Universidad Nacional de La Plata Facultad de Ingeniería Departamento de Electrotecnia Cátedra de Control Moderno. Cayley-Hamilton

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Nacional de La Plata Facultad de Ingeniería Departamento de Electrotecnia Cátedra de Control Moderno. Cayley-Hamilton"

Transcripción

1 Universidad Nacional de La Plata Facultad de Ingeniería Departamento de Electrotecnia Cátedra de Control Moderno Cayley-Hamilton Año 26

2 1. Introducción A continuación se presentan unos pocos y simples ejemplos que muestran como puede emplearse el Teorema de Cayley-Hamilton para simplificar algunas deducciones y cálculos algebraicos que son frecuentes en la teoría del control moderno. 2. Polinomio de matrices Cualquier polinomio escalar P (x) = c + c 1 x + c 2 x c k x k, (1) puede emplearse para definir un polinomio de matrices P (M nxn ) P (M) = c + c 1 M + c 2 M c k M k. (2) También, puede decirse que todo polinomio de matrices tiene asociado un polinomio escalar. Una propiedad interesante de la correspondencia entre polinomios escalares y matriciales es que toda operación realizada sobre el polinomio escalar también es válida para el polinomio matricial. Así, por ejemplo, expresiones alternativas a la ecuación (1) del polinomio escalar P (x) P (x) = K (x a 1 ) (x a 2 )... (x a k ), (3) P (x) = K ( x 2 (a 1 + a 2 ) x + a 1 a 2 )... (x ak ), (4) también son válidas para el polinomio de matrices P (M): P (M) = K (M a 1 ) (M a 2 )... (M a k ), (5) P (M) = K ( M 2 (a 1 + a 2 ) M + a 1 a 2 )... (M ak ). (6) 1

3 3. Teorema de Cayley-Hamilton Este teorema, debido a Arthur Cayley y William Rowan Hamilton, dice que toda matriz verifica su ecuación característica. Luego, si Q(λ) = λi M = a + a 1 λ + a 2 λ a n λ n (7) es la ecuación característica de M, entonces: Q(M) = a + a 1 M + a 2 M a n M n = nxn. (8) 4. Ejemplo 1. Inversión de matrices. Calculemos la inversa de la matriz: La ecuación característica de A es: A = (9) λi A = (s 3) (s 2) 1 = λ 2 5λ + 5 (1) Y dado que toda matriz satisface su propia ecuación característica (Cayley-Hamilton): A 2 5A + 5I =. (11) Luego, premultiplicando por la inversa de la matriz A, conseguimos que dicha inversa aparezca explícitamente: y fácilmente puede despejarse A 5I + 5A 1 =, (12) A 1 = I A 5 = 2/5 1/5 1/5 3/5. (13) 5. Ejemplo 2. Reducción del orden de un polinomio de matrices. Demostrar que el orden de un polinomio de matrices P (M) = a I + a 1 M + a 2 M 2 + a 3 M a k M k, (14) puede ser reducido a n 1, donde n define la dimensión de la matriz cuadrada M nxn. Obviamente, nos interesa el caso en que k > n pudiendo tomar un valor infinito. Consideremos el polinomio escalar asociado al polinomio de matrices (14): 2

4 P (λ) = a I + a 1 λ + a 2 λ 2 + a 3 λ a k λ k (15) y dividámoslo por el polinomio característico de la matriz M. De esta operación resulta Q (λ) = λi M (16) P (λ) Q (λ) = C (λ) + R (λ) Q (λ) (17) P (λ) = Q (λ) C (λ) + R (λ). (18) donde, 1) C (λ) es el polinomio cociente, y 2) R (λ) es el polinomio resto, siendo su orden menor que n, es decir R(λ) es de la forma R (λ) = α + α 1 λ α n 1 λ n 1. (19) Considerando (18), podemos retomar el polinomio de matrices P (M) = Q (M) C (M) + R (M), (2) expresión que puede simplificarse dado que toda matriz verifica su ecuación característica Luego: Q (M) = nxn. (21) P (M) = R (M) = α I + α 1 M α n 1 M n 1. (22) Observe que esta expresión, alternativa de P (M), puede ser mucho más simple que la expresión (14) dado que k puede ser muy grande incluso infinito y n corresponde a la dimensión de la matriz cuadrada M. Para calcular los coeficiente α i de (22) puede evaluarse el polinomio escalar (18) en cada autovalor λ i. Dado que la ecuación característica se anula en los autovalores, resulta P (λ i ) = R (λ i ) = α + α 1 λ i α n 1 λ n 1 i. (23) Así, se dispone de n ecuaciones (una para cada autovalor) que permiten despejar las n incognitas α i. En el caso de existir polos múltiples este procedimiento debe modificarse. Efectivamente, si M posee un autovalor λ k de orden m, al reemplazar λ k en (18), sólo se obtendrá una ecuación independiente. Para obtener otras m 1 ecuaciones linealmente independientes puede diferenciarse ambos miembros de la ecuación (18). Dado que 3

5 las m 1 ecuaciones restantes resultan d j P (λ) dλ j d j Q (λ) dλ j = j =, 1,..., m 1, (24) λ=λk = dj R (λ) λ=λk dλ j j =, 1,..., m 1. (25) λ=λk 6. Ejemplo 3. Cálculo de la matriz de transición de estados. Se quiere obtener la matriz de transición de estados del sistema autónomo dx 1 dt = 1 2 Los autovalores de la matriz A pueden calcularse a partir de: x. (26) Q (λ) = λi A = (λ + 1) 2 =. (27) Luego el sistema tiene un autovalor multiple en λ = 1. A partir del ejemplo anterior y como la matriz A es de 2x2 Φ (t) = P (A) = e At = R(A), (28) Φ (t) = e At = α I + α 1 A. (29) Los coeficientes α i (teniendo presente que el autovalor es de orden 2) se calculan a partir de 1) R(λ) = α + α 1 λ (3) e λ 1t = e t = α + α 1 ( 1) (31) α = e t α 1 (32) 2) dp (λ) dλ = λ= 1 dr (λ) dλ (33) λ= 1 Así, la matriz de transisción de estados resulta: α 1 = te t. (34) Φ (t) = e At = ((1 + t) e t ) I + (te t ) A, (35) 4

6 (1 + t) e Φ (t) = e At t te = t te t (1 t) e t. (36) 7. Ejemplo 4. Cálculo de la potencia de una matriz. En numerosos problemas tanto de sistemas de tiempo continuo, como de tiempo discreto es necesario elevar una matriz a una dada potencia. Consideremos el caso particular en que nos interesa conocer la matriz de transición de estado para un tiempo t = 1seg Φ (t=1seg) = Φ 1 (t=1seg) = a partir de la misma matriz evaluada en t = 1seg Luego, Φ (t=1seg) = =? (37). (38) P (Φ) = R (Φ) Φ 1 = α I + α 1 Φ (39) Donde los coeficientes α y α 1 pueden calcularse a partir de P (λ i ) = λ 1 i = R (λ i ) = α + α 1 λ i, ( 1) 1 = α α 1, 1 1 = α + α 1. α = 1, α 1 =. (4) (41) Resultando Φ (t=1seg) = I. (42) 8. Ejemplo 5. Test de controlabilidad. Sabemos que la solución de la ecuación de estados es x(t) = e At x () + t e A(t τ) Bu (τ) dτ, (43) y que si el sistema es completamente controlable sus estados iniciales pueden transferirse al origen en un tiempo finito T, es decir, T x(t ) = = e AT x () + e AT e Aτ Bu (τ) dτ, (44) 5

7 T = x () + e Aτ Bu (τ) dτ. (45) Ahora bien, a partir de los dos ejemplos previos puede escribirse luego, Donde, llamando e Aτ = n 1 k= n 1 T x () = A k B α k k= α k A k, (46) u (τ) dτ. (47) resulta T α k = α k u (τ) dτ, (48) α n 1 x () = A k B α k = B AB... A n 1 B α 1 k=.. (49) α 2 Si el sistema es completamente controlable, esta ecuación debe satisfacerse para cualquier condición inicial, luego la matriz B AB... A n 1 B (5) debe de ser de rango completo (test de controlabilidad de Kalman). 6

Control Moderno - Ing. Electrónica Ejercicio Resuelto 3: Teorema de Cayley-Hamilton

Control Moderno - Ing. Electrónica Ejercicio Resuelto 3: Teorema de Cayley-Hamilton Control Moderno - Ing. Electrónica Ejercicio Resuelto 3: Teorema de Cayley-Hamilton Introducción A continuación se presentan unos pocos y simples ejemplos que muestran como puede emplearse el Teorema de

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

c-inversa o inversa generalizada de Rao

c-inversa o inversa generalizada de Rao c-inversa o inversa generalizada de Rao Definición.- Sea A m n. Se dice que una matriz A c de orden n m es una c-inversa o inversa generalizada en el sentido de Rao si y sólo si se verifica AA c A = A.

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Ejercicios resueltos del capítulo 4

Ejercicios resueltos del capítulo 4 Ejercicios resueltos del capítulo 4 Ejercicios impares resueltos..a Calcular los autovalores y subespacios invariantes asociados a la matriz: A = Calculamos el polinomio característico y resolvemos: λ

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 81 Introducción Denominamos sistema de ecuaciones a toda ecuación de la forma x (t) F ( t, x(t) ), (S) donde F : (a, b) R n R n La expresión anterior es muy general en el

Más detalles

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada CONTROL MODERNO Y ÓPTIMO (MT 227C) Clase 5-2 Elizabeth Villota Cerna Semestre 29 II -

Más detalles

Diagonalización de Endomorfismos

Diagonalización de Endomorfismos Tema 5 Diagonalización de Endomorfismos 5.1 Introducción En este tema estudiaremos la diagonalización de endomorfismos. La idea central de este proceso es determinar, para una aplicación lineal f : E E,

Más detalles

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 8. Valores y vectores propios Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR

Más detalles

Sistemas de Control lineal óptimo con realimentación de estado

Sistemas de Control lineal óptimo con realimentación de estado Capítulo 5 Sistemas de Control lineal óptimo con realimentación de estado La principal restricción de este sistema de control es suponer que se puede medir en todo instante de tiempo el estado completo

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

Álgebra II(61.08, 81.02) Segundo cuatrimestre 2017 Práctica 4. Autovalores y autovectores de matrices. Diagonalización.

Álgebra II(61.08, 81.02) Segundo cuatrimestre 2017 Práctica 4. Autovalores y autovectores de matrices. Diagonalización. Álgebra II(6108, 8102) Segundo cuatrimestre 2017 Práctica 4 Autovalores y autovectores de matrices Diagonalización Nota: salvo indicación particular, se considera que todas las matrices pertenecen a C

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}.

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}. Tema 6 Formas canónicas 6.1 Introducción Proposición 6.1.1. Sea V un espacio vectorial sobre K de dimensión n y B una base de V. La aplicación Φ B : End(V ) M(n n, K) definida por Φ B (f) = M B (f), es

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores.

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores. Tema 5 Matrices y sistemas de ecuaciones lineales Autovalores y autovectores 5 Introducción Una matriz es una disposición ordenada de elementos de la forma: a a a m a a a m a n a n a nm Sus filas son las

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

Matemática Avanzada. Clase Nro. 15

Matemática Avanzada. Clase Nro. 15 Matemática Avanzada Clase Nro. 15 Octavio Miloni Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata 1 / 23 Definiciones Previas y Métodos Elementales de de Resolución de Ecuaciones

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales Lección 8 Sistemas de ecuaciones diferenciales lineales 1 Sistemas de Ecuaciones Diferenciales Consideremos el sistema A + S X + S k 1 k 2 Inicialmente se añaden 2 moles de S y 1 mol de A d[a] dt = k 1

Más detalles

5. Aplicaciones Lineales

5. Aplicaciones Lineales Contents 5 Aplicaciones Lineales 2 5.1 Aplicaciones lineales. Definición y propiedades........................ 2 5.2 Núcleo e Imagen.................................................... 3 5.3 Descomposición

Más detalles

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS Sea f : V V un endomorfismo de V, f End(V, con V un K-espacio vectorial de dimensión n, y sean B = {e 1,..., e n } B = {e 1,..., e n} bases de V. La matriz de f

Más detalles

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES Definición 1.1. Endomorfismo Nilpotente. Un endomorfismo T End(V ) es nilpotente si existe n N tal que f n 0. Definición 1.. Matriz

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden.

MATEMÁTICAS ESPECIALES II PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden. MATEMÁTICAS ESPECIALES II - 8 PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden. Considere el sistema de ecuaciones diferenciales ordinarias (EDOs) de primer orden dx dt = f (t,

Más detalles

Matemáticas Empresariales II. Diagonalización de Matrices

Matemáticas Empresariales II. Diagonalización de Matrices Matemáticas Empresariales II Lección 6 Diagonalización de Matrices Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 25 Introducción Sea f un endomorfismo,

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K Sesión 8: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K ) Calculamos los valores propios de A y sus multiplicidades algebraicas con: d A λ = det A λi nxn = Si d A

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

Sistemas lineales homogéneos

Sistemas lineales homogéneos Lección 9 Sistemas de ecuaciones diferenciales lineales con coeficientes constantes 1 Sistemas lineales homogéneos Estudiaremos los sistemas de la forma x (t) = Ax(t) + b(t) Sistemas homogéneos: x = Ax

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 1 Definiciones Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de expresiones de la forma: a 11 x 1 + a 12 x 2 + + a 1n x n = a 21 x 1 + a 22 x 2 + +

Más detalles

Controlabilidad completa del estado para sistemas en tiempo continuo

Controlabilidad completa del estado para sistemas en tiempo continuo Capítulo 11: CONTROLABILIDAD Y OBSERVABILIDAD Se dice que un sistema es controlable en el instante t0 si es posible llevarlo de cualquier estado inicial x(t0) a cualquier otro estado, empleando un vector

Más detalles

Control Moderno. Ene.-Jun Diseño de controlador por retroalimentación de estado. Dr. Rodolfo Salinas. mayo 2007

Control Moderno. Ene.-Jun Diseño de controlador por retroalimentación de estado. Dr. Rodolfo Salinas. mayo 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Diseño de controlador por retroalimentación de estado Dr. Rodolfo Salinas mayo 2007 Control

Más detalles

Práctica 5. Autovalores y autovectores. Diagonalización de matrices y de transformaciones lineales.

Práctica 5. Autovalores y autovectores. Diagonalización de matrices y de transformaciones lineales. Práctica 5 Autovalores y autovectores Diagonalización de matrices y de transformaciones lineales Nota: salvo indicación particular, se considera que todas las matrices pertenecen a C n n 1 Encuentre los

Más detalles

Cálculo de autovalores

Cálculo de autovalores Cálculo de autovalores Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2011-2012 (UPV) Cálculo de autovalores Curso 2011-2012 1 / 28 Índice 1 Preliminares

Más detalles

Parte 3. Vectores y valores propios

Parte 3. Vectores y valores propios Parte 3. Vectores y valores propios Gustavo Montero Escuela Universitaria Politécnica Universidad de Las Palmas de Gran Canaria Curso 2004-2005 1 Introducción a los valores y vectores propios 2 3 4 5 Valores

Más detalles

Álgebra Lineal. Tema 7. La forma canónica de Jordan

Álgebra Lineal. Tema 7. La forma canónica de Jordan Álgebra Lineal Tema 7 La forma canónica de Jordan Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J S ALAS, A T ORRENTE Y EJS V ILLASEÑOR Índice

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n.

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n. En un artículo anterior dijimos que el rango de una matriz A, ra), es el número de filas que son linealmente independientes. También se hizo uso del método de Gauss para calcular el rango de una matriz:

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Iván Huerta Facultad de Matemáticas Pontificia Universidad Católica de Chile ihuerta@mat.puc.cl Segundo Semestre, 1999 Definición Valores y Vectores Propios Valores y Vectores

Más detalles

A502 - Teoría de Sistemas y Señales

A502 - Teoría de Sistemas y Señales A50 - Teoría de Sistemas y Señales Transparencias Densidad Espectral de Energía de Señales Aperiódicas Autor: Dr. Juan Carlos Gómez Señales de Potencia Verifican TD: TC: Algunas Definiciones N 1 < P lim

Más detalles

1. Problema clásico de EDO

1. Problema clásico de EDO FACULTAD CS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA57C Control Óptimo Semestre 27-2 Profesor: Rafael Correa Auxiliar: Oscar Peredo Clase Auxiliar #1 31 de julio de 27 1 Problema clásico de EDO Problema

Más detalles

DEPARTAMENTO DE ECONOMÍA Examen de Análisis Matemático (Grado ENI) Temas 1 a 5

DEPARTAMENTO DE ECONOMÍA Examen de Análisis Matemático (Grado ENI) Temas 1 a 5 DEPARTAMENTO DE ECONOMÍA Examen de Análisis Matemático (Grado ENI) Temas a 5 NOMBRE: DNI: Advertencia: Póngase el nombre en esta hoja en la primera del cuadernillo en blanco CUESTIONARIO DE RESPUESTA MÚLTIPLE

Más detalles

Relación de problemas. Álgebra lineal.

Relación de problemas. Álgebra lineal. Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Tareas adicionales Algunos de estos problemas compuso Gustavo Antonio Sandoval Angeles (como parte de su servicio social). Estos problemas son más difíciles o más laboriosos

Más detalles

Ecuaciones diferenciales lineales

Ecuaciones diferenciales lineales Ecuaciones diferenciales lineales Ecuaciones diferenciales lineales de orden n Una ecuación diferencial lineal de orden n es una expresión del tipo a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Teoría Tema 7 Operar con matrices

Teoría Tema 7 Operar con matrices página 1/12 Teoría Tema 7 Operar con matrices Índice de contenido Concepto de matriz...2 Matriz traspuesta, simétrica y diagonal...3 Suma de matrices y producto de escalar por matriz...6 Producto de matrices...8

Más detalles

0 a b X = b c 0. f X (A) = AX XA.

0 a b X = b c 0. f X (A) = AX XA. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Industriales Álgebra Lineal Convocatoria de Junio 8 de Junio de 2007 (3 ptos.). Sea V = {A M 3 3 (R) / A t = A}. (a) Demostrar que toda

Más detalles

Control Moderno. Ene.-Jun Diseño de controlador con referencia a la entrada, servosistemas. Dr. Rodolfo Salinas. mayo 2007

Control Moderno. Ene.-Jun Diseño de controlador con referencia a la entrada, servosistemas. Dr. Rodolfo Salinas. mayo 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Diseño de controlador con referencia a la entrada, servosistemas Dr. Rodolfo Salinas mayo 2007

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

PRUEBA ESCRITA. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 2º BACHILLERATO A. 24 de noviembre de 2008.

PRUEBA ESCRITA. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 2º BACHILLERATO A. 24 de noviembre de 2008. PRUEBA ESCRITA. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 2º BACHILLERATO A. 24 de noviembre de 2008. Ejercicio 1. 1 1 1 2 Sean A= t 1 0 y B = 3. 6 0 1 5 a) Halle el rango de A en función del valor

Más detalles

Definición A.1 (Matrices) Una matriz A es un ordenamiento regular de escalares (recordemos, a 11 a a 1n a 21 a 22...

Definición A.1 (Matrices) Una matriz A es un ordenamiento regular de escalares (recordemos, a 11 a a 1n a 21 a 22... Anexo A Introducción a las Matrices A Definiciones y teoría básicas Los elementos de las matrices que aparecen en este curso son números o funciones Los designaremos con el apelativo común de escalares

Más detalles

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada CONTROL MODERNO Y ÓPTIMO (MT 227C) Clase5-2 Elizabeth Villota Cerna Semestre 2I - UNI

Más detalles

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Métodos Iterativos Introducción Definición Métodos Iterativos Método de Jacobi Convergencia Método de Gauss

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Tema 4: Teorema de la función inversa e impĺıcita

Tema 4: Teorema de la función inversa e impĺıcita Tema 4: Teorema de la función inversa e impĺıcita Teorema de la función inversa para varias variables Sea A R n un conjunto abierto, f : A R n y ā A Si f es de clase C 1 en A y det(df(ā)) 0, entonces existe

Más detalles

Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales

Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales Soluciones del capítulo 4 Sistemas de ecuaciones diferenciales lineales Héctor Lomelí y Beatriz Rumbos 8 de marzo de 4 a X t C e t + C e 4t b X t C e c X t C d X t C + t + C e 4t 4 + C e t t + C e 4 a

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Diagonalización de matrices

Diagonalización de matrices Diagonalización de matrices María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Diagonalización de matrices Matemáticas I 1 / 22 Valores y vectores propios de una matriz Definición

Más detalles

MODELACION EN VARIABLES DE ESTADO

MODELACION EN VARIABLES DE ESTADO CAPÍTULO VIII INGENIERÍA DE SISTEMAS I MODELACION EN VARIABLES DE ESTADO 8.1. DEFINICIONES Estado: El estado de un sistema dinámico es el conjunto más pequeño de variables de modo que el conocimiento de

Más detalles

Controlabilidad y observabilidad

Controlabilidad y observabilidad Lección 5 Controlabilidad y observabilidad 1 Eventos alcanzables y controlables Σ = (T, U, U, X, Y, ψ, η) un sistema de control arbitrario T X= Espacio de eventos (t, x) T X= el estado del sistema en el

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},

Más detalles

Tema 21. Exponencial de una matriz Formas canónicas de Jordan.

Tema 21. Exponencial de una matriz Formas canónicas de Jordan. Tema 21 Exponencial de una matriz En este tema vamos a definir y calcular la exponencial de una matriz cuadrada mediante una expresión formalmente análoga al desarrollo en serie de potencias de la exponencial

Más detalles

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices Álgebra Lineal Tema 6. Transformaciones lineales y matrices Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S.

Más detalles

Problemas Resueltos sobre Límites y Continuidad

Problemas Resueltos sobre Límites y Continuidad Problemas Resueltos sobre Límites y Continuidad Repaso de Problemas típicos 3 3+ + 4 0 + + 3 + 5 6 ( ) 7 sen sen 8 0 0 3 3 sen sen + + + + 3 + 5 + + + 0 6 ( ) + sen 9 0 0 + sen + sen + sen 3 e π + tg Repaso

Más detalles

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Problemas teóricos El los siguientes problemas se denota por L(V ) conjunto de los operadores lineales en un espacio vectorial V (en otras palabras, de las transformaciones lineales

Más detalles

ALGEBRA LINEAL Segundo Semestre. Parte II

ALGEBRA LINEAL Segundo Semestre. Parte II 1 Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas ALGEBRA LINEAL 2015 Segundo Semestre Parte II 2 1. Valores y Vectores propios. Diagonalización.Forma de Jordan. 1.1. Polinomios

Más detalles

Teoría Moderna de Control Lineal

Teoría Moderna de Control Lineal Teoría Moderna de Control Lineal 2 Índice general 1. Sistemas lineales determinísticos multivariables, invariantes, continuos 1 1.1. Introducción....................................... 1 1.1.1. Descripción

Más detalles

Maestría en Matemáticas

Maestría en Matemáticas Reactivos Propuestos para Examen de Admisión (ASN) Ingreso en Agosto de 203. Sea R el conjunto de los números reales y S el conjunto de todas las funciones valuadas en los reales con dominio en R. Muestre

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Hermes Pantoja Carhuavilca 1 de

Más detalles

Parte I. Diseño utilizando Variables de Estado

Parte I. Diseño utilizando Variables de Estado Parte I. Diseño utilizando Variables de Estado El control de un proceso representado a través de variables de estado nos proporciona la ventaja de que se tendrán a todas las variables del proceso cumpliendo

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO

Más detalles

Álgebra Lineal. Tema 13. Mínimos cuadrados. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 13. Mínimos cuadrados. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 3. Mínimos cuadrados Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Índice

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

Relaciones de Recurrencia

Relaciones de Recurrencia Relaciones de Recurrencia Elvio Accinelli Abstract Estas notas no pretenden ser más que una sugerencia para el comienzo del tema Relaciones de Recurrencia. En realidad es el esquema de como pienso abordar

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales Semana 8 - Clase 5// Tema 4: Sistemas y Series Sistemas de Ecuaciones Diferenciales Cuando consideramos la evolución de sistemas con varios grados de libertad o con varias partículas, naturalmente arribamos

Más detalles

Seis problemas resueltos de geometría

Seis problemas resueltos de geometría Problema 1 a) Dados los puntos P(4, 2, 3) y Q(2, 0, 5), da la ecuación implícita del plano π de modo que el punto simétrico de P respecto a π es Q. b) Calcula el valor del parámetro λ R para que el plano

Más detalles

A502 - Teoría de Sistemas y Señales

A502 - Teoría de Sistemas y Señales A50 - Teoría de Sistemas y Señales Transparencias Densidad Espectral de Energía de Señales Aperiódicas Autor: Dr. Juan Carlos Gómez Señales de Potencia Verifican TD: TC: Algunas Definiciones < P lim (n)

Más detalles

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas EXÁMENES DE MATEMÁTICAS Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 5 de julio de 99. Dada la aplicación lineal: T

Más detalles

Instituto Politécnico Nacional

Instituto Politécnico Nacional Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica, Zacatenco Ingeniería en Comunicaciones y Electrónica Academia de Matemáticas Fundamentos de Álgebra. Tarea 2 Julio César

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

EJERCICIOS DE DETERMINANTES

EJERCICIOS DE DETERMINANTES EJERCICIOS DE 1) Si m n = 5, cuál es el valor de cada uno de estos determinantes? Justifica las p q respuestas: 2) Resuelve las siguientes ecuaciones: 3) Calcula el valor de estos determinantes: 4) Halla

Más detalles

Transformaciones Lineales y Espacio Dual

Transformaciones Lineales y Espacio Dual Transformaciones Lineales y Espacio Dual Juan Pablo De Rasis 22 de abril de 2018 El presente artículo tiene como objetivo la exposición de soluciones a problemas de Álgebra Lineal concernientes a transformaciones

Más detalles

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares).

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Capítulo 6 Espacios Vectoriales 6.1 Definiciones Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Definición 6.1.1 Se dice que

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales.

Definición. Un conjunto de ecuaciones diferenciales con varias funciones incógnitas, se llama sistema de ecuaciones diferenciales. Unidad 4. Sistemas de Ecuaciones Diferenciales Las ecuaciones diferenciales tienen una gran utilidad en ingeniería así como en la ciencia, pero la mayoría de los problemas no dependen de una ecuación,

Más detalles

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial.

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. Tema 3- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas Ingeniería Técnica Industrial Especialidad en Electrónica Industrial Índice General 1 Introducción 1 2 Sistemas lineales de primer orden

Más detalles

Tema 3: Forma canónica de Jordan de una matriz.

Tema 3: Forma canónica de Jordan de una matriz. Forma canónica de Jordan de una matriz 1 Tema 3: Forma canónica de Jordan de una matriz. 1. Planteamiento del problema. Matrices semejantes. Matrices triangularizables. El problema que nos planteamos en

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles