Dotze problemes d optimització

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Dotze problemes d optimització"

Transcripción

1 Dotze problemes d optimització Problema 1 Determineu les dimensions d un cilindre de volum màxim inscrit en un cub d aresta a tal que l eix del cilindre siga una diagonal del cub Problema En una semiesfera de radi R s ha inscrit un un prisma regular triangular tal que una de les bases pertany al cercle major de la semiesfera i l altra base pertany a l esfera Determineu l altura del prisma tal que la suma de les longituds de totes les arestes siga màxima Gúsiev 94 Problema Determineu el volum màxim d una piràmide regular hexagonal inscrita en una esfera de radi R Gúsiev 946 Problema 4 Determineu l altura d un con de volum minim circumscrit a una semiesfera de radi R Gúsiev 940 Problema De totes els prismes regulars hexagonals de volum 6 cm determineu les mesures del de superfície mínima Examen d estat, 86 Problema 6 Donada una circumferència de radi R, determineu un rectangle d àrea màxima tal que una base siga tangent a la circumferència i el costat oposat corda de la circumferència Examen d estat

2 Problema 7 Siguen els segments paral lels AB, CD Siga P un punt interior del segment BC La recta AP talla la recta CD en el punt E On es troba el punt P que fa mínima la suma de les àrees dels triangles APB, CPE Problema 8 Calculeu el màxim i el mínim de la KöMaL, abril 1999 F8 x + xy amb la condició que x + y 1 Problema 9 De tots els ortoedres de base quadrada inscrits en una semiesfera de radi R determineu les dimensions del que volum màxim Calculeu aquest volum Gúsiev, 90 Problema 10 Per la diagonal de la base d un prisma quadrangular regular es traça una secció que conté almenys un punt de l altra base Determineu l àrea màxima i mínima de la secció si les arestes del prisma són, i Gúsiev 99 Problema 11 Demostreu que de tots les piràmides que tenen per base un triangle isòsceles i que estan inscrites en un con de volum conegut, el volum màxim el té la piràmide regular (base un triangle equilàter) Gúsiev 91 Problema 1 Determineu l àrea màxima de la secció d un con que passa pel vèrtex si el radi de la base és R i l altura és h Gúsiev, 9

3 Problema 1 Determineu les dimensions d un cilindre de volum màxim inscrit en un cub d aresta a tal que l eix del cilindre siga una diagonal del cub Siga el cub d aresta PR a Siga la diagonal PQ a eix del cilindre Siga KLM la secció del cub que conté una base del cilindre La circumferència de la base del cilindre és igual a la circumferència inscrita al triangle equilàter KLM Siga O el centre de la circumferència Siga x KQ, y OQ Aplicant el teorema de Pitàgores al triangle rectangle KLQ: KL x Vegem la relació entre x, y El volum del tetraedre KLMQ és: V 1 1 KL QK OQ 6 4 KLMQ ( x ) y 1 1 x Aleshores: y x 6 4 Calculem el radi del cilindre O és el baricentre del triangle equilàter KLMSiga N el punt mig del costat KL Aplicant el teorema de Pitàgores al triangle rectangle MNL : 6 MN KL x Aplicant la propietat del baricentre el radi del cilindre és: 1 6 r ON MN x 6 L altura del cilindre és: h PQ OQ a x El volum del cilindre és: 1 V(r,h) πr h V(x) π x a x 6 π a V (x) x + ax, x 6 0, Derivant la funció: ( x ax) + π V'(x) V '(x) 0, x a 6 π π V "(x) ( 4x + a), V "(a) < 0 Aleshores x a és el màxim de la 6 funció: 6 Les dimensions del cilindre de volum màxim són r a, h a i el volum màxim 6 π és V(x) a

4 Problema En una semiesfera de radi R s ha inscrit un un prisma regular triangular tal que una de les bases pertany al cercle major de la semiesfera i l altra base pertany a l esfera Determineu l altura del prisma tal que la suma de les longituds de totes les arestes siga màxima Gúsiev 94 Siga la semiesfera de centre O i radi R Siga el prisma regular triangular ABCA B C, ABC és un triangle equilàter de costat AB a Siga h BB' altura del prisma La funció a optimitzar és: L (a,h) 6a + h, suma de les longituds de totes les arestes La perpendicular al cercle màxim que passa pel centre de la semiesfera passa pel barcientre G del triangle equilàter A 'B'C' Aplicant la propietat del baricentre: GB ' a a OB ' R Aplicant el teorema de Pitàgores al triangle rectangle OGB ': R a + h a R h L(h) 6 R h + h, h [ 0, R] Derivem la funció: L'(h) 18h + R h L '(h) 0, 6h 1 Resolent l equació: R h 1 h R R h R h 1 L"(h) L " R < 0 R h 1 1 Aleshores, h R és un màxim relatiu estricte 1 La longitud màxima de la suma de les arestes s assoleix quan 1 màxima és: L R 1 1R 1 h R i la longitud 1

5 Problema Determineu el volum màxim d una piràmide regular hexagonal inscrita en una esfera de radi R Gúsiev 946 Siga l esfera de centre O i radi R Siga la piràmide regular hexagonal ABCDEFS de base l hexàgon regular ABCDEF de costat AB a Siga P el centre de l hexàgon Siga PS h altura de la piràmide Siga α PSA La secció ADS forma una circumferència de radi R en l esfera AD a, ASD α Aplicant el teorema dels sinus al triangle ADS : a R Aleshores, a R sinα sinα Aplicant raons trigonomètriques al triangle rectangle APS : a h R cos α tgα La funció a optimitzar és: 1 V(a,h) 6 a h 4 V ( α) R sin α cos α 4 π V ( α) 4 R sin α cos α, α 0, Derivant la funció: V '( α) 8 R sin α cos V '( α ) 0, cos α sin α 0 cos π α α arccos 0, α ( cos α sin α) 4 ( 14cos α 19cos α + 6) V"( α ) 8 R cos α V " arccos < 0 Aleshores, α arccos és un màxim relatiu estricte El volum màxim s assoleix quan cos α i el volum màxim és: 16 7 V màx R

6 Problema 4 Determineu l altura d un con de volum minim circumscrit a una semiesfera de radi R Gúsiev 940 Siga la semiesfera de centre O i diàmetre PQ R Siga el con circumscrit a la semiesfera de diàmetre de la base AB r, centre O i vèrtex C Siga α CBA Siga T el punt de tangència de la semiesfera i la generatriu del con BC Aplicant raons trigonomètriques al triangle rectangle OTB: 1 r OB R sin α Aplicant raons trigonomètriques al triangle rectangle BOC: 1 h OC r tgα R cos α La funció a optimitzar és: 1 V(r,h) πr h π 1 π V( α) R, α sin α cos α 0, Derivem la funció: ( cos α + sin α) π sin α V '( α) R 4 sin α cos α V '( α ) 0, cos α + sin α 0 1 cos α α arccos 6cos α 1 V "( α) + 4 sin α sin αcos α cos α V " arccos > 0 Aleshores, α arccos és un mínim relatiu estricte El con de volum mínim s assoleix quan l altura del con és: 1 h mín R R V π V( α) sin 1 α cos α alfa

7 Problema De totes els prismes regulars hexagonals de volum 6 cm determineu les mesures del de superfície mínima Examen d estat, 86 Siga a l aresta de la base i h l altura del prisma L àrea de l hexàgon regular de costat a és: S 6 6 a a 4 L àrea total del prisma és: S S6 + 6ah a + 6ah La funció a optimitzar és: S(a,h) a + 6ah El volum del prisma és 6 cm : a 8 h 6 h a 16 S(a) a +, a > 0 Derivant la funció: a 8 S '(a) 6 a a 8 S '(a) 0, a 0 a Resolent l equació: a, h 16 S "(a) 6, S "() 1 > 0 a Aleshores, a és un mínim relatiu estricte La superfície mínima del prisma s assoleix quan l aresta de la base és a i l altura h La superfície mínima és S mín 6 S(a) a

8 Problema 6 Donada una circumferència de radi R, determineu un rectangle d àrea màxima tal que una base siga tangent a la circumferència i el costat oposat corda de la circumferència Examen d estat Siga la circumferència de centre O i radi R Siga T el punt de tangència Siga el rectangle ABCD tal que el costat BC b La funció a optimitzar és: S (a,b) ab Siga P la projecció de O sobre el costat BC a OC OT PB OP, PC b R Aplicant el teorema de Pitàgores al triangle rectangle R a a (b R) + Simplificant: 8Rb 4b S(b) a 8Rb 4b b 8Rb 4b, b [ 0, R] 6Rb 4b S'(b) 4 Rb b AB a és tangent a la circumferència i Derivant la funció: S '(b) 0, 6Rb 4b 0 Resolent l equació: b R, a R 4b 1Rb + 6R S"(b), S " R 4 < 0 (R b) Rb b Aleshores, el rectangle d àrea màxima s assoleix quan L àrea del rectangle d àrea màxima és, S màx R S(b) OPC: D A b R, a R O T P C B b S(b) b 8b 4b

9 Problema 7 Siguen els segments paral lels AB, CD Siga P un punt interior del segment BC La recta AP talla la recta CD en el punt E On es troba el punt P que fa mínima la suma de les àrees dels triangles APB, CPE Siga AB a, CD b Pel punt P tracem una perpendicular al segment AB, que A talla els segments AB, CD en els punts M, N, respectivament Siga MN h distància constant entre els dos segments Siga h 1 PM, h PN + h h Siga x CE La funció a optimitzar és: a h1 x h S(x,h1,h ) + h1 Els triangles APB, EPC són semblants Aplicant el teorema de Tales: h1 h h1 + h h Aleshores: a x a + x a + x ah xh h 1, h a + x a + x La funció superfície és transformaria: a h x h S(x) +, x 0 Derivem la funció: (a + x) (a + x) h x + ax a S '(x) (a + x) S '(x) 0, x + ax a 0 Resolent l equació: x ( 1)a S"(x) a h " ( ) (a + x) ( 1a) 0 S > Aleshores x ( 1)a és un mínim relatiu estricte Si x ( 1)a, h 1 h Els triangles APB, EPC són semblants Aplicant el teorema de Tales: PB h 1 BC h A fi que la suma de les àrees dels triangles d acomplir que S mín PB BC L àrea mínima és: APB, a h ( ) ) ( 1) a h 1a + ah( 1) a a C M CPE siga mínima el punt P ha N P E B D

10 Problema 8 Calculeu el màxim i el mínim de la KöMaL, abril 1999 F8 x + xy amb la condició que x + y 1 La funció per a optimitzar és: f(x,y) x + xy Si x + y 1, ( x, y) pertanyen a la circumferència centrada en l origen de coordenades i de radi 1 x cos α Efectuem el canvi, x + y cos α + sin α 1 y sin α f( α) cos α + cos α sinα f( α) cos α + sinα, α [, π] f '( α) cos α sin α + cosα f '( α) sinα + cos α 0 Derivem la funció: f '( α ) 0, sin α cos α tg α, α arctg, arctg + π ( α està en el primer quadrat o en el tercer quadrat Si α arctg, aleshores, cos α, sin α Si α arctg + π, aleshores, cosα, sinα f "( α) cos α 4sin α Si α arctg, aleshores, f "( α ) < 0 Per tant, α arctg és un màxim Si α arctg + π, aleshores, f "( α ) > 0 Per tant, α arctg + π és un mínim arctg arctg + π f f( α) f Si α arctg, cos arctg + f cosα α 10 Si α arctg + π, cos arctg + π f cosα 1 10 α Aleshores, x + xy x + xy Φ Φ

11 y [ 0, π] f(x) cos (x) + sin(x) x x y x f(x) x x 1 x, x [ 1,1 ]

12 Problema 9 De tots els ortoedres de base quadrada inscrits en una semiesfera de radi R determineu les dimensions del que volum màxim Calculeu aquest volum Gúsiev, 90 Siga la semiesfera de centre O i radi R Siga l ortoedre ABCDA B C D de base quadrada ABCD, AB a i altura AA ' h El volum de l ortoedre és: V(a,h) a h Aplicant el teorema de Pitàgores al triangle rectangle isòsceles AOB: OA a Aplicant el teorema de Pitàgores al triangle rectangle OAA ': R h + a a R h Aleshores, la funció a optimitzar és: V(h) R h h h + R h ( ) ( ) ( h R ), h [ 0, R] V '(h) + Derivant la funció: V '(h) 0, h + R 0 Resolent l equació: h R V"(h) 1h V " R 4 R < 0 Aleshores, h R és un màxim relatiu estricte Les dimensions de l ortoedre de base quadrada de volum màxim inscrit en una semiesfera té dimensions, aresta de la base a Ri h R altura El volum 4 4 màxim és V màx a h R R R 9 La gràfica per a 1 V(h) h + h El màxim s assoleix quan R, ( ) a 11, h 08 4 El volum màxim és V V h

13 Problema 10 Per la diagonal de la base d un prisma quadrangular regular es traça una secció que conté almenys un punt de l altra base Determineu l àrea màxima i mínima de la secció si les arestes del prisma són, i Gúsiev 99 Siga ABCDA B C D el prisma regular quadrangular, AB BC i AA ' Siga AC la diagonal de la base que realitzem la secció Aplicant el teorema de Pitàgores al triangle rectangle isòsceles ABC AC 6 Siga P de l aresta formen la secció: A 'P C'Q x PD' x A 'D' i Q de la recta C 'D' que Aplicant el teorema de Pitàgores al triangle rectangle isòsceles ( x) 6 x PQ Aplicant el teorema de Pitàgores al triangle rectangle AP x Siga M la projecció de P sobre la diagonal AC AC PQ AM x Aplicant el teorema de Pitàgores al triangle rectangle 8 + x PM 4 x x La funció a optimitzar és: S(x) AC + PQ 1 x PM 8 + x 6 x 8 x, x [ 0, ] S (x) + 1 x 6 x S '(x) 8 + x x Derivem la funció: x 6 x S '(x) x + 0 Resolent l equació: 8 + x x, x " ( ) 0 " ( ) 0 0 ( ) AA ' P AMP S >, aleshores, x és un mínim relatiu estricte S <, aleshores, x és un màxim relatiu estricte S PD ' Q

14 S ( ) S (0) 1 S ( ) El màxim s assoleix quan x 0 i l àrea màxima és S (0) 1 El mínim s assoleix quan x i l àrea mínima és S( ) y x

15 Problema 11 Demostreu que de tots les piràmides que tenen per base un triangle isòsceles i que estan inscrites en un con de volum conegut, el volum màxim el té la piràmide regular (base un triangle equilàter) Gúsiev 91 Siga el con de volum k constant k De tots aquest considerem el que té radi R i altura h πr Siga la piràmide triangular recta ABCS de base ABC, AC BC a, AB b L altura del triangle ABC sobre la base AB és a b Volem provar que la piràmide de volum màxima s assoleix quan a b La circumferència circumscrita a la base de la piràmide té radi R Siga O el centre OD és perpendicular a la base del con L àrea de la base de la piràmide és: a b b a b SABC 4R Simplificant: 4 a b a 4R El volum de la piràmide és: a b V(a,b) h R h V(a) a 4R a, a [ 0, R ] Derivem la funció respecte de a: 4R 4 h 1R a 4a V'(a) 4R 4R a 4 V '(a) 0, 1R a a 0 Resolent l equació: a R ( R ) 0 V " < Aleshores, a R és un màxim relatiu Aleshores, el màxim s assoleix quan a R, b R Aleshores, a b triangle de la base és equilàter El volum màxim és: V màx ( R ) 4R ( R ) h k R h 4R π El

16 Problema 1 Determineu l àrea màxima de la secció d un con que passa pel vèrtex si el radi de la base és R i l altura és h Gúsiev, 9 Siga el con de centre de la base O, radi R i altura ABS on La secció és un triangle isòsceles del con OS h AS BS Aplicant el teorema de Pitàgores al triangle rectangle g R + h π Siga β OSA β 0, Siga α ASB L àrea del triangle ABS és: g S( α) sinα, α [ 0, β] Distingirem dos casos: π a) Suposem que β 4 El màxim de la funció S( α) s assoleix quan π g R + h S π b) Suposem que β < 4 El màxim de la funció S( α) s assoleix quan π α g, generatriu α β g g R h S( β ) sinβ sinβ cosβ g Rh g g SOA En aquest cas la corda AB de la circumferència base és un diàmetre

Problemes de Geometria per a l ESO 151

Problemes de Geometria per a l ESO 151 roblemes de Geometria per a l SO 151 1501- n la figura, TRN és un pentàgon regular, és un triangle equilàter i ON és un quadrat etermineu la mesura de l angle R R Tots els tres polígons tenen els costats

Más detalles

SOLUCIONES ABRIL 2016

SOLUCIONES ABRIL 2016 SOLUCIONES ABRIL 06 Autor: Ricard Peiró i Estruch Abril Sea el tetraedro regular ABCS Sean K, L, M de las aristas AS, BS, CS, respectivamente, tal que, AK BL SM a Δ Determinar el área del triángulo KLM

Más detalles

Trigonometria Resolució de triangles.

Trigonometria Resolució de triangles. Trigonometria Resolució de triangles. Raons trigonomètriques d un angle agut. Considerarem el triangle rectangle ABC on A = 90º Recordem que en qualsevol triangle rectangle Es complia el teorema de Pitàgores:

Más detalles

Semblança. Teorema de Tales

Semblança. Teorema de Tales Semblança. Teorema de Tales Dos polígons són semblants si el angles corresponents són iguals i els costats corresponents són proporcionals. ABCDE A'B'C'D'E' si: Â = Â',Bˆ = Bˆ', Ĉ = Ĉ', Dˆ = Dˆ', Ê = Ê'

Más detalles

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ Representem un punt A en un pla i tracem dues semirectes amb origen en aquest punt. El punt A serà el vèrtex de l angle i cada semirecta serà el costat. 1..

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

EXERCICIS PROPOSATS. 3 cm

EXERCICIS PROPOSATS. 3 cm EXERCICIS PROPOSATS 1.1 Calcula el perímetre de les figures següents. a), b) cm cm cm a) p,5 8 5 1 b) p 9 cm 1. Calcula el perímetre d aquestes figures. a) Un quadrat de 6 centímetres de costat. b) Un

Más detalles

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 85 Activitat 1 Calcula l àrea de la figura prenent com a unitat d àrea la quadrícula que hi ha indicada: Activitat Ens referirem a la unitat d àrea amb el símbol

Más detalles

j Unitat 6. Rectes en el pla

j Unitat 6. Rectes en el pla MATEMÀTIQUES 9 4. Calcula a a sabent que a b, b b 4 i que l angle que formen els vectors a i b mesura 0º. b b 4 b 4 b a b a b cos a a cos 0º a cos 0º a a a 9. Els punts A(, ), B(, ) i C(, ) són tres vèrtexs

Más detalles

Tema 1: TRIGONOMETRIA

Tema 1: TRIGONOMETRIA Tema : TRIGONOMETRIA Raons trigonomètriques d un angle - sinus ( projecció sobre l eix y ) sin α sin α [, ] - cosinus ( projecció sobre l eix x ) cos α cos α [ -, ] - tangent tan α sin α / cos α tan α

Más detalles

1. RECTA TANGENT I NORMAL 2. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS

1. RECTA TANGENT I NORMAL 2. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS APLICACIONS DE LA DERIVADA 1. RECTA TANGENT I NORMAL. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS 1. RECTA TANGENT I NORMAL 1.1 Trobeu l equació

Más detalles

TEMA 1: Trigonometria

TEMA 1: Trigonometria TEMA 1: Trigonometria La trigonometria, és la part de la geometria dedicada a la resolució de triangles, es a dir, a determinar els valors dels angles i dels costats d un triangle. 1.1 MESURA D ANGLES

Más detalles

ACTIVITATS COMPLEMENTÀRIES DE TRIGONOMETRIA

ACTIVITATS COMPLEMENTÀRIES DE TRIGONOMETRIA Unitat 1: Angles i triangles. Activitat 1.1 Classifiqueu els angles que observeu en la figura adjunta i mesureu la seva amplitud amb l ajut d un transportador d angles. Activitat 1.2 a) Desprès d una operació

Más detalles

La porció limitada per una línia poligonal tancada és un

La porció limitada per una línia poligonal tancada és un PLA Si n és el nombre de costats del polígon: El nombre de diagonals és La suma dels seus angles és 180º ( n 2 ). La porció limitada per una línia poligonal tancada és un Entre les seves propietats destaquem

Más detalles

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES.

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES. Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES 41 42 Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser

Más detalles

Deduce razonadamente en que casos los planos π 1 y π 2 son o no paralelos:

Deduce razonadamente en que casos los planos π 1 y π 2 son o no paralelos: GEOMETRÍA Junio 98 Deduce razonadamente en que casos los planos y son o no paralelos: a) : x + y + z = y : x + y z = 4 b) : x y + z = 4 y : x y + z = Obtén la distancia entre los planos y cuando sean paralelos.

Más detalles

Problemes geomètrics. Objectius. Abans de començar

Problemes geomètrics. Objectius. Abans de començar 8 Problemes geomètrics Objectius En aquesta quinzena aprendràs a: Aplicar les raons trigonomètriques per estudiar les relacions que existeixen entre els angles i els costats de les figures planes. Calcular

Más detalles

EJERCICIOS ÁREAS DE REGIONES PLANAS

EJERCICIOS ÁREAS DE REGIONES PLANAS EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que

Más detalles

MATEMÀTIQUES ÀREES I VOLUMS

MATEMÀTIQUES ÀREES I VOLUMS materials del curs de: MATEMÀTIQUES ÀREES I VOLUMS EXERCICIS RECULL D APUNTS I EXERCICIS D INTERNET FET PER: Xavier Vilardell Bascompte xevi.vb@gmail.com ÚLTIMA REVISIÓ: 08 de febrer de 2010 Aquests materials

Más detalles

Abans de començar. 1.Àrea dels prismes...pàg.164 Àrea dels prismes

Abans de començar. 1.Àrea dels prismes...pàg.164 Àrea dels prismes 9 Àrees de cossos geomètrics Objectius En aquesta quinzena aprendràs a: Calcular l àrea de prismes rectes de qualsevol nombre de cares. Calcular l àrea de piràmides de qualsevol nombre de cares. Calcular

Más detalles

Profesora: TAMARA GRANDÓN CUARTO MEDIO GUIA PREPARATORIA MATEMATICA UNIDAD 3: GEOMETRIA. CONTENIDOS: ANGULOS EN LA CIRCUNFERENCIA

Profesora: TAMARA GRANDÓN CUARTO MEDIO GUIA PREPARATORIA MATEMATICA UNIDAD 3: GEOMETRIA. CONTENIDOS: ANGULOS EN LA CIRCUNFERENCIA GUIA PREPARATORIA MATEMATICA UNIDAD 3: GEOMETRIA. CONTENIDOS: ANGULOS EN LA CIRCUNFERENCIA NOMBRE: Fecha:.. 1. Si se sabe que α = 35 y β = 45, cuál es la medida del ángulo x de la figura? 2. El m( CA )

Más detalles

FITXA 1: Polígons. Conceptes

FITXA 1: Polígons. Conceptes FITXA 1: Polígons. Conceptes A.1. REPASSA ELS TEUS CONEIXEMENTS. 1. Escriu la lletra de les figures equilàteres. A, D 2. Escriu el nom de les figures equiangulars. A, D 3. Anomena les figures que tenen

Más detalles

TAMARA GRANDÓN SEGUNDO MEDIO

TAMARA GRANDÓN SEGUNDO MEDIO GUIA 2 MEDIO MATEMATICA UNIDAD 3: GEOMETRIA. CONTENIDOS: ANGULOS EN LA CIRCUNFERENCIA NOMBRE: 1. Si se sabe que α = 35 y β = 45, cuál es la medida del ángulo x de la figura? Fecha:.. 2. El m( CA ) = 94

Más detalles

Malas Identifíquese con un número secreto de cuatro dígitos en la carátula del examen y en la Tarjeta de Respuestas.

Malas Identifíquese con un número secreto de cuatro dígitos en la carátula del examen y en la Tarjeta de Respuestas. CÓDIGO: PUNTAJE EJÉRCITO DE CHILE COMANDO DE INSTITUTOS Y DOCTRINA Academia Politécnica Militar NOTA EXAMEN DE ADMISIÓN 010 GEOMETRÍA I.- GENERALIDADES: A.- OBJETIVO Determinar si el oficial postulante

Más detalles

1

1 www.amatematicas.cl 1 Circunferencia 1. Si se sabe que α = 35º y β = 45º, cuál es la medida del ángulo x de la figura? BD y DA, están en la razón 1:2:3, respectivamente. Cuál es el valor de x? 2. El arco

Más detalles

Càlcul d'àrees i volums.

Càlcul d'àrees i volums. Càlcul d'àrees i volums. Exemple 1. Donada la figura següent: Calcula'n: superfície volum Resolució: Fixem-nos que la superfície està formada per tres objectes.: 1. la base del cilindre 2. la paret del

Más detalles

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD PROVES D ACCÉS A LA UNIVERSITAT PRUEBAS DE ACCESO A LA UNIVERSIDAD CONVOCATÒRIA: JULIOL

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Matemàtiques Sèrie 4 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts.

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

ALGUNAS RELACIONES PARA RECORDAR:

ALGUNAS RELACIONES PARA RECORDAR: ALGUNAS RELACIONES PARA RECORDAR: División Áurea de un trazo: Consideremos el trazo: AB AP AP PB Se dice que P divide de modo áureo al trazo AB. Es decir el mayor de los trazos es media proporcional entre

Más detalles

Ángulos en la Circunferencia Profesora: Alejandra Reyes O. Curso: 2º Año Medio

Ángulos en la Circunferencia Profesora: Alejandra Reyes O. Curso: 2º Año Medio Ángulos en la Circunferencia Profesora: Alejandra Reyes O. Curso: 2º Año Medio 1. Si se sabe que α =35 y β =45 ; cuál es la medida del ángulo x de la figura? 5. Cuáles son los valores de x e y de la figura?

Más detalles

XXXV OLIMPÍADA MATEMÀTICA

XXXV OLIMPÍADA MATEMÀTICA XXXV OLIMPÍADA MATEMÀTICA Primera fase (Catalunya) 10 de desembre de 1999, de 16 a 0h. 1. Amb quadrats i triangles equilàters de costat unitat es poden construir polígons convexos. Per exemple, es poden

Más detalles

4.- Expressa en forma de potència única indicant el signe resultant.

4.- Expressa en forma de potència única indicant el signe resultant. Pàgina 1 de 8 EXERCICIS PER LA RECUPARACIÓ 1A Avaluació 1.- Calcula de dues maneres (TP i RP): a) 25 + (-1+7) (18 9 + 15)= TP= RP= 9 (-12 + 5 8 = TP= RP= 2.- Treu factor comú i calcula: a) 5.(-3) + (-7).

Más detalles

DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA

DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA Abans de començar cal tenir uns coneixements bàsics que estudiareu a partir d ara. PUNT: No es pot definir, però podem dir que és la marca més petita que

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

E 3.4. LA LEY DE BIOT SAVART

E 3.4. LA LEY DE BIOT SAVART E 3.4. LA LEY DE BIOT SAVART E 3.4.01. Considere el alambre ABCDA que muestra la figura, por el cual circula una corriente de I [A] en la dirección indicada. Suponga que BC y DA son arcos de circunferencia

Más detalles

1) El producto de dos naturales consecutivos equivale a la suma de esos números aumentada en 19. De ellos, cuál es el número mayor?

1) El producto de dos naturales consecutivos equivale a la suma de esos números aumentada en 19. De ellos, cuál es el número mayor? Escuela Conciente de Matemática GAUSS 550 1) El producto de dos naturales consecutivos equivale a la suma de esos números aumentada en 19. De ellos, cuál es el número mayor? A) 4 6 10 0 ) Considere el

Más detalles

PREPARACIÓN DE OLIMPIADAS RSME BLOQUE GEOMETRÍA I

PREPARACIÓN DE OLIMPIADAS RSME BLOQUE GEOMETRÍA I PREPARACIÓN DE OLIMPIADAS RSME BLOQUE GEOMETRÍA I Almería, 3 de noviembre de 2017 David Crespo Casteleiro Índice de la sesión 1. Porqué hay que prepararse para unas Olimpiadas? 2. Resultados de gran utilidad.

Más detalles

Problemas de geometría afín

Problemas de geometría afín Problemas de geometría afín Teóricos Problema A Para un subconjunto no vacío X de R n se cumple: X es subvariedad afín cada recta que pasa por dos puntos distintos de X está totalmente contenida en X Problema

Más detalles

Piden: Dato: Piden: Dato: Piden: Dato:

Piden: Dato: Piden: Dato: Piden: Dato: SEMANA 1 PRISMAS Y PIRÁMIDE 1. Calcule el número de caras de un prisma donde el número de vértices más el número de aristas es 50. A) 10 B) 0 C) 0 D) 1 E) 18 Sea n el número de lados de la base del prisma:

Más detalles

Guía Nº 3. CONTENIDOS: Perímetro y Área Nombre: Marque la alternativa correcta. Realice sus cálculos al costado de cada ejercicio.

Guía Nº 3. CONTENIDOS: Perímetro y Área Nombre: Marque la alternativa correcta. Realice sus cálculos al costado de cada ejercicio. SUBSECTOR : Electivo de Álgebra y Geometría NIVELES : IIIº/VIº Medio PROFESORES : Martín Andrés Martínez Santana AÑO : 017 CONTENIDOS: Perímetro y Área Nombre: Guía Nº IIIº/IV Marque la alternativa correcta.

Más detalles

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD PROVES D ACCÉS A LA UNIVERSITAT PRUEBAS DE ACCESO A LA UNIVERSIDAD CONVOCATÒRIA: JUNY

Más detalles

Taller de Matemática Preparación PSU

Taller de Matemática Preparación PSU octubre 01 Taller de Matemática Preparación PSU Marcar con una X la alternativa que considere correcta. 1. Cuando se divide cierto trazo armónicamente en la razón : 4, la distancia entre los puntos de

Más detalles

Curso Curso

Curso Curso Problema 16. Hace 10 años las edades de Ximena, Yolanda y Zoe estaban en la relación 1 : 2 : 5. Hoy las edades de Ximena y Yolanda están en la relación 6 : 7. Cuál es la edad actual de Zoe? Problema 16.

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4

Más detalles

COL LEGI ST. JOSEP SANT SADURNÍ D ANOIA - AULA DE DIBUIX TÈCNIC - CARMINA FONT

COL LEGI ST. JOSEP SANT SADURNÍ D ANOIA - AULA DE DIBUIX TÈCNIC - CARMINA FONT DIBUIX TÈCNIC 4. Interseccions: Pla - recta COL LEGI ST. JOSEP SANT SADURNÍ D ANOIA - AULA DE DIBUIX TÈCNIC - CARMINA FONT DIBUIX TÈCNIC 4. Interseccions: Sòlid - recta COL LEGI ST. JOSEP SANT SADURNÍ

Más detalles

TRIGONOMETRIA. FUNCIONS TRIGONOMÈTRIQUES. MATEMÀTIQUES-1

TRIGONOMETRIA. FUNCIONS TRIGONOMÈTRIQUES. MATEMÀTIQUES-1 TRIGONOMETRIA. FUNCIONS TRIGONOMÈTRIQUES. 1. Angles i mesura d angles.. Raons trigonomètriques d un angle agut. 3. Resolució de triangles rectangles. 4. Raons trigonomètriques d un angle qualsevol. 5.

Más detalles

SÈRIE 4 PAU. Curs DIBUIX TÈCNIC

SÈRIE 4 PAU. Curs DIBUIX TÈCNIC SÈRIE 4 PAU. Curs 2004-2005 DIBUIX TÈCNIC L examen consta de la realització de tres dibuixos: el dibuix 1, una de les dues opcions del dibuix 2 i una de les dues opcions del dibuix 3. Escolliu entre l

Más detalles

TEMES TREBALLATS A 3r d'eso

TEMES TREBALLATS A 3r d'eso TEMES TREBALLATS A r d'eso. Repàs de n d'eso. Nombres racionals. Equacions. Sistemes d'equacions de r grau. Funcions. Geometria en l'espai Recordeu que a part dels apunts teniu d'altres documents per preparar

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU

EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU PROGRAMA EGRESADOS Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano Ejercicios PSU 1. Si P(3, 4) y Q(8, 2), entonces el punto medio de PQ es A) (11, 2) D) (5, 2) B) ( 5 2, 3 ) E)

Más detalles

Figuras de tres dimensiones

Figuras de tres dimensiones Figuras de tres dimensiones Poliedros: cuerpos geométricos limitados por 4 o más superficies planas que son polígonos. Poliedros regulares: todas las caras de igual forma y tamaño. Solo existen 5. Prismas

Más detalles

Curvatura de l el. lipse seguint Newton

Curvatura de l el. lipse seguint Newton Curvatura de l el. lipse seguint Newton Agustí Reventós Tarrida per a J. Girbau 9 de març de 2012 Resum Segueixo l article de Josep Casadellà Reig, Butlletí de la SCM, Vol 14, num 2, 1999, pàg 41-61, del

Más detalles

Geometria. Àrees i volums de cossos geomètrics

Geometria. Àrees i volums de cossos geomètrics Geometria. Àrees i volums de cossos geomètrics Àrea de figures planes... Àrea dels paral lelograms... Àrea del quadrat... Àrea del rectangle... 3 Àrea del rombe... 4 Àrea del paral lelogram... 4 Àrea dels

Más detalles

DIBUIX TÈCNIC 1. CUBS COL LEGI ST. JOSEP SANT SADURNÍ D ANOIA - AULA DE DIBUIX TÈCNIC - CARMINA FONT

DIBUIX TÈCNIC 1. CUBS COL LEGI ST. JOSEP SANT SADURNÍ D ANOIA - AULA DE DIBUIX TÈCNIC - CARMINA FONT DIBUIX TÈCNIC 1. CUBS COL LEGI ST. JOSEP SANT SADURNÍ D ANOIA - AULA DE DIBUIX TÈCNIC - CARMINA FONT Dibuix 2. Opció B TEMA: Dièdric, construcció d un cub amb una diagonal vertical. DADES: Projecció

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 20-2 Profesor: Jaime Andres Jaramillo González Parte del material ha sido tomado de documentos de los profesores

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

GEOMETRIA ANALÍTICA DEL PLA. MATEMÀTIQUES-1

GEOMETRIA ANALÍTICA DEL PLA. MATEMÀTIQUES-1 GEOMETRIA ANALÍTICA DEL PLA. 1. Vectors en el pla.. Equacions de la recta. 3. Posició relativa de dues rectes. 4. Paral lelisme de rectes. 5. Producte escalar de dos vectors. 6. Perpendicularitat de rectes.

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 20-2 Profesor: Jaime Andrés Jaramillo González (jaimeaj@conceptocomputadores.com) Parte del material ha sido tomado

Más detalles

Curso Curso

Curso Curso Problema 84. Sea AB el diámetro de una semicircunferencia de radio R y sea O el punto medio del segmento AB. Con centro en A y radio OA se traza el arco de circunferencia OM. Calcular, en función de R,

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y

Más detalles

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es: TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"

Más detalles

11Soluciones a los ejercicios y problemas

11Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm

Más detalles

RELACIÓN DE EJERCICIOS PROPUESTOS PARA EVALUACIONES DE GEOMETRÍA DESCRIPTIVA EN LOS CURSOS , ,

RELACIÓN DE EJERCICIOS PROPUESTOS PARA EVALUACIONES DE GEOMETRÍA DESCRIPTIVA EN LOS CURSOS , , RELACIÓN DE EJERCICIOS PROPUESTOS PARA EVALUACIONES DE GEOMETRÍA DESCRIPTIVA EN LOS CURSOS 2006-2007, 2007-2008, 2008-2009 PROF: MORENO VARGAS ARQ. FEBRERO 07 DIÉDRICO. PROCEDIMIENTOS El segmento MC es

Más detalles

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1 SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión

Más detalles

SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano

SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG04MT-A16V1 SOLUCIONARIO Ubicación de puntos, distancia longitudes en el plano cartesiano 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA UBICACIÓN DE PUNTOS, DISTANCIA Y LONGITUDES EN EL PLANO CARTESIANO Ítem

Más detalles

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo 44 Comprueba que el triángulo de vértices A(, ), B(0, ) y C(4, ) es rectángulo y halla su área. Veamos si se cumple el teorema de Pitágoras: AB = (0 + ) + ( ) = AC = (4 + ) + ( ) = 0 BC = 4 + ( ) = 0 +

Más detalles

Proves d accés a la universitat Convocatòria 2016 Dibuix tècnic Sèrie 3 Indiqueu les opcions triades:

Proves d accés a la universitat Convocatòria 2016 Dibuix tècnic Sèrie 3 Indiqueu les opcions triades: Proves d accés a la universitat Convocatòria 2016 Dibuix tècnic Sèrie 3 Indiqueu les opcions triades: Exercici 1: Opció A Exercici 2: Opció A Exercici 3: Opció A Opció B Opció B Opció B Qualificació 1

Más detalles

; por qué? ; teorema área del sector circular y 3. unidades de área; de 6. ; sustitución 8 y 6 en 7.

; por qué? ; teorema área del sector circular y 3. unidades de área; de 6. ; sustitución 8 y 6 en 7. 11.7 EJERCICIOS RESUELTOS Ilustración N 1 En la figura las tres circunferencias son congruentes y tangentes dos a dos. Calcule el área de la región rayada en términos del radio común R. Procedimiento.

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d accés a la universitat Convocatòria 2014 Dibuix tècnic Sèrie 3 Indiqueu les opcions triades: Exercici 1: Opció A Opció B Exercici 2: Opció A Opció B Exercici 3: Opció A Opció B Qualificació 1

Más detalles

RESPUESTAS. Examen UNI 2015 I. Matemática

RESPUESTAS. Examen UNI 2015 I.  Matemática RESPUESTAS Examen UNI 05 I Matemática Pregunta 0 Semanalmente, un trabajador ahorra cierta cantidad en soles, y durante 0 semanas ahorra las siguientes cantidades: 5 9 8 8 5 6 7 7 7 9 9 6 8 6 6 0 8 9 5

Más detalles

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares IDEAS PREVIAS 1. Planos paralelos..planos perpendiculares .Planos oblicuos. CUERPO GEOMÉTRICO Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa

Más detalles

TALLER 4 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 4 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER 4 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA 013- UNIVERSIDAD DE ANTIOQUIA Profesor: Jaime Andrés Jaramillo G jaimeaj@conceptocomputadorescom 1 Coloque para cada una de las siguientes

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3 ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal a la gura formada por la unión de segmentos de

Más detalles

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2. GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

PAAU. LOGSE. Curs

PAAU. LOGSE. Curs SÈRIE 2 PAAU. LOGSE Curs 1999-2000 DIBUIX TÈCNIC L examen consta de la realització de tres dibuixos: el dibuix 1, el dibuix 2 i una de les dues opcions del dibuix 3 (escolliu entre l opció A i l opció

Más detalles

Relaciones fundamentales

Relaciones fundamentales Tema Nº 7 TRIIGONOMETRÍÍA Relaciones fundamentales 6 Si sen α /, calcula cos α y tg α utilizando las relaciones fundamentales (α < 90 ). sen α 9 6 4 senα ;tgα 4 4 7 Halla el valor exacto (con radicales)

Más detalles

f(x) = sen x f(x) = cos x

f(x) = sen x f(x) = cos x www.matemáticagauss.com Trigonometría f(x) = sen x f(x) = cos x Función tangente f(x) = tan x Dominio: Ámbito: Periodo: Siempre crece 1 Prof. Orlando Bucknor Masís tel.: 9 9990 1) Un intervalo en el que

Más detalles

PERÍMETROS ÁREAS - VOLÚMENES

PERÍMETROS ÁREAS - VOLÚMENES ERÍMETROS ÁREAS - VOLÚMENES 1.- OLÍGONOS olígono: arte del plano limitada por una línea poligonal cerrada. Lado: Segmento que une dos vértices consecutivos. En un polígono el número de lados y el número

Más detalles

PRUEBA DE MATEMÁTICA FACSÍMIL N 2

PRUEBA DE MATEMÁTICA FACSÍMIL N 2 PRUEBA DE MATEMÁTICA FACSÍMIL N. Si a - b = 5 y c d = 4, entonces 4a + c b 4d = A) 8 B) 9 C) 0 D) 9 E) 8. t es un número que cumple las siguientes tres condiciones: t > -6; 3t < 6. Entonces cuál de los

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ).

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ). Hoja de Problemas Geometría VIII 90. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R O, Sean: OA, OB, OC ). OG la recta determinada por los puntos

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Dibuix tècnic Sèrie 4 Indiqueu les opcions triades: Exercici 1: Exercici 2: Exercici 3: Opció A Opció B Opció A Opció B Opció A Opció B Etiqueta identificadora

Más detalles

PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA

PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA CURSO PRE FACULTATIVO II-01 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del

Más detalles

La Geometría del triángulo TEMA 6

La Geometría del triángulo TEMA 6 La Geometría del triángulo TEMA 6 Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) En este tema vamos a ver algunas aplicaciones y ejemplos de los teoremas vistos en los dos

Más detalles

Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1

Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1 Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1 TABLA DE CORRECCIÓN SEMEJANZA Y CONGRUENCIA DE FIGURAS Ítem Alternativa Dificultad Estimada 1 C Aplicación Media A Aplicación Media 3 D Comprensión

Más detalles

P RACTICA. 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?

P RACTICA. 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? P RACTICA Puntos Si los puntos 6 ) 6) y ) son vértices de un cuadrado cuál es el cuarto vértice? 6) 6 ) ) P ) P Los puntos ) ) y ) son vértices de un rombo. Cuáles son las coordenadas del cuarto vértice?

Más detalles

RESUMEN DE GEOMETRIA EUCLIDIANA. Profesor: Manuel J. Salazar Jiménez. Relaciones no definidas: pertenecer a, estar entre, congruente a, equidistar

RESUMEN DE GEOMETRIA EUCLIDIANA. Profesor: Manuel J. Salazar Jiménez. Relaciones no definidas: pertenecer a, estar entre, congruente a, equidistar RESUMEN DE GEOMETRIA EUCLIDIANA Profesor: Manuel J. Salazar Jiménez Nociones no definidas o nociones primitivas: Punto, recta, plano, espacio, distancia. Relaciones no definidas: pertenecer a, estar entre,

Más detalles

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos Ángulos Ejercicios: 1) Si un triángulo tiene 2 ángulos que miden 25 y 75 Cuánto mide el tercer ángulo? 2) Cuánto suman los ángulos internos de un cuadrilátero cualquiera? Teorema: 1) La suma de los ángulos

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes MÓDULO Nº 4 Nivelación Matemática 2005 Módulo Nº4 Contenidos Circunferencia y Círculo Volúmenes Nivelación Circunferencia y Círculo Circunferencia. Es una línea curva cerrada, cuyos puntos tienen la propiedad

Más detalles

Módulo 17. Capítulo 4: Cuadriláteros. 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2.

Módulo 17. Capítulo 4: Cuadriláteros. 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2. Módulo 17 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 210 Capítulo 4: Cuadriláteros Figura 7 Figura 8 Figura 9 2. En

Más detalles

TEMA 11. ÁREAS, PERÍMETROS Y VOLÚMENES.

TEMA 11. ÁREAS, PERÍMETROS Y VOLÚMENES. TEMA 11. ÁREAS, PERÍMETROS Y VOLÚMENES. CONTENIDOS: 1. PERÍMETROS Y ÁREA DE CUADRILÁTEROS Y TRIÁNGULOS. 1.1. PERÍMETROS Y ÁREAS DE PARALELOGRAMOS. 1.2. PERÍMETRO Y ÁREAS DE TRIÁNGULOS. 1.3. PERÍMETRO Y

Más detalles