Probabilidad condicional

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Probabilidad condicional"

Transcripción

1 robabldad odoal osderemos ua ura que otee bolllas roas y 5 blaas. De las bolllas roas so lsas y rayadas y de las 5 bolllas blaas so lsas y ua sola es rayada. Supogamos que se extrae ua bollla y s que la hayamos mrado algue os de que la bollla es roa uál es la probabldad de que la bollla sea rayada? Sea los suesos : la bollla es rayada y : la bollla es roa. Obvamete s gua formaó preva /9/ y /9. S embargo omo sabemos que la bollla es roa la probabldad de que sea rayada es ½ ya que de las roas la mtad es lsa y la mtad rayada. Observemos que al ourrr el espao muestral se redue. E geeral dado u expermeto y su espao muestral asoado queremos determar ómo afeta a la probabldad de el heho de saber que ha ourrdo otro eveto. Defó: Sea y evetos tales que > 0 la probabldad del eveto odoal a la ourrea del eveto es Eemplos: E el eemplo ateror /9 y / 9 / 9 osderemos ua poblaó e la que ada dvduo es lasfado segú dos rteros: es o o portador de HIV y perteee o o a erto grupo de resgo que deomaremos R. La orrespodete tabla de probabldades es: ortador No portador erteee a R No perteee a R E esta poblaó la probabldad de que u dvduo sea portador es y la probabldad de que sea portador y perteeza al grupo de resgo R es Dado que ua persoa seleoada al azar perteee al grupo de resgo R uál es la probabldad de que sea portador? es der que 50 de ada 000 dvduos del grupo de resgo R so probablemete portadores de HIV.. 0

2 alulemos ahora la probabldad de que ua persoa sea portadora de HIV dado que o perteee al grupo de resgo R es der que sólo de ada 000 dvduos o perteeetes al grupo de resgo R so posbles portadores de HIV. ropedades de la robabldad odoal: Dado u sueso fo tal que > 0 es ua probabldad e el setdo que satsfae los axomas de probabldad y por lo tato todas las propedades que se dedue a partr de ellos. or eemplo:. 0 para todo sueso.. S. S Dem: S. Eeros: Verfar que satsfae el axoma a. Verfar que + Regla del produto: Dados dos suesos y tales que > 0 S además > 0 Eemplo: E el eemplo presetado al omezo supogamos ahora que se extrae dos bolllas s reposó. uál es la probabldad de extraer ua bollla roa y ua blaa e ese orde? Sea : la prmera bollla es roa y D: la seguda bollla es blaa. debemos alular D. plado la regla del produto 5 0 D D

3 La regla del produto es espealmete útl uado el expermeto osta de varas etapas ya que se puede geeralzar. sí por eemplo s > 0 y > 0 se tee y se extede a suesos. Eemplo: E el msmo eemplo ómo podemos obteer la probabldad de que la seguda bollla extraída sea blaa sueso D?. Sabemos alular usado la regla del produto la probabldad de que la seguda sea blaa y la prmera sea roa. Hemos vsto que esta probabldad es D 5 8. Del msmo modo podemos obteer la probabldad de que ambas bolllas sea blaas sueso D. Esta probabldad es 5 0 D D S ahora observamos que el sueso D puede esrbrse omo se obtee D D D D D + D ómo podemos obteer ahora la probabldad de que la prmera bollla haya sdo roa sueso sabedo que la seguda fue blaa sueso D? La probabldad requerda es D 5 8 D. D 5 9 Los resultados y so eemplos de aplaó de los dos Teoremas que veremos a otuaó: el Teorema de la robabldad Total y el Teorema de ayes respetvamete. Defó: Ua oleó de evetos muestral S s... osttuye ua partó del espao.. > 0

4 .! S Teorema de la probabldad total: Sea... ua partó del espao muestral S y sea u sueso ualquera Dem:!! S omo etoes.! Teorema de ayes: Sea... ua partó del espao muestral S y sea u sueso ualquera tal que > 0 Dem: E el umerador se apló la regla del produto y e el deomador el Teorema de la probabldad total. El Teorema de ayes desrbe ómo es posble revsar la probabldad al de u eveto o probabldad a pror para reflear la formaó adoal que os provee la ourrea de u eveto relaoado. La probabldad revsada se deoma probabldad a posteror.

5 Eemplo: Supogamos que erta prueba para detetar la presea de ua efermedad e u dvduo da resultado postvo deteta la presea de la efermedad e u dvduo efermo o probabldad 0.99 y e u dvduo sao o probabldad 0.0 falso postvo. or lo tato dha prueba o deteta la efermedad e u dvduo sao o probabldad 0.98 y o la deteta e u dvduo efermo o probabldad 0.0 falso egatvo. Es der que s deotamos : la persoa padee esa efermedad y : la prueba es postva Se supoe e base a estudos prevos que la dea de esa efermedad e erta poblaó es 0.00 es der que la probabldad a pror de es Se seleoa al azar u dvduo de esa poblaó se le apla la prueba y el resultado es postvo uál es la probabldad de que e efeto padeza la efermedad? Debemos alular la probabldad a posteror de : or lo tato la probabldad de que esté efermo habedo sdo postvo el resultado de la prueba es aproxmadamete Las probabldades a posteror depede fuertemete de las probabldades a pror. S se apla la prueba a dvduos de ua poblaó e la ual la dea de la efermedad es muho mayor també aumetará la probabldad a posteror. Verfque ésto supoedo ahora que 0.0. Más adelate desarrollaremos otro eemplo de aplaó de estos Teoremas. Idepedea La defó de probabldad odoal os permte revsar la probabldad asgada a u sueso uado se sabe que otro sueso ha ourrdo. Hay asos e los que metras que e otros es der que la ourrea del sueso o altera la probabldad de ourrea de. Eemplo: De ua ura que otee bolllas egras y 6 blaas se extrae dos bolllas s reposó uál es la probabldad de que la seguda bollla sea blaa sabedo que la prmera es egra? Deomado : la seguda bollla es blaa y : la prmera bollla es egra 6. 9

6 or otra parte y por lo tato es der que la ourrea del sueso modfa la probabldad del sueso. Observemos que la probabldad de que la seguda bollla sea blaa ode o la probabldad de que la prmera lo sea. Eero: Verfar que e ambo s las extraoes se realza o reposó. Dremos que los evetos y so depedetes s la formaó aera de la ourrea o o de uo de ellos o afeta la probabldad de ourrea del otro Defó: Los evetos y so depedetes s S la gualdad o se umple demos que y so depedetes. roposó: Supogamos > 0 y so depedetes s y sólo s. Dem: S > 0 está be defda pero por ser y depedetes etoes plado la regla del produto s >0. Observaó: S 0 omo 0 y por lo tato la gualdad sempre se satsfae. Eemplo: De u mazo de 0 artas españolas se extrae ua arta al azar. osderemos los sguetes suesos: : la arta es opa o espada : la arta o es opa : la arta es opa u oro

7 6 etoes y o so depedetes. etoes y so depedetes. ropedades: S los suesos y so exluyetes es der s y s >0 > 0 etoes y o so depedetes. Dem: E efeto e este aso. 0 S 0 etoes es depedete de ualquer sueso tal que > 0. Dem: omo 0 y por lo tato es der que y so depedetes. S y 0 < > y o so depedetes. Dem: omo. Luego y o so depedetes. S y so suesos depedetes y també lo so. Dem: +. Eero: Demostrar que s y so suesos depedetes y també lo so. Idepedea de más de dos evetos: La defó de depedea de dos evetos puede extederse a más de dos. Defó: Los evetos... so depedetes s para todo... y para todo outo de ídes { }... tales que < < <... se verfa Es der que es eesaro verfar odoes.

8 7 Observaó: S los suesos... so depedetes etoes so depedetes de a pares pero la reíproa o es erta. Eemplos: Sea { } S u espao de equprobabldad y osderemos y los suesos { } { } { }. demás es der que los suesos so depedetes de a pares. S embargo y por lo tato los suesos y o so depedetes. Veamos u eemplo també para el aso e el ual se satsfae la fatorzaó de y o se umple para algua de las terseoes dobles. Sea { } S u espao de equprobabldad y osderemos los suesos { } { } { } omo ates. demás 8

9 Se observa que o se satsfae ua de las gualdades pero sí se satsfae. 8 Falmete veremos u eemplo e el que utlzamos los dferetes oeptos y propedades estudadas e esta Seó. Eemplo: Muhos sstemas de omputaó trabaa o eormes bases de datos omo por eemplo sstemas de taretas de rédto o sstemas de reservas de pasaes aéreos. Debdo al volume de datos volurado la velodad de aeso al sstema depede de las araterístas de las udades de almaeameto utlzadas omo así també de las redes de omuaó oetadas a la base de datos. Nos oetraremos e el prmer aspeto es der e el problema del almaeameto. osderemos udades de almaeameto osstetes e dsos plaos ada uo de los uáles está ompuesto por u outo de allos oétros deomados pstas. ada psta está a su vez subdvda e áreas de almaeameto deomadas setores. El aeso al dso se realza medate ua abeza letora/grabadora que se puede mover haa adelate o haa atrás a lo largo de u brazo fo. El dso rota bao ese brazo y la abeza lee o modfa u dato uado el orrespodete setor pasa bao ella. osderemos u dso que osste de 76 pstas umeradas de 0 a 75 o 8 setores ada ua umerados de 0 a 7. Supogamos que e el mometo e que se debe aeder a u dato que se euetra e el setor de la psta 5 la abeza se euetra sobre la psta. Etoes debe moverse e prmer lugar hasta la psta 5 este movmeto se llama búsqueda o see y luego debe esperar hasta que el setor pase bao ella este período de tempo se deoma retardo rotaoal o rotatoal delay. S el abezal se mueve por eemplo a ua velodad de. mlsegudos ms por psta la búsqueda del eemplo demadaría ms. S además supoemos que el dso realza ua rotaó ompleta e 0 ms el retardo rotaoal puede demorar etre 0 y 0 ms o u promedo de 5 ms. or últmo supogamos que el aeso oreto al dato demora. mlsegudos. Este sstema es de aturaleza probablísta o aleatora. Las demadas de aeso arrba e tempos aleatoros y se demada datos aleatoros e el setdo de que o sabemos o atpaó qué dato se va a requerr. alemos el sguete eemplo. Supogamos que las probabldades de que ua demada de aeso orrespoda a ada ua de las 76 pstas so guales y que aesos suesvos so depedetes. Supogamos també que la abeza letora/grabadora se euetra sobre la psta 0 uál es la probabldad de que el tempo total de búsqueda see para las dos sguetes demadas de aeso sea a lo sumo 50 ms? Sea el sueso la búsqueda ombada demora a lo sumo 50 ms y defamos para ada los suesos 8

10 T : el prmero de los dos aesos sguetes orrespoderá a u dato que está sobre la psta Etoes T T T omo se observa debemos alular T es der debemos alular la probabldad de que la búsqueda ombada demore a lo sumo 50 ms dado que el prmer aeso es a la psta para or eemplo ómo alularíamos T? 0 6 S la prmera búsqueda os lleva a la psta 6 demadará 6-0. ms 9. ms por lo tato la búsqueda total llevará a lo sumo 50 ms s la seguda búsqueda demora a lo sumo 0.8 ms. omo e 0.8 ms se puede reorrer a lo sumo 9 pstas 0.8/. o podemos r más allá de la psta 6-97 o de la psta E otras palabras T6 será la probabldad de que el segudo peddo de aeso se refera a u dato que está etre las pstas 7 y 5 lusve. Dado que supoemos que todas las pstas so equprobables 9 T6 76 Del msmo modo se alula todas las probabldades odoales requerdas e y se obtee el valor de peddo.. 9

Probabilidad condicional

Probabilidad condicional robabldades y Estadísta Computaón Faultad de Cenas Exatas y Naturales Unversdad de uenos res na M. ano y Elena J. Martínez 00 robabldad ondonal Consderemos una urna que ontene bolllas roas y 5 blanas.

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Uversdad de los des Faultad de Ceas Eoómas y Soales Esuela de Estadísta Estruturas lgebraas Prof. Gudberto José Leó Ragel MÉRID, 2015 1 Profesor Gudberto Leó Teoría Estadísta I Uversdad de Los des - Faultad

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

Probabilidad condicionada. Probabilidad Total. Teorema de Bayes

Probabilidad condicionada. Probabilidad Total. Teorema de Bayes robabldad odoada. robabldad Total. Teorema de aes utor: Olvá alzada Emlaa (Leada e Matemátas rofesora de Matemátas e Eduaó Seudara). úblo: lumos de ahllerato de eas. Estudates de matemátas profesores de

Más detalles

Concepto de circuito eléctrico

Concepto de circuito eléctrico oepto de ruto elétro U ampo eletromagéto se halla ompletamete desrpto uado se ooe los vetores tesdad de ampo elétro E y de ampo magéto H e todos sus putos e fuó del tempo. Esto mpla el empleo de fuoes

Más detalles

Incertidumbre en las mediciones directas e indirectas

Incertidumbre en las mediciones directas e indirectas ertdumbre e las medoes dretas e dretas Reordado Para la seleó de u strumeto de medó os basamos e la Regla de Oro de la Metrología Luego, 0. T T La toleraa orregda por la ertdumbre del strumeto queda defda

Más detalles

Héctor Allende 1. w Ω, resultado elemental. Ω : Espacio Muestral: Todos los posibles

Héctor Allende 1. w Ω, resultado elemental. Ω : Espacio Muestral: Todos los posibles Coeptos ásos Capítulo Curso ILI-80 I Semestre 00 Profesor: Hétor llede Expermeto aleatoro : ξ Espao Muestral : Ω Eveto o Sueso : ; ;. Evetos elemetales, seguros e mposbles Probabldad : grado de ertdumbre

Más detalles

Probabilidades y Estadística Cs. de la Computación 1er cuatrimestre 2004

Probabilidades y Estadística Cs. de la Computación 1er cuatrimestre 2004 robabldades y Estadísta Cs. de la Computaó er uatrmestre 004 Itroduó reve reseña hstóra: La teoría de robabldades omeza a partr de ua dsputa etre jugadores e 654. Los dos matemátos que partparo de tales

Más detalles

Comparaciones múltiples entre medias Tema 6. 1. Comparaciones múltiples. 2. Comparaciones planeadas o a priori: 2.2 Comparaciones de tendencia

Comparaciones múltiples entre medias Tema 6. 1. Comparaciones múltiples. 2. Comparaciones planeadas o a priori: 2.2 Comparaciones de tendencia Comparaoes múltples etre medas Tema 6. Comparaoes múltples. Comparaoes plaeadas o a pror:. F plaeadas. Comparaoes de tedea. Comparaoes o plaeadas o a posteror:. Prueba de Tukey.. Prueba de Sheffé . Comparaoes

Más detalles

Probabilidades y Estadística Cs. de la Computación

Probabilidades y Estadística Cs. de la Computación robabldades y Estadísta Computaó Faultad de Ceas Exatas y Naturales. Uversdad de ueos res a M. ao y Elea J. Martíez 004 robabldades y Estadísta Cs. de la Computaó Itroduó reve reseña hstóra: La teoría

Más detalles

TEMA 1 PROBABILIDAD 1/10. Ejemplos : E y E

TEMA 1 PROBABILIDAD 1/10. Ejemplos : E y E wwwovauedes/webpages/ilde/web/dexhtm e-mal: mozas@elxuedes TEMA PROAILIDAD SUCESOS Exste feómeos o expermetos que, repetdos e détcas codcoes, sempre proporcoa el msmo resultado, a los que llamaremos determstas,

Más detalles

Posible solución del examen de Investigación Operativa de Sistemas de septiembre de Problema 1: (3 puntos)

Posible solución del examen de Investigación Operativa de Sistemas de septiembre de Problema 1: (3 puntos) Posble soluó del eame de Ivestgaó Operatva de Sstemas de septembre de 6 Problema : ( putos) U profesor rebe ua práta ada mañaa y la poe e ua pla. Por las tardes, o probabldad / orrge todas las prátas de

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

PLANTEAMIENTO DE PROBLEMAS DE BALANCE DE MATERIA EN PROCESOS SIN REACCIÓN QUÍMICA

PLANTEAMIENTO DE PROBLEMAS DE BALANCE DE MATERIA EN PROCESOS SIN REACCIÓN QUÍMICA PLNTMNTO PROLMS LN MTR N PROSOS SN RÓN QUÍM. teder ual es el objetvo que se persgue e el proeso, la fuó de ada equpo (por lo meos ualtatvamete) y vsualzar los feómeos y trasformaoes que ourre.. detfar

Más detalles

CAPITULO IV EQUILIBRIO VAPOR -LIQUIDO

CAPITULO IV EQUILIBRIO VAPOR -LIQUIDO CAITULO I EQUILIBRIO AOR -LIQUIDO ara evaluar el fuoameto de u sstema de separaó e etapas, es eesaro efetuar álulos de equlbro vapor-líqudo de balae de matera e ada etapa de separaó, utlado para ello ua

Más detalles

Métodos indirectos de estimación: razón, regresión y diferencia

Métodos indirectos de estimación: razón, regresión y diferencia Métodos drectos de estmacó: razó, regresó dfereca Cotedo. Itroduccó, defcó de estmadores drectos. Estmador de razó, propedades varazas. Límtes de cofaza. 3. Tamaño de la muestra e los estmadores de razó

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FCULTD DE INGENIERÍ U N M ROILIDD Y ESTDÍSTIC Iree atrca Valdez y lfaro reev@servdor.uam.mx T E M S DEL CURSO. álss Estadístco de datos muestrales. 2. Fudametos de la Teoría de la probabldad. 3. Varables

Más detalles

7. Muestreo con probabilidades desiguales.

7. Muestreo con probabilidades desiguales. 7. Muestreo co probabldades desguales. 7. Itroduccó. 7.. Probabldades de clusó. 7.. Pesos del dseño muestral. 7.. Alguos métodos co probabldades desguales. 7. Estmacó de la meda, proporcó total poblacoales.

Más detalles

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad.

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad. Parte : MECÁNICA CUÁNTICA 1. Los postulados de la Mecáca Cuátca.. Estados Estacoaros. 3. Relacó de Icertdumbre de Heseberg. 4. Teorema de compatbldad. 1 U breve repaso de Mecáca Clásca 1. Partícula clásca:

Más detalles

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3 Probabldad PROBABILIDAD 1. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó

Más detalles

Análisis de Regresión y Correlación Lineal

Análisis de Regresión y Correlación Lineal Aálss de Regresó y Correlacó Leal Dr. Pastore, Jua Igaco Profesor Adjuto. Aálss de Regresó y Correlacó Leal Hasta ahora hemos cetrado uestra atecó prcpalmete e ua sola varable de respuesta umérca o e seres

Más detalles

PARTE 1 - PROBABILIDAD

PARTE 1 - PROBABILIDAD arte - robabldad rof. María. tarell RTE - ROILIDD - robabldad. - Espacos muestrales y evetos. La Teoría de robabldades estuda los llamados expermetos aleatoros. Ejemplos cláscos de expermetos aleatoros

Más detalles

( A) P( B) 4.2 Definición y cálculo de probabilidades Función de probabilidad

( A) P( B) 4.2 Definición y cálculo de probabilidades Función de probabilidad 4. Defcó y cálculo de probabldades 4.. Fucó de probabldad Defcó: Sea la famla de sucesos asocada a u expermeto aleatoro de espaco muestral Ω. Se cosdera ua fucó : R, que verfca las dos propedades 0 y Ω

Más detalles

PARTE 1 - PROBABILIDAD

PARTE 1 - PROBABILIDAD arte - robabldad rof. María. tarell RTE - ROILIDD - robabldad. - Espacos muestrales y evetos. La Teoría de robabldades estuda los llamados expermetos aleatoros. Eemplos cláscos de expermetos aleatoros

Más detalles

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas.

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas. Estadístca (Q) Dra. Daa M. Kelmasky 99. Teoremas límte Frecueca Relatva 0.5 0.6 0.7 0.8 0.9.0 0 00 00 300 400 Orde de la trada Fgura : Frecueca relatva de cara para ua sucesó de 400 tradas. La fgura muestra

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

Análisis de Datos en Psicología I. Preguntas de examen. Temas 4 y 5

Análisis de Datos en Psicología I. Preguntas de examen. Temas 4 y 5 Aálss de Datos e Psología I. Pregutas de eame. Temas y p 7 9 0. 0. 0. 0. 9-0. Tabla. Dstrbuó, e proporoes, de las putuaoes de u grupo de 0 sujetos e ua prueba de eaje de formas. 7 9 Tabla. Dstrbuó de freueas

Más detalles

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3 Probabldad PROBBILIDD. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó axomátca

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Las familias infinitas siempre están asociadas a experimentos cuyo número de posibles resultados es infinito.

Las familias infinitas siempre están asociadas a experimentos cuyo número de posibles resultados es infinito. 1.4 MEDID DE PROBBILIDD La probabldad es ua parte de las matemátas; omo tal, su ostruó teóra es smlar a la del álgebra o a la de la geometría: a partr de uas uatas premsas, llamadas axomas, se dedue lógamete

Más detalles

MECÁNICA VIBRATORIA. M. López-García Pemex-Refinación, Refinería Francisco I. Madero Cd. Madero, Tamaulipas, México

MECÁNICA VIBRATORIA. M. López-García Pemex-Refinación, Refinería Francisco I. Madero Cd. Madero, Tamaulipas, México MCÁNICA VIBRAORIA M. López-Garía Peme-Refaó, Refería Fraso I. Madero Cd. Madero, amaulpas, Méo mal: mlgam@yahoo.om.m MAYO 4, 9 He deddo empezar este artíulo presetado la euaó que otedríamos omo resultado

Más detalles

ERRORES EN LAS MEDIDAS (Conceptos elementales)

ERRORES EN LAS MEDIDAS (Conceptos elementales) ERRORES E LAS MEDIDAS (Coceptos elemetales). Medda y tpos de errores ormalmete, al realzar varas meddas de ua magtud físca, se obtee e ellas valores dferetes. E muchas ocasoes, esta dfereca se debe a causas

Más detalles

PARTE SEGUNDA: INFERENCIA ESTADÍSTICA

PARTE SEGUNDA: INFERENCIA ESTADÍSTICA ESTADÍSTICA II PARTE SEGUNDA: INFERENCIA ESTADÍSTICA TEMA III: INTRODUCCION A LA INFERENCIA III..- Itroduccó III..- La eleccó de la muestra. Tpos de muestreo III.3.- Muestreo aleatoro smple. Estadístcos

Más detalles

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 2017 ÁLGEBRA II (LSI PI) UNIDAD Nº 5 RANSFORMACIONES LINEALES Facultad de Cecas Exactas y ecologías UNIERSIDAD NACIONAL DE SANIAGO DEL ESERO aa Error! No hay texto co el estlo especfcado e el documeto

Más detalles

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

UN VIAJE POR EL MUNDO DE LA PROBABILIDAD

UN VIAJE POR EL MUNDO DE LA PROBABILIDAD UN VIAJE POR EL MUNDO DE LA PROBABILIDAD AUTORÍA JUAN JOSÉ LEÓN ROMERA TEMÁTICA PROBABILIDAD ETAPA BACHILLERATO Resume E el presete artículo se trata los cotedos relacoados co Probabldad. Se hace u acercameto,

Más detalles

Espacios con producto interior

Espacios con producto interior Espacos co producto teror [Versó prelmar] Prof. Isabel Arrata Z. Algebra Leal E esta udad, todos los espacos ectorales será reales Sea V u espaco ectoral sobre. U producto teror (p..) e V es ua fucó

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS Epermeto: I. OJETIVOS UNIVERSIDD DE TM Facultad de ecas Naturales Departameto de Físca TEORÍ DE ERRORES Idetfcar errores sstemátcos y accdetales e u proceso de medcó. ompreder los coceptos de eacttud y

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Tema 5 Soluciones aproximadas a la ecuación de Schrödinger

Tema 5 Soluciones aproximadas a la ecuación de Schrödinger Tema 5 oluoes aproxmadas a la euaó de hrödger La euaó de hrödger sólo puede ser resuelta de forma exata e uos poos asos: la partíula e la aa, el oslador armóo, el rotor rígdo, el átomo de hdrógeo y muy

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS PROBABILIDAD ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE 009- DURACIÓN

Más detalles

Problemas discretos con valores iniciales

Problemas discretos con valores iniciales Problemas dscretos co valores cales Gustavo Adolfo Juarez Slva Iés Navarro El presete trabajo pretede dfudr problemas dscretos co valores cales (e adelate PVID), a partr de ecuacoes e dferecas leales co

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUÉRICO (58) Tema 4. Apromacó de Fucoes Juo. Ecuetre los polomos de meor grado que terpola a los sguetes cojutos de datos plateado y resolvedo u sstema de ecuacoes leales: 7 y 5-4 7 y 4 9 6.5.7.

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

Teoría de Telecomunicaciones

Teoría de Telecomunicaciones Uersdad del Caua - FIET UIO E MOULCIÓ udo de Modulaó Uersdad del Caua Teoría de Teleomuaoes epartameto de Teleomuaoes Uersdad del Caua - FIET UIO E MOULCIÓ udo de modulaó leal Este aálss se basa e el sstema

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

GUÍA Nº 3 Probabilidades y Estadística Teoría de las Probabilidades

GUÍA Nº 3 Probabilidades y Estadística Teoría de las Probabilidades U.T.F.S.M. Departameto de Matemátia GUÍA Nº robabilidades y Estadístia Teoría de las robabilidades rofesor oordiador : Sr. Hétor Allede O. Ayudate oordiador : Rubé arra V. EJERIIO Nº. Ua aja otiee bolitas,

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

Aplicando Teorı a de Colas en Direccio n de Operaciones

Aplicando Teorı a de Colas en Direccio n de Operaciones Aplado Teorı a de Colas e Dreo de Operaoes José edro Garía Sabater Grupo ROGLE Departameto de Orgazaó de Empresas Uversdad oltéa de Valea. Curso 25 / 26 arte de estos aputes está basados e la fudametal

Más detalles

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Capítulo Probabldades Estadístca Computacoal II Semestre 004 Profesores: Héctor llede (hallede@f.utfsm.cl Rodrgo Salas (rsalas@f.utfsm.cl

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Métodos de Ordenamiento

Métodos de Ordenamiento Aálss y Complejdad de Algortmos Métodos de Ordeameto Arturo Díaz Pérez pos de ordeameto y meddas de efea Algortmos básos QukSort HeapSort BSort RadxSort Arboles de Desó Aálss y Dseño de Algortmos Sortg-

Más detalles

CAPÍTULO 20: NÚMEROS COMPLEJOS (II)

CAPÍTULO 20: NÚMEROS COMPLEJOS (II) CAPÍTULO 0: ÚMEROS COMPLEJOS (II) Date Guerrero-Chaduví Pura, 05 FACULTAD DE IGEIERÍA Área Departametal de Igeería Idustral y de Sstemas CAPÍTULO 0: ÚMEROS COMPLEJOS (II) Esta obra está bajo ua lceca Creatve

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

al nivel de significación α P6: Conclusión: Se debe interpretar la decisión tomada en Paso 5.

al nivel de significación α P6: Conclusión: Se debe interpretar la decisión tomada en Paso 5. 5. NÁLISIS DE VRINZ CONTENIDOS: OBJETIVOS: 5... Prueba de aálss de varaza. 5.. Comparacoes múltples. Determar los pasos a segur al realzar ua prueba de aálss de varaza Platear hpótess para la prueba de

Más detalles

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN Qué es ESADISICA? Es u couto de la rama de las Matemátcas Es algo aburrdo que mplca u motó de cuetas 3 Es u couto de téccas que se puede usar para probar cualquer cosa 4 Es u couto de coocmetos téccas

Más detalles

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción.

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción. TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO 5..- Itroduccó. Stuacoes segú el vel de formacó: Certeza. Icertdumbre parcal o resgo: (Iversoes co resgo) Icertdumbre total: (Iversoes co certdumbre)

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Números Complejos PREGUNTAS MÁS FRECUENTES. Qué es la udad magara? Es u elemeto del que coocemos úcamete su cuadrado:.obvamete, o se trata de u úmero real.. Qué es u úmero complejo?

Más detalles

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C Los axomas de la probabldad obabldad El prmer paso para descrbr la certdumbre es cosderar el cojuto de posbles resultados obtedos a partr de u expermeto aleatoro. Este cojuto es llamado espaco muestral

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C Ua empresa motadora de equpos electrócos está realzado u estudo sobre aluos de los compoetes que utlza. E partcular mde el tempo de vda e meses reales de los procesadores que mota, dode a aluos de ellos

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN TEMAS 1-2-3 CUESTIOARIO DE AUTOEVALUACIÓ 2.1.- Al realzar los cálculos para obteer el Ídce de G se observa que: p 3 > q 3 y que p 4 >q 4 etoces: La prmera desgualdad es falsa y la seguda certa. La prmera

Más detalles

10 MUESTREO. n 1 9/ / σ σ 1

10 MUESTREO. n 1 9/ / σ σ 1 10 MUESTREO 1 Cómo varará la desvacó típca muestral s se multplca por cuatro el tamaño de la muestra? Y s se aumeta el tamaño de la muestra de 16 a 144? S µ y so la meda y la desvacó típca poblacoales,

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) Oetvos El alumo coocerá aplcará y comparará alguos métodos de terpolacó umérca de ucoes. Al al de esta práctca el alumo podrá:. Oteer ua ucó que cotega u couto dado de putos e u plao utlzado los métodos

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 6 ÁLGEBRA II (LSI PI) UNIDAD Nº 6 VALORES Y VECTORES PROPIOS Facultad de Cecas Exactas y Tecologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO aa Error! No hay texto co el estlo especfcado e el documeto.

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

Inferencia Estadística

Inferencia Estadística Ifereca Estadístca Poblacó y muestra Coceptos y defcoes Muestra Aleatora Smple (MAS) Cosderemos ua poblacó, cuya fucó de dstrbucó esta dada por F(), la cual está costtuda por u úmero fto de posbles valores,

Más detalles

Administración de Empresas. 9 Las decisiones de inversión: Conceptos básicos 9.1

Administración de Empresas. 9 Las decisiones de inversión: Conceptos básicos 9.1 Admstraó de Empresas. 9 Las desoes de versó: Coeptos básos 9. TEMA 9: LAS DECISIONES DE INVERSIÓN: CONCEPTOS BÁSICOS ESQUEMA DEL TEMA: 9.. Coepto de versó y tpos. 9.. Valor del dero e el tempo. 9.3. Tpo

Más detalles

PyE_ EF1_TIPO2_

PyE_ EF1_TIPO2_ SEMESTRE 9- TIPO DURACIÓN MÁIMA.5 HORAS JUNIO DE 9 NOMBRE. "Scram" es el térmo que utlza los geeros ucleares para descrbr u rápdo cerre de emergeca de u reactor uclear. La dustra uclear ha hecho esuerzos

Más detalles

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 5 Modelos de Probabldades Estadístca stca Computacoal II Semestre 005 Profesores: Héctor llede (hallede@f.utfsm.cl

Más detalles

Universidad Técnica Federico Santa María

Universidad Técnica Federico Santa María Uversdad Técca Federco Sata María Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 4 Probabldades Estadístca Computacoal II Semestre 006 Profesores: Héctor llede

Más detalles

2. Censura y truncamiento

2. Censura y truncamiento 2. Cesura y trucameto Los datos de tempo de fallo se preseta e dferetes formas que crea problemas especales cuado se aalza. E muchas ocasoes o se cooce co exacttud el valor del tempo de fallo y úcamete

Más detalles

1 Estadística. Profesora María Durbán

1 Estadística. Profesora María Durbán Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el

Más detalles

CAPÍTULO 4: ANÁLISIS. estado del ambiente y por la decisión. Si se toma una decisión

CAPÍTULO 4: ANÁLISIS. estado del ambiente y por la decisión. Si se toma una decisión CAPÍTULO 4: ANÁLISIS 4.. Coeptos Básos 4.. Problema de la toma de desó Sea S la sere de todos los posbles estados del ambete, D la sere de todas las desoes dspobles y R la sere de resultados realzables

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

NOMBRE Apellido Paterno Apellido Materno Nombre(s)

NOMBRE Apellido Paterno Apellido Materno Nombre(s) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Problemas de Polímeros. Química Física III

Problemas de Polímeros. Química Física III Problemas de Polímeros Químca Físca III 7..- Del fraccoameto de ua muestra de u determado polímero se obtuvero los sguetes resultados: Fraccó º, g 5, g/mol,75,6,886,89,,75,57,56 5,9,68 6,8,8 7,55,5 8,6,9

Más detalles

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función

Fórmulas de de Derivación Numérica: Aproximación de de la la derivada primera de de una función Uversdad Poltécca de Madrd Igeería de Mas Fórmulas de de Dervacó Numérca: Aproxmacó de de la la dervada prmera de de ua fucó Prof. Alfredo López L Beto Prof. Carlos Code LázaroL Prof. Arturo dalgo LópezL

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

Problemas de Polímeros. Química Física Avanzada Iñaki Tuñón 2010/2011

Problemas de Polímeros. Química Física Avanzada Iñaki Tuñón 2010/2011 Problemas de Polímeros Químca Físca Avazada Iñak Tuñó / POL.-U polímero moodsperso de masa molecular. gmol - está cotamado e u % e peso co ua mpureza de peso molecular. gmol -. Calcular z,, Co los datos

Más detalles

TEMA 4: NÚMEROS COMPLEJOS

TEMA 4: NÚMEROS COMPLEJOS TEMA : COMPLEJOS 1 EN FOMA BINÓMICA 1.1 DEFINICIONES Sabemos que la resolucó de alguas ecuacoes de º grado coduce a ua raíz cuadrada de u º egatvo. Dcha raíz o tee setdo e el cojuto de los úmeros reales.

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

Del correcto uso de las fracciones parciales.

Del correcto uso de las fracciones parciales. Del correcto uso de las fraccoes parcales. Rubé Emauel Madrd García. E este opúsculo haré u aálss de lo que hoy llamamos fraccoes parcales, lo cual o es otra cosa que la descomposcó del cocete etre dos

Más detalles