HORMIGÓN ARMADO II TP4 - PUNZONAMIENTO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "HORMIGÓN ARMADO II TP4 - PUNZONAMIENTO"

Transcripción

1 HOMIGÓN AMADO II TP4 - PUNZONAMIENTO.- PUNZONAMIENTO CENTADO EN LOSAS SIN AMADUA DE COTE Suprfici Crítica n Losas sin Armaura Cort Columnas Intriors La suprfici crítica s fin consirano qu su prímtro sa mínimo sté situao a una istancia / ors o squinas columnas o cargas concntraas o camios altura n la losa tals como ors áacos o capitls. En sccions rctangulars l prímtro qu cumpl amas conicions s l Fig. 0-, pro s pu simplificar tomano l ). a) Fig 0 ) a) Fig 0 ) Como s pu aprciar n la Fig. 0, l prímtro crítico no simpr s fin a partir una Columnas Próximas a Bors Lirs En stos casos s pun prsntar prímtros críticos airtos, si s qu cumpln con la conición mínimos aa n la finición gnral. Para trminaa istancia al or, l prímtro crrao s convirt n mínimo l or no coniciona la rotura. a) Fig 0 )

2 Áacos Capitls La prsncia áacos capitls conuc simpr a la finnición más un prímtro crítico pus analizars la cominación más sfavoral ntr solicitación suprfici. A priori no s posil ciir cuál llas s la más sfavoral, a qu si in la intrior tin maor solicitación mnor ára, su altura útil s maor. a) ) c) sistncia Aportaa por l Hormigón n Losas NO Prtnsaas Vc Vc β c s Vc α 0 f ' c Vc 0 f ' 0 c f ' c 0 on β c : lación ntr l lao maor l lao mnor l ara cargaa fctiva. En columnas rctangulars s igual al cocint ntr l lao maor l lao mnor la columna. 40 para columnas intriors α s : 0 para columnas or 0 para columnas squina o : Prímtro la Scción Crítica, n mm : Altura Útil n la Scción Crítica, n mm

3 f ' c : f c n MPa, l rsultao la raíz n MPa Los términos columnas intriors, or o squina, no s rfirn a la uicación las columnas ntro un ntrpiso sino a qu s sté tratano con prímtros críticos 4, o laos rspctivamnt. Solicitación vs. sistncia Como simpr, sr: V u φ Vn En l caso losas sin armauras punzonaminto la xprsión antrior s transforma n: V u φ V n φ V c 0.75 V c Para otnr V u s l rá scontar la carga qu s ncuntra contnia ntro l prímtro punzonaminto a qu no sr transmitia a través la suprfici rotura, n un mcanismo análogo a lo visto n cort..- PUNZONAMIENTO EXCÉNTICO EN LOSAS SIN AMADUA DE COTE En l Punto.- s ha supusto qu las columna tinn una solicitación cntraa al mnos n la scción n qu s mn n la losa a la qu punzonan). En una caso más gnral, tnrán momntos flctors qu n sr transfrios las losas a las columnas. Trataminto simplificao Para casos vrificación rápia, s posil sprciar los fctos la transfrncia momntos ralizano las vrificacions corrsponints a punzonaminto como si s tratara punzonaminto cntrao pro tomano: Columnas Bor: V u 0.75 φ V c 0.5 V c Columnas Esquina: V u 0.50 φ V c 0.8 V c Las simplificacions antriors no son aplicación n losas prtnsaas ni n losas hormigón armao n las qu la cuantía gométrica flxión supr 0.75 ρ ) Las simplificacions antriors son aplicación solamnt cuano xistn momntos con rspcto a UN j parallo al or los apoos xtriors. Esta s una situación poco frcunt n las columnas or prácticamnt inxistnt n las columnas squina a mnos qu s intrprt qu caa momnto qu actúa n una columna squina s parallo a un j su rsultant no lo s, claro stá). Distriución l Momnto a Transfrir a la Columna Solamnt una part l momnto n l xtrmo la columna Mu) s transmitio por sfurzos tangncials Mv), por lo tanto, influ n la rotura por punzonaminto isminuno la rsistncia. La otra part Mf Mu-Mv) s transfir por flxión no isminu la rsistncia al punzonaminto. Val la xprsión:

4 Mv - γ f ) M Don: M u Momnto salancao M f Momnto transmitio a la columna por flxión Mu γ f M v Momnto transmitio a la columna por sfurzos tangncials - γ f ) M u Lao l prímtro crítico mio n la ircción la luz qu io orign a M u Lao l prímtro crítico normal a γ f Mu Important: El momnto salancao M u calculars con rspcto al aricntro la scción crítica. En l caso una columna intrior l momnto qu arroj cualquir programa cálculo porá utilizars sin corrccions ao qu l aricntro la columna l la scción crítica coincin. No s ést s l caso las columnas or squina. 4

5 Solicitación vs. sistncia La conición rsistnt s scri, n stos casos: Vu máx vu máx o φvc on V c : sistncia al punzonaminto cntrao aportaa por l hormigón 0 : Prímtro crítico : Altura útil a lo largo l prímtro crítico Vu M M v x máx para l caso gnral tnr momntos n amos js. Ac J J vx vu cx c Los parámtros gométricos utilizaos n las xprsions s otinn, como s vió n toría, un cálculo astant laorioso.para los casos más comuns columnas rctangulars o circulars, vinn aos por: COLUMNAS ECTANGULAES: Columna Cntraa: Ac ) 0 x Jx J 5

6 Columna Bor: ) Ac 0 x )] [ máx, ) Jx J Columna Esquina: ) Ac )] [ máx, x )] [ máx, ) Jx ) J COLUMNAS CICULAES: s l raio la columna. Columna Cntraa: Ac 0 x J Jx Columna Bor: Ac )] [ 0 x ] [ máx,. Jx.57 J Columna Esquina: Ac )] [ 4.5 x máx,

7 Jx J.47 Las xprsions antriors partn la as qu tanto las columnas or como las squina son tangnts a los ors lirs).- ESISTENCIA AL PUNZONAMIENTO EN LOSAS CON AMADUA DE COTE Exprsión Gnral Salvo para l caso particular conctors cort, para la trminación la rsistncia losas con armaura cort l CISOC 0 aopta la xprsión: V u φ V n φ V c V s ) 0.75 V c V s ) Armaura Cort constituia por Barras o Alamrs Limitacions Gométricas D sr: 5 cm s sino s l iámtro las arras o alamrs la armaura cort) Disposición gnral la armaura: La Figura mustra una columna intrior sor la qu s ha ispusto una armaura cort consistnt n os vigas prpniculars n las qu las armauras longituinals sólo tinn l propósito prmitir l corrcto posicionaminto los strios qu constitun la armaura punzonao. Estas vigas suln rciir l nomr vigas intgrals. S nomina prímtro crítico intrior al qu hmos visto n la vrificación lmntos sin armauras alma prímtro crcano a la columna) prímtro crítico xtrior al prímtro qu, tnino sarrollo mínimo, no s aproxima a las armauras más xtrnas cort a mnos /. Como s pu vr, 7

8 concptualmnt s gnran varias cuprficis críticas como n l caso prsncia áacos. Prímtro Intrior: S vrificar: sino: φvn φ Vc Vs) vu máx φ vn 0 0 Vc f ' c0 pr simpr: Vn f ' c0 n on 0 corrsponn, por supusto, al prímtro crítico intrior. El único término novoso s Vs, val: Vs Av f s on, sgún l CISOC 0, A v s l ára la scción transvrsal toas las ramas armaura xistnts sor una lína priférica, qu s gométricamnt similar al prímtro la scción la columna. En la práctica s usual tomar al prímtro crítico como sa lína. Consiracions constructivas rspcto a los strios: a) La istancia ntr la cara la columna la primra lína ramas strios sr mnor o igual qu /. ) La sparación ntr las ramas strios aacnts n al primra lína armaura cort sr mnor o igual qu / mia n una ircción prpnicular a la cara la columna c) Los strios rían vinculars a las armauras flxión n la ircción consiraa. ) Dn vrificars toas las conicions raios olao anclaj aas n l capítulo prtinnt Prímtro Extrior: S vrifica con un prociminto similar al visto para losas sin armaura cort pro con algunas salvas: Momntos No Balancaos: S pun sprciar los fctos los momntos porqu la istancia a la columna s suficint como para consirarlos poco significativos. sistncia V c : Inpnintmnt la rlación laos la columna, l spsor la losa, tc., s utiliza l valor visto n l punto antrior, s cir: Vc f ' c0 Esto significa qu s sprcian los fctos favorals l alao la suprfici rotura, lo cual s justifica n la forma l prímtro xtrior. 8

9 ENUNCIADOS CONJUNTOS TP5 TP Ej 0) Calcular l spsor ncsario por punzonaminto para un ntrpiso sin vigas cuas lucs cargas s inican n la tala atos, consirano qu las cargas n las columnas stán cntraas, Lv s la longitu l volaizo n los ors, mio s l filo las columnas primtrals squina. Estuiar os casos: a) Sin aacos ni capitls. ) Con áacos m lao, spsor a trminar. Ej 0) Para los rsultaos otnios n l inciso ) l jrcicio antrior, si los spsors s incrmntan n 4cm, otnr l nuvo valor sorcarga qu s pu aplicar a la structura. Ej. 0) Dimnsionar una as funación para la columna l Ej. 0, sulo cuos atos s inican. En toos los casos la tapaa sulo hasta l plano funación s.50m. Consirar los casos: a) Zapata cntraa ) Zapata contigua a un j mianro parallo al j X. c) Zapata squina. Para st caso l antrior, consirar qu la altura ntr l plano funación l plano mio l ntrpiso suprior s 5.50m. En toos los casos consirar f' c 5 MPa f 40 MPa. # Lx L Cx C Lv PD PL σ t Al. m) m) m) m) m) kn) kn) MPa)

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales.

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales. ANEJO 7º Cálculo simpliicao sccions n Estao Límit Agotaminto rnt a solicitacions normals.. Alcanc En st Anjo s prsntan órmulas simpliicaas para l cálculo (imnsionaminto o comprobación sccions rctangulars

Más detalles

Como ejemplo se realizará la verificación de las columnas C9 y C11.

Como ejemplo se realizará la verificación de las columnas C9 y C11. 1/14 TRABAJO PRÁCTICO Nº 9 - DIMENSIONAMIENTO DE COLUMNAS Efctuar l análisis d cargas d una columna cntrada y otra d bord y dimnsionar ambas columnas n l nivl d PB. Como jmplo s ralizará la vrificación

Más detalles

Especificaciones de Producto Tubos para Carpintería Metálica Herrería

Especificaciones de Producto Tubos para Carpintería Metálica Herrería Espcificacions Proucto Tubos para Carpintría Mtálica Hrrría Usos Hrrría: nrjaos, vntanas, purtas, scalras, tc. Carpintría mtálica: stantrías, mubls n gnral (sillas, msas, jrgons). Estructuras livianas

Más detalles

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión.

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión. Factors d longitud fctiva para l cálculo d la rsistncia d lmntos somtidos a comprsión. Existn difrncias ntr las rcomndacions dl NTCEM-004 y las rcomndacions ISC 005. El rglamnto ISC 005 stablc qu l valor

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

4.2. Ejemplo de aplicación.

4.2. Ejemplo de aplicación. HEB 8 Dsarrollo dl método d los dsplazamintos 45 4.. Ejmplo d aplicación. ontinuando con l pórtico dscrito n l apartado (3.8), s van a calcular las cargas y, postriormnt, sguir con l cálculo matricial,

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

CADET 3 ISO madera 3 tramos 3 NORM 8/2 ISO madera 2 tramos 4 ALU 3 ISO aluminio 3 tramos 5 ALU 2 ISO aluminio 2 tramos 6

CADET 3 ISO madera 3 tramos 3 NORM 8/2 ISO madera 2 tramos 4 ALU 3 ISO aluminio 3 tramos 5 ALU 2 ISO aluminio 2 tramos 6 Índic Escalras scamotabls AET 3 IO madra 3 tramos 3 NORM 8/2 IO madra 2 tramos 4 ALU 3 IO aluminio 3 tramos 5 ALU 2 IO aluminio 2 tramos 6 Escalras d tijra ZX E TEO 7 ZX E ARE 8 ZX E TERRAZA 9 Escalras

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 2 : EMPUJES SOBRE SUPERFICIES PLANAS Y CURVAS UNDD HDRÚL. ENERLDDES apítulo PRESONES EN LOS LÍQUDOS : HDROSTT SEÓN : EPUJES SORE SUPERFES PLNS Y URVS ÁLULO DEL EPUJE EN SUPERFES PLNS Una suprfici plana sumrgida n un líquido con pso spcífico γ s ncuntra

Más detalles

wedi Moltoromo El sistema modular de pared para todo tipo de baños

wedi Moltoromo El sistema modular de pared para todo tipo de baños E wi Moltoromo El sistma moular par para too tipo baños wi Moltoromo Moular inpnint para lograr mayor spacio Con l sistma moular wi Moltoromo, s posibl crar forma ficaz las formas más ivrsas para aplicacions

Más detalles

CON LOS MODELOS ORIGINALES MYMACO

CON LOS MODELOS ORIGINALES MYMACO CON LOS MODELOS ORIGINALES MYMACO RUD INDICE DE PRODUCTOS PAGINA 1 ESPECIFICACIONES DE BRIDAS NORMA ASME/ANSI B-16.1 PAGINA 2 CRUCES Y TES PAGINA 3 CRUCES Y TES PAGINA 4 REDUCCIONES PAGINA 5 REDUCCIONES

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

Aspectos Fiscales Venezolanos Cross-Border de las Inversiones en el Sector del Gas. Luis Eduardo Ocando B. (luis.ocando@ve.ey.com)

Aspectos Fiscales Venezolanos Cross-Border de las Inversiones en el Sector del Gas. Luis Eduardo Ocando B. (luis.ocando@ve.ey.com) Intrnational Tax Srvics Aspctos Fiscals Vnzolanos Cross-Bordr d las Invrsions n l Sctor dl Gas Luis Eduardo Ocando B. (luis.ocando@v.y.com) Tabla d Contnidos Introducción Planificación Fiscal n Vnzula

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

PRIMERA PRÁCTICA SONIDO

PRIMERA PRÁCTICA SONIDO PRIMERA PRÁCTICA SONIDO 1. Objtivo gnral: El objtivo d sta práctica s qu l alumno s familiaric con los concptos d amplitud y frcuncia y los llgu a dominar, así como l fcto qu tin la variación d stos parámtros

Más detalles

TEMA 3. Superficies Adicionales. Aletas.

TEMA 3. Superficies Adicionales. Aletas. TEMA 3. Suprficis Adicionals. Altas. Introducción Alta rcta d spsor uniform y alta d aguja d scción transvrsal constant La alta anular d spsor constant La alta d prfil triangular Efctividad d la alta Las

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Escaleras escamoteables, rectas y de caracol

Escaleras escamoteables, rectas y de caracol Escalras scamotabls, rctas y d caracol Índic Escalras scamotabls AET 3 ISO madra 3 tramos 3 NORM 8/2 ISO madra 2 tramos 3 EM-3 ISO lacada 3 tramos 4 K-4 mtálica galvanizada 4 tramos 4 Escalras d tijra

Más detalles

HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura)

HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura) HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura) 1) Modelos de Barras Las condiciones generales que deben cumplir los modelos de Puntales

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

MÉTODO PROPUESTO PARA LA OBTENCIÓN DE LÍMITES DE ESBELTEZ

MÉTODO PROPUESTO PARA LA OBTENCIÓN DE LÍMITES DE ESBELTEZ Capítulo 3 MÉTODO PROPUESTO PARA LA OBTENCIÓN DE LÍMITES DE ESBELTEZ 3.1. Obtnción d la capacidad sccional: Exprsions analíticas dl diagrama d intracción M-N El diagrama d intracción d una scción d hormigón

Más detalles

Figura 9.61 Planta de una edificación de varios pisos

Figura 9.61 Planta de una edificación de varios pisos DISEÑO DE COLUNAS BIAXIALES ESTRUCTURAS DE HORIGÓN 2 9.5 Disño d columnas biaxials 9.5.1 Introducción El procdiminto d disño xplicado n l numral antrior s pud ampliar para cubrir l caso gnral d flxión

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

2. RELACIONES GRANULOMÉTRICAS Y DE VOLUMEN EN UN SUELO

2. RELACIONES GRANULOMÉTRICAS Y DE VOLUMEN EN UN SUELO Rlacions granulométricas y volumétricas un sulo Capítulo 2 2. RELCIONE RNULOMÉRIC Y DE OLUMEN EN UN UELO 2.. Introucción En un sulo s istingun trs fass constituynts: la sólia, la líquia y la gasosa. La

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

Escaleras escamoteables, rectas y de caracol

Escaleras escamoteables, rectas y de caracol Escalras scamotabls, rctas y d caracol Índic Escalra scamotabl Modlo ET 3 IO madra 3 tramos Escalras scamotabls ET 3 IO madra 3 tramos 3 NORM 8/2 IO madra 2 tramos 3 EM-3 IO lacada 3 tramos 4 K-4 mtálica

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

74.01 y HORMIGON I LOSAS Y ENTREPISOS SIN VIGAS. Detalles de armado

74.01 y HORMIGON I LOSAS Y ENTREPISOS SIN VIGAS. Detalles de armado 74.01 y 94.01 - HORMIGON I LOSAS Y ENTREPISOS SIN VIGAS Detalles de armado TEMARIO DE LA CLASE LOSAS UNIDIRECCIONALES (simple curvatura) LOSAS BIDIRECCIONALES O CRUZADAS (doble curvatura) Armadura dirección

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

Accesorios de encofrados Tubos distanciadores de encofrados

Accesorios de encofrados Tubos distanciadores de encofrados Accsorios d ncofrados Tubos distanciadors d ncofrados Tubos, mbudos cónicos y tapons d PVC Construcción ants dl hormigonado Tubos rdondos d PVC Ø Acabado Acabado picado RS6602 14 19 iso RS6406 20 24 Picado

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

168 Termoquímica y Cinética. Aspectos Teóricos

168 Termoquímica y Cinética. Aspectos Teóricos 168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin

Más detalles

FLUJO RAPIDAMENTE VARIADO

FLUJO RAPIDAMENTE VARIADO FLUJO RAPIDAMENTE VARIADO urso irología iráulica Aplicaas. SOBRE FLUJO RAPIDAMENTE VARIADO. Flujo Rápiamnt Variao La principal caractrística l Flujo Rápiamnt Variao (FRV) s qu la curvatura las línas corrint

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3 DEPARAMENO DE INGENIERIA MECÁNICA INGENIERÍA INDUSRIAL DISEÑO MECÁNICO PRÁCICA Nº 3 DEERMINACIÓN DEL COEFICIENE DE ROZAMIENO ENRE CORREAS Y POLEAS Dtrminación dl coficint d rozaminto ntr corras y polas

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

Materiales de construcción

Materiales de construcción Matrials d construcción d las vivindas particulars habitadas, sgún matrial prdominant n pisos, y Crrnto o firrr fv'adra, rrosaico u otros rcubrimntos Tirra 19.5 26.7 31.0 55.2 53.3 En l año las vivindas

Más detalles

Comisión Redactora de este documento

Comisión Redactora de este documento omisión Rdactora d st documnto Por Knauf GmbH España Klaus Kllr Dirctor Grnt Hugo Ávalos Dirctor Técnico Rosana Gallgo Rsponsabl d Markting Por Ysos Ibéricos/Pladur Enriqu Ramírz Dirctor omrcial Migul

Más detalles

Escaleras escamoteables, rectas y de caracol

Escaleras escamoteables, rectas y de caracol Escalras scamotabls, rctas y d caracol Índic Escalra scamotabl d tramos Modlo ET 3 IO madra 3 tramos Escalras scamotabls d tramos ET 3 IO madra 3 tramos 3 ET 2 IO madra 2 tramos 3 EM-3 IO mtálica lacada

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA 4 ANALISIS IENSIONAL Y SIILITU ISICA www.rivra-001.com Contnido 4.1. Introducción 4.. Qué s un parámtro adimnsional? 4.3. Naturalza adimnsional dl flujo fluido 4.4. El torma d Pi d Buckingham 4.5. Cómo

Más detalles

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x ( ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:

Más detalles

SOLUCIÓN: Sea x la distancia entre A y C. Por el Teorema del coseno tenemos:

SOLUCIÓN: Sea x la distancia entre A y C. Por el Teorema del coseno tenemos: EJERCICIO 30 Dese un punto A se ivisan otros os puntos B y C bajo un ángulo e 5º 9. Se sabe que B y C istan 450 m y que A y B istan 500 m. Averigua la istancia entre A y C. Sea la istancia entre A y C.

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

XVI.- COMBUSTIÓN pfernandezdiez.es

XVI.- COMBUSTIÓN pfernandezdiez.es XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

Viga carril de puente grúa. Sección Doble Te de simple simetría. Aplicación Capítulos A, F, K y Apéndices B, F y K.

Viga carril de puente grúa. Sección Doble Te de simple simetría. Aplicación Capítulos A, F, K y Apéndices B, F y K. 119 EJEMPLO N 17 Viga carril de puente grúa. Sección Dole Te de simple simetría. Aplicación Capítulos A, F, K Apéndices B, F K. Enunciado: Dimensionar una viga carril para puente grúa con sección armada

Más detalles

aletos ELECTRICIDAD POTENCIAL ELÉCTRICO

aletos ELECTRICIDAD POTENCIAL ELÉCTRICO 1 4.04 01 a) El campo eléctrico asociao a la función potencial V = xy+3x 3 z+2x 2, en elpunto (1,1,2). b) El trabajo realizao para llevar una unia e carga positiva, a velocia cosntante, ese el punto (1,2,0)

Más detalles

S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3, ,3 0,2 0,2

S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3, ,3 0,2 0,2 S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3,5 189 0,3 0, 0, Según el articulo 4.3.5 de la EHE para el armado minimo de una viga según cuantia geometrica, debe ser, dada la

Más detalles

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona

Más detalles

RK 07/09 E RIVKLE. Tuercas y roscas macho remachables Técnicas de unión en chapa y plástico, un método fácil y con accesibilidad por un solo lado.

RK 07/09 E RIVKLE. Tuercas y roscas macho remachables Técnicas de unión en chapa y plástico, un método fácil y con accesibilidad por un solo lado. RK 07/09 RIVK Turcas y roscas macho rmachabls Técnicas unión n chapa y plástico, un métoo fácil y con accsibilia por un solo lao. Ínic NO Cr (VI) a turca rmachabl RIVK, prsntación y consjos RIVK plus,

Más detalles

TEMA 4: SOLIDOS IONICOS

TEMA 4: SOLIDOS IONICOS TEMA 4: SOLIDOS IONICOS 4.1 Introucción. 4. Estructuras los cristals iónicos. 4.3 Raios iónicos. 4.4 Enrgía rticular. 4.5 Propias los compustos iónicos. 4.1. Introucción. Cuano un lmnto muy lctrongativo

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO 1. INTRODUCCIÓN No importa l tamaño d la mprsa n la qu dsarrollmos nustra labor profsional. No importa l númro d prsonas qu compongan l dpartamnto al qu nos

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

CÁLCULO DEL EMBUTIDO RECTANGULAR EMPLEANDO EL CONCEPTO DE DIÁMETRO EQUIVALENTE

CÁLCULO DEL EMBUTIDO RECTANGULAR EMPLEANDO EL CONCEPTO DE DIÁMETRO EQUIVALENTE ÁLULO DEL EMBUTIDO RETANGULAR EMPLEANDO EL ONEPTO DE DIÁMETRO EQUIVALENTE Pro Jsús García Zugasti, Arturo Mnoza Razo, Yolana Roríguz orpus Instituto Tcnológico San Luis Potosí Av. Tcnológico s/n, P. 78437,

Más detalles

HORMIGÓN PRETENSADO. Trabajo Práctico Nº1. Tema: ENTREPISOS SIN VIGAS. Fecha de presentación: 07/09/2016. Grupo N : 7.

HORMIGÓN PRETENSADO. Trabajo Práctico Nº1. Tema: ENTREPISOS SIN VIGAS. Fecha de presentación: 07/09/2016. Grupo N : 7. TRABAJO PRÁCTICO HORMIGÓN PRETENSADO Trabajo Práctico Nº1 Tema: ENTREPISOS SIN VIGAS Fecha de presentación: 07/09/2016 Grupo N : 7 Integrantes: 1. Bittler, Andrés 2. Carrillo, Hector Mario 3. Escobar,

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

Según un estudio de hace algunos años, del ACI & ASCE (American Society of Civil Engineers) señalaba:

Según un estudio de hace algunos años, del ACI & ASCE (American Society of Civil Engineers) señalaba: COLUMNAS Pedestales cortos a compresión Condición L < 3. d menor Esfuerzo en el hormigón 0,85. φ. f c ; φ = 0.70 Sin armadura (hormigón simple) o como columna corta Columnas cortas de hormigón armado Zunchadas

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones.

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones. Ejemplo 11b. Se pide: Calcular el entrepiso del ejemplo anterior utilizando la simbología del Cirsoc 2005; el que se encuentra en vigencia. En el ejemplo anterior se resolvió el mismo entrepiso mediante

Más detalles

SUMARIO. Telf Fax TARIFA N.º 2-10/2009

SUMARIO. Telf Fax TARIFA N.º 2-10/2009 2 SUMARIO 13 TUBERÍAS EVACUACIÓN TUBO PVC SANITARIO 21 SERIE B COEXTRUSIONADO L L t Longitu tubo total 125 10 3,2 3,2 3,2 4,0,2 Cóigo 2 3 03 2 3 03 125 2 3 03 10 2 3 03 2 3 03 2 3 03 3 MTS Euro/tubo 10,58

Más detalles

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012 Carrra: Tcnicatura Suprir n Análisis y Prgramación d Sistmas Asignatura: Arquitctura d cmputadras Prfsr: Ing. Gabril Duprut Trabaj práctic Nr. : Sistmas d numración y códigs A l larg d st práctic cnstruirá

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

Rack & Building Systems

Rack & Building Systems Rack & Building Systms La Emprsa RBS a nacido por la sinrgia y complmnto qu xist ntr sus productos y por l afán constant d nustra mprsa por difrnciars d la comptncia. En l ára d almacnaj industrial RBS

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

CAPÍTULO F. VIGAS Y OTRAS BARRAS EN FLEXIÓN

CAPÍTULO F. VIGAS Y OTRAS BARRAS EN FLEXIÓN CAPÍTUO F. VIGAS Y OTRAS BARRAS N FXIÓN ste Capítulo es aplicale a arras prismáticas, con secciones compactas no compactas, sujetas a flexión corte. as arras formadas por un solo perfil ángulo (de ángulo

Más detalles

Cálculo de Obras de Drenaje Trasversal de Carreteras

Cálculo de Obras de Drenaje Trasversal de Carreteras Cálculo d Obras d Drnaj Trasvrsal d Carrtras Víctor Flórz Casillas Ingniro d Caminos, Canals y Purtos Dirctor dl Dpartamnto d Prsas y Obras Hidráulicas d FCC CONSTRUCCIÓN, S.A. VFlorz@fcc.s Batriz Iturriaga

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

12 Representación de funciones

12 Representación de funciones Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )

Más detalles

DERIVACIÓN DE UNA FUNCIÓN REAL DE VARIABLE REAL

DERIVACIÓN DE UNA FUNCIÓN REAL DE VARIABLE REAL Drivación una función ral variabl ral DERIVACIÓN DE UNA FUNCIÓN REAL DE VARIABLE REAL Autor: Patrici Molinàs Mata (pmolinas@uoc.u), José Francisco Martínz Boscá (jmartinzbos@uoc.u) ESQUEMA DE CONTENIDOS

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles