ejercicios. Si

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Problemas teóricos El los siguientes problemas se denota por L(V ) conjunto de los operadores lineales en un espacio vectorial V (en otras palabras, de las transformaciones lineales

Más detalles

3 LÍMITE - Teoría y Ejemplos

3 LÍMITE - Teoría y Ejemplos 3 LÍMITE - Teoría y Ejemplos Introducción A partir del concepto de ite, podemos analizar el comportamiento de una función tanto en intervalos muy pequeños alrededor de un número real como cuando los valores

Más detalles

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno.

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Teoremas con demostraciones que se pueden incluir en el examen: 1. Fórmula para f(j m (λ)), donde J m (λ) es el bloque

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Tema 1 Sistemas de ecuaciones lineales 11 Definiciones Sea K un cuerpo Una ECUACIÓN LINEAL CON COEFICIENTES EN K es una expresión del tipo a 1 x 1 + + a n x n = b, en la que n es un número natural y a

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

V = v 1 +2v 2 +3v 3. v 2. v 1

V = v 1 +2v 2 +3v 3. v 2. v 1 Coordenadas Hay muchas maneras de darle coordenadas a los puntos del espacio, las ecuaciones de las curvas o superficies dependen de las coordenadas que utilicemos y eligiendo las coordenadas adecuadas

Más detalles

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas. PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +

Más detalles

Cuestiones de Álgebra Lineal

Cuestiones de Álgebra Lineal Cuestiones de Álgebra Lineal Algunas de las cuestiones que aparecen en esta relación están pensadas para ser introducidas en un plataforma interactiva de aprendizaje de modo que los parámetros a, b que

Más detalles

Semana 13: Determinación de cónicas. Haces de cónicas proyectivas.

Semana 13: Determinación de cónicas. Haces de cónicas proyectivas. Semana 13: Determinación de cónicas. Haces de cónicas proyectivas. Sonia L. Rueda ETS Arquitectura. UPM Geometría afín y proyectiva, 2015 Geometría afín y proyectiva 1. Álgebra lineal 2. Geometría afín

Más detalles

Ecuaciones de primer grado y de segundo grado

Ecuaciones de primer grado y de segundo grado Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b 0, donde a y b son números reales con a 0. Para resolverla

Más detalles

Tareas de matrices especiales

Tareas de matrices especiales Tareas de matrices especiales Objetivos. Estudiar una clase especial de matrices. Para matrices de esta clase realizar un algoritmo rápido de multiplicación por vectores. Aplicar este algoritmo para resolver

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

PRÁCTICA No. 4 OBTENCIÓN DEL POLINOMIO CARACTERÍSTICO, EIGENVALORES Y EIGENVECTORES DE UNA MATRIZ

PRÁCTICA No. 4 OBTENCIÓN DEL POLINOMIO CARACTERÍSTICO, EIGENVALORES Y EIGENVECTORES DE UNA MATRIZ PRÁCTICA No. 4 OBTENCIÓN DEL POLINOMIO CARACTERÍSTICO, EIGENVALORES Y OBJETIVO EDUCACIONAL EIGENVECTORES DE UNA MATRIZ El alumno aprenderá a obtener el polinomio característica, los eigenvalores (valores

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles