se cumple que: a = b = c ó si a + b + c = 0 Desigualdades e Inecuaciones 1. Si: x 2 < a a < x < a a > 0 2. Si x 2 > a x > a ó x < - a a > 0

Tamaño: px
Comenzar la demostración a partir de la página:

Download "se cumple que: a = b = c ó si a + b + c = 0 Desigualdades e Inecuaciones 1. Si: x 2 < a a < x < a a > 0 2. Si x 2 > a x > a ó x < - a a > 0"

Transcripción

1 Exlusiv Uiversidd grri Exlusiv Uiversidd grri + + = se umple que: = = ó si + + = 0 Leyes de Expetes. m. = m + m m. =. 0 = 4. - = 5. = 6. (.) =. 7. = 8. ( m ) = ( ) m = m 9.. =. 0. = m m m. = = m. m =. x = y x = y 4. x = y = 0 5. x x = x = Prduts Ntles. ( + ) + +. ( ) +. ( + ) ( ) 4. ( + ) + ( ) ( + ) 5. ( + ) ( ) 4 6. ( + + ) ( + ) ( ) + 9. ( + ) + + ( + ) 0. ( ) ( ). ( + ) ( + ) +. ( ) ( + + ). ( + + ) ( + ) ( + ) ( + ) 4. (x + ) (x + ) x + ( + )x + 5. (x + ) (x +) (x + ) x + ( + + )x + ( + + ) x + 6. ( + + ) ( + ) ( + + ) ( + + ) Si: + + = = = + + ó Grup de Estudi PROMEDIO telf. / / Pg. Desigulddes e Ieuies. Si: x < < x < > 0. Si x > x > ó x < - > 0. Si: Si: 0 0 Vlr slut. x 0. x = - x. x = x = x 4. - x x x 5. x = x 6. x. y = x y x x 7. = y y 8. x + y x + y 9. x = x = x = - 0. x =, 0 x = x = -. x =, < 0 x. x, > 0 - x. x x x - Fries lgeris Prpiedd:. Frió Prpi:. Frió Imprpi: Fries Priles.. (MCM) (MCD) P(x). Q(x) x x + 4 x + x x + 4 x x + x N = + ( x + )( x + ) ( x + ) ( x + ) N P Q R = + + ( ) ( x + ) x + ( x + ) ( x + ) Grup de Estudi PROMEDIO telf. / / Pg.

2 Exlusiv Uiversidd grri Exlusiv Uiversidd grri. N x + C = + ( x ) x ± ± ( x m x + ) Rdiió Rilizió Cs Expresió Ftr rilizte I II III ± m IV ± m + V m + ± Rdiles Dles S ± P = m ±, Dde: S = m + P = m.. Númers Cmplejs. i = i. i = -. i = -i 4. i 4 = 5. ( + i) = i 6. ( i) = -i + i 7. = i i i 8. = i + i 9. ( + i) 4 = ( i) 4 = -4 Euies Lieles Si: x = = 0 x = 0 Si: 0 Euió mptile determid Númer Rel + i = + di d Númer imgiri pur + i = + di d Si: = 0 = 0 Euió mptile idetermid Si: = 0 0 Euió imptile Oservió: Td euió mptile es sistete y td euió imptile es isistete. Grup de Estudi PROMEDIO telf. / / Pg. Euies de Segud Grd Frm: x + x + = x = 4, x = Disusió de sus Ríes Se: Δ = 4 Disrimite 4 ) Δ > 0 x x R ) Δ = 0 x = x R ) Δ < 0 Ls ríes s mplejs jugds. Prpieddes de sus ríes. S = x + x =. P = x. x =. D = x x = 4 Cstruió de u euió de segud grd x Sx + P = 0 Sistem de Euies Lieles Se: x + y = mx + y = p. Sistem Cmptile Determid m. Sistem Imptile surd = m p Euies Plimiles Euió iudrd: x 4 + x +. Sum de ríes: x + x + x + x 4 = 0. Sum de prduts iris: x. x + x. x 4 =. Prdut de ríes: x. x. x. x 4 =. Sistem Cmptile Idetermid = = m p Grup de Estudi PROMEDIO telf. / / Pg. 4

3 Exlusiv Uiversidd grri Exlusiv Uiversidd grri Terem de Crd Viete x + x - + x - + Dx z Sum de ríes x + x + x + x = Sum iri x x + x x +.. = Sum Teriri x x x + x x x 4 + = Prdut de ríes z x x x. x = ± es pr (+) es impr (-) d Lgritms. Lg N = x N = x. Lg x = x LgN. N = 4. Lg = m m 5. Lg =. Lg 6. Lg =. Lg 7. Lg (x.y) = Lg x + Lg y 8. Lg (x/y) = Lg x Lg y 9. Lg = Lg Lg 0. Lg = Lg. Lg = Lg. Clg = - Lg. tilg N = N 4. Lg tilg N = N 5. tilg Lg N = N 6. L (x) = Lg e x 7. Si: Lg x = Lg y x = y 8. Si: M = N Lg M = Lg N CONJUNTOS Extesió: Eumer ls elemets Cmpresió: Sit. = {x/x N} Perteei: elemet Cjut Ilusió: su jut jut # Su juts: [P()] = () # Su juts prpis: () # Cjuts mprles # Cjuts distits # Cjuts equivletes # RDICL F = D Frió Prpi: N < D Frió Imprpi: N > D Frió Mixt: 5, 7 7 Frió equivlete k = 5 5k () = () = # Cjuts igules elemets igules e igul tidd Uió: Iterseió: Deiml periódi pur: 0, = 999 Deiml periódi mixt: 0,d = () = () d 9900 C = = {, 4} U 4 Grup de Estudi PROMEDIO telf. / / Pg. 5 Grup de Estudi PROMEDIO telf. / / Pg. 6

4 Exlusiv Uiversidd grri Exlusiv Uiversidd grri RZONES Y PROPORCIONES r = rzó gemétri r =. rzó ritméti: dde: = teedete = seuete Prprió gemétri ) P.G. disret ( d). = d Prmedis d = y d extrems y medis d = 4t prpril P.. = ) P.G. tiu (medis igules) = =. Prpieddes: d = = = = k m p q = mk; = k = pk d = qk d = k m + + p + q = terer prpril = medi prpril ó medi gemétri... d 4 = k ; m.. p. q dde 4 es el úmer de rzes MGNITUDES PROPORCIONLES Dp = k Ip. = k Reprt Prpril Diret: d.p,, # Z N (+) + + N k = + + r prte + + d prte + + r prte + + Ivers: I.P D.P.,,, # Z / N / / m..m. (,, ) =.. DP (.. ) (.. ) + (.. ) + + N k = + + r prte + + d prte + + r prte + + L mpuest: (ls ds) P.G. =.... PH = P.. > P.G. > P.H. MH = MG = M. MH + ( ) M MG = 4( M + MG) + M = MG = REGL DE Diret Vl sles x 4.0.8(500) x = = Ivers: Orers dís x x = 0.0 = 40 dís 5 Cmpuest Orers dís rs 0 0 /5 x 0 /5 x 0. 0 = 0 = 5 rers Grup de Estudi PROMEDIO telf. / / Pg. 7 Grup de Estudi PROMEDIO telf. / / Pg. 8

5 Exlusiv Uiversidd grri Exlusiv Uiversidd grri PORCENTJES El 7% de Divisió: D = dq + r geerl D = dq d + rd D = dq e re Pv = P + G Pv > P rd + re = d r mi = Pv = P P Pv < P Pv = Pl rej ó desuet G rut = G et + Gsts + 0% - 0% 0 0% 70% % l que pg 00 00% - 77% % desuet CUTRO OPERCIONES Sum: t, t, t, t t = t + ( )r t = t + r qe qd = r mx = d Cmplemet ritméti C( ) = 0 4 C ( d) = 0 d C ( ) (9 )(9 )(0 ) C ( de) (9 )(9 )(9 )(9 d)(0 e) Divisiilidd, 4, 8, 6 de 5, 5, 5, e de de t + t S = Rest: N S = D x y z y = 9 x + z = 9 - = x + Multipliió: M m = P m m () m () prdut Prduts priles de # PRIMOS Y COMPUESTOS N = α. β Z φ # divisres tles (D ) D = (α + ) (β + ) (φ + ) # divisres prims (Dp)... Z # divisres simples (Ds) Ds = Dp + 4 de = 8 5 Grup de Estudi PROMEDIO telf. / / Pg. 9 Grup de Estudi PROMEDIO telf. / / Pg. 0

6 Exlusiv Uiversidd grri Divisres mpuests (D) D = D Ds Sum de divisres (S) α + β + φ+ Z S =.... Z Sum de Dp + + Z Sum de Ds + + Z + S Ds = S Dp + MCD y MCM N =. 5. MCD =. 5 M = MCM = lgritm de Eulides ó métd de suesivs (MCD) MCD 0 0 residus Prpieddes. y s PESI MCD = MCM =.. = MCDq = MCDq.. = MCD. MCM 4. MCDq q = MCM + x 5. N N = mm ( + x ) + x + x Grup de Estudi PROMEDIO telf. / / Pg.

= = = n. Radicación. a con a < 0 y n par, en el conjunto de los reales = 27. Raíz n-ésima de un número. Número radical. Cuidado!!

= = = n. Radicación. a con a < 0 y n par, en el conjunto de los reales = 27. Raíz n-ésima de un número. Número radical. Cuidado!! Mtemátic 4º ñ Arte Ríz -ésim de u úmer Rdicció Llmms ríz -ésim de u úmer rel, y l simblizms, u úmer b defiid de l siguiete frm: b b > b, ℵ Si es pr, > 0, 0 Si es impr, b b, ℵ Númer rdicl 5 Ejempls: 04

Más detalles

SERIES DE NÚMEROS REALES: CRITERIOS DE CONVERGENCIA

SERIES DE NÚMEROS REALES: CRITERIOS DE CONVERGENCIA SERIES DE NÚMEROS REALES: CRITERIOS DE CONVERGENCIA Cipri Stig Zrgz Deprtmet de Mtemátics Diciembre de 2009 Ccepts Serie U serie de úmers reles es u pr rded (f g ; fa g) e el que f g es u sucesió de úmers

Más detalles

GUÍA DE TRABAJO Nº3 RAÍCES 2017 Nombre:. Fecha:..

GUÍA DE TRABAJO Nº3 RAÍCES 2017 Nombre:. Fecha:.. GUÍA DE TRABAJO Nº RAÍCES 017 Nomre:. Fech:.. Coteidos Ríz eésim e el cojuto de los úmeros reles. DEFINICIÓN: E geerl, si es u úmero turl myor que 1 y es u úmero rel, decimos que x x, etoces x es l ríz

Más detalles

SUCESIONES DE NÚMEROS REALES

SUCESIONES DE NÚMEROS REALES SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N

Más detalles

TEMA 1. NÚMEROS (REPASO)

TEMA 1. NÚMEROS (REPASO) TEMA. NÚMEROS (REPASO).. FACTORIZACIÓN MÚLTIPLOS: Sn múltipls de un númer tds quells que se btienen l multiplicrl pr cer pr culquier númer nturl. DIVISORES: Se dice que un númer b es divisr de tr númer,

Más detalles

UNIDAD I INTRODUCCIÓN AL ÁLGEBRA

UNIDAD I INTRODUCCIÓN AL ÁLGEBRA Vierretordo Adémio Fultd de Cieis Admiistrtivs Lieitur e Admiistrió Meió Gerei y Merdeo Uidd Curriulr: Mtemáti I UNIDAD I INTRODUCCIÓN AL ÁLGEBRA Elordo por: Ig. Roy Altuve Rg, Esp. Ciudd Ojed, eero 2017

Más detalles

1.- Clausura ó cerradura:

1.- Clausura ó cerradura: 8 Sigos: Ddos, lr etoes El Sistem [ ( < de 0 Números 0 < Reles ) (0 < < 0) ] < 0 [ (0 < 0 < ) ( < 0 < 0) ] 0 < 9- Trsitiv:,, lr, < y < se tiee < 0- Mootoí de l sum: < y lr etoes < - Mootoí del produto:,,

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel B. Elaborado por: Christopher Trejos Castillo ÁLGEBRA Olimpid Costrricese de Mtemátics II Elimitori 011 Curso preprtorio Nivel B Elbordo por: Christopher Trejos Cstillo ÁLGEBRA Iicimos demostrdo dos resultdos que puede ser importtes pr resolver problems olímpicos.

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

TEORIA DE CONJUNTOS ARITMETICA ACADEMIA PREUNIVERSITARIA. Lic. F. Alberto Quispe Ayala 1

TEORIA DE CONJUNTOS ARITMETICA ACADEMIA PREUNIVERSITARIA. Lic. F. Alberto Quispe Ayala 1 Est et p ( B ). Se lee: B est ilui e TEORI DE CONJUNTOS B est tei e B es sujut e Ejempl: Se: {,,,, 5, 6} B {,, 5} 6 B 5 ete llves, p ejempl: Lueg ( B ) Pe ( B). NOCION DE CONJUNTO U jut es l euió, leió

Más detalles

TP: "POTENCIACIÓN" exponente. "n" veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0: a

TP: POTENCIACIÓN exponente. n veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0: a TP: "POTENCIACIÓN" Defiiió Ddo u ierto úmero rel, llmremos "potei eésim de " l produto de por sí mismo u tidd de vees; siedo u úmero turl. E símolos: se expoete........ p POTENCIA ENÉSIMA de Ej:.. "" vees

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

NÚMEROS REALES Clasificación. Acerca de las operaciones

NÚMEROS REALES Clasificación. Acerca de las operaciones NÚMEROS REALES Clsifiió Aer de ls oerioes - Prioridd. Prétesis de detro fuer.. Poteis y ríes.. Multiliioes y divisioes de izquierd dereh. Sums y rets, de izquierd dereh o ositivos or u ldo y egtivos or

Más detalles

AlGEBRA LINEAL Y GEOMETRIA ANALITICA (0250) PARCIAL I SEMESTRE Nombre y Apellido: C.I:

AlGEBRA LINEAL Y GEOMETRIA ANALITICA (0250) PARCIAL I SEMESTRE Nombre y Apellido: C.I: U.C.V. F.I.U.C.V. lgebr LINEL Y GEOMETRI NLITIC (5) PRCIL I SEMESTRE -6 9--6 CICLO BÁSICO DEPRTMENTO DE MTEMÁTIC PLICD Nomre y pellido: C.I: ) ( putos) Coloque e el prétesis l letr V o F segú se verdder

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

Matemáticas Propedéutico para Profesional. Fracciones Algebraicas

Matemáticas Propedéutico para Profesional. Fracciones Algebraicas Uiversidd Tec Mileio: Profesiol Mtemátics Propedéutico pr Profesiol Mtemátics Propedéutico pr Profesiol Tem. Opercioes co frccioes lgebrics, rdicles úmeros complejos. Opercioes: Frccioes Algebrics Simplificció.

Más detalles

NÚMEROS REALES NEGATIVOS (Z - ) 0 POSITIVOS (Z + )

NÚMEROS REALES NEGATIVOS (Z - ) 0 POSITIVOS (Z + ) LOS NÚMEROS REALES Sistem de úmeros reles Vlor soluto COMPENTECIA: Utilizr rgumetos de l teorí de úmeros pr justificr relcioes que ivolucr los úmeros turles NÚMEROS REALES Recuerde que: REALES (R) IRRACIONALES

Más detalles

EXAMEN: AMPLIACIÓN DE MATEMATICAS Y TRIGONOMETRIA ESFÉRICA (F.FEBRERO) CURSO:2009/10 05 de febrero de 2010

EXAMEN: AMPLIACIÓN DE MATEMATICAS Y TRIGONOMETRIA ESFÉRICA (F.FEBRERO) CURSO:2009/10 05 de febrero de 2010 EXÁMENES CURSO CTUL. RESOLUCIÓN ISIDORO PONTE E.S.M.C, EXMEN: MPLICIÓN DE MTEMTICS Y TRIGONOMETRI ESFÉRIC (F.FEBRERO) CURSO:9/ de febrer de. )Dd l mtri, clcul: I ( I mtri idetidd) ) Clculms I I Clculms

Más detalles

TP: "POTENCIACIÓN" exponente. "n" veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0 : a

TP: POTENCIACIÓN exponente. n veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0 : a TP: "POTENCIACIÓN" Defiiió Ddo u ierto úmero rel, llmremos "potei eésim de " l produto de por sí mismo u tidd de vees; siedo u úmero turl. E símolos: se expoete........ p POTENCIA ENÉSIMA de Ej:.. 8 ""

Más detalles

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES el log de mte de id. NÚMEROS REALES 4º ESO pág. NÚMEROS REALES Expresió deciml de los úmeros rcioles. Pr psr u úmero rciol de form frcciori form deciml st dividir el umerdor por el deomidor. Como l hcer

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

el blog de mate de aida CSI: sistemas de ecuaciones. pág

el blog de mate de aida CSI: sistemas de ecuaciones. pág el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i

Más detalles

Una magnitud es cualquier propiedad que se puede medir numéricamente.

Una magnitud es cualquier propiedad que se puede medir numéricamente. Etueri Clses Prticulres Online Tem 4. Proporcionlidd Mgnitudes Un mgnitud es culquier propiedd que se puede medir numéricmente. Ejemplos: longitud, cpcidd de un recipiente, peso, Rzón L rzón es el cociente

Más detalles

Racionales. Representación decimal de los reales. En los racionales la parte decimal se repite, es periódica e infinita Ejemplos:

Racionales. Representación decimal de los reales. En los racionales la parte decimal se repite, es periódica e infinita Ejemplos: PUNTES DE ÁLGER Números reles. Vemos los diferetes tipos de úmeros reles. Números turles:,,,... Eteros: -, -, -, 0,... m Rioles: So rzoes etre úmeros eteros r, o m eteros 0 7 ejemplos de rioles so,,, 0.7.

Más detalles

1. Sumar monomios semejantes:

1. Sumar monomios semejantes: HOJA 1: Monomios 1. Sumar monomios semejantes: a) 3x + 4x 5x b) 6x 3 x 3 + 3x 3 c) x 5 + 4x 5 7x 5 d) x 4 + 6x 4 + 3x 4 5x 4 e) 7x + 9x 8x + x f) y + 5y 3y g) 3x y 6x y + 5x y h) 4xy xy 7xy i) a 6 3a 6

Más detalles

CURSO DE INGRESO AREA MATEMATICA

CURSO DE INGRESO AREA MATEMATICA Uiversidd Niol de Misioes UNIVERSIDAD NACIONAL DE MISIONES FACULTAD DE INGENIERÍA CURSO DE INGRESO AREA MATEMATICA el ietífio explor lo que existe, el igeiero re lo que u h existido Krm Ju Muel de Ross

Más detalles

Sucesiones de números reales

Sucesiones de números reales Tem 5 Sucesioes de úmeros reles Defiició 5.1 Llmremos sucesió de úmeros reles culquier plicció f: IN IR y l represetremos por { } =1, dode = f(. Por comodidd, diremos tmbié que l sucesió es el cojuto ordedo

Más detalles

PAUTA ACTIVIDADES: PROPIEDADES DE LAS POTENCIAS DE BASE RACIONAL

PAUTA ACTIVIDADES: PROPIEDADES DE LAS POTENCIAS DE BASE RACIONAL PAUTA ACTIVIDADES: PROPIEDADES DE LAS POTENCIAS DE BASE RACIONAL E este teril de trbj se relizrá ejercicis pr verificr si ls prpieddes de ls ptecis c bse turl eter y expete turl se cuple cud l bse es u

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada Ju Atoio Goále Mot Profesor de Mtemátis del Colegio Ju XIII Zidí de Grd ESPACIOS VECTORIALES CONCEPTO DE ESPACIO VECTORIAL. Se V u ojuto ulquier R el ojuto de úmeros reles. E V defiimos dos lees de omposiió:

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. Llamamos magnitud a toda propiedad física susceptible de ser medida.

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. Llamamos magnitud a toda propiedad física susceptible de ser medida. CÁLCULO VECTORIAL.- MAGNITUDES ESCALARES Y VECTORIALES. Llmms mgtud td prpedd físc susceptle de ser medd. Al lr ls mgtudes físcs pdems cmprr que este ds clses e dferecds: ) Mgtudes esclres: s quells que

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

LISTA TEMÁTICA PARA EL ORAL (ALUMNOS LIBRES Y REGLAMENTADOS)

LISTA TEMÁTICA PARA EL ORAL (ALUMNOS LIBRES Y REGLAMENTADOS) LISTA TEMÁTICA PARA EL ORAL (ALUMNOS LIBRES Y REGLAMENTADOS) ATENCIÓN Se eser que el estudite, o solo coozc ls defiicioes y teorems que rece e est list, sio que se cz de resoder stisfctorimete culquier

Más detalles

Universidad Pontificia Bolivariana Ciencia Básica Taller Álgebra Lineal CAPITULO I: MATRICES

Universidad Pontificia Bolivariana Ciencia Básica Taller Álgebra Lineal CAPITULO I: MATRICES Uiversidd Poifii Bolivri Ciei Bási Tller Álger Liel CPITULO I: MTRICES. Dds ls mries:, B C Efeur ls siguiees operioes, si es posile. E so e o ser posile, eplique por qué. -B T -B T B T d T C e B - f C

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos. Tem 1: Números Reles 1.0 Símbolos Mtemáticos Distito Aproximdo Meor o igul Myor o igul Uió Itersecció Cojuto vcío Existe No existe Perteece No perteece Subcojuto Implic Equivlete 1.1 Cojuto de los úmeros

Más detalles

Operaciones con Fracciones

Operaciones con Fracciones Operioes o Frioes Reuió e frioes Frioes o igul eomior: De os frioes que tiee el mismo eomior es meor l que tiee meor umeror. Frioes o igul umeror: De os frioes que tiee el mismo umeror es meor l que tiee

Más detalles

EJERCICIOS DE RAÍCES. a b = RECORDAR: Definición de raíz n-ésima: Equivalencia con una potencia de exponente fraccionario:

EJERCICIOS DE RAÍCES. a b = RECORDAR: Definición de raíz n-ésima: Equivalencia con una potencia de exponente fraccionario: EJERCICIOS DE RAÍCES RECORDAR: Defiició de ríz ésim: x x Equivleci co u poteci de expoete frcciorio: m x Simplificció de rdicles/ídice comú: Propieddes de ls ríces: x m/ b b b p m p b m m ( ) m Itroducir/extrer

Más detalles

Los números reales. 1.4 Orden de los números reales CAPÍTULO

Los números reales. 1.4 Orden de los números reales CAPÍTULO 1 CAPÍTULO 1 Los números reles 1 1.4 Orden de los números reles Un número que pertenezc los reles. 2 R / es positivo si está l derech del cero; esto se denot sí: > 0 o bien 0 < : 0 Un número que pertenezc

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

Walter Orlando Gonzales Caicedo Ejemplo: 1 División entera Observaciones: 1)

Walter Orlando Gonzales Caicedo Ejemplo: 1 División entera Observaciones: 1) NÚMEROS NTURLES Y NÚMEROS ENTEROS División entera D r d q Nta : + r Z 0 D d x q + r D,d,q, Z(d 0) lgritm de la Divisió entera Clases de división entera División Exacta (r 0) Ejempl: 6 0 8 En general: D

Más detalles

Simetrías de Ondas Periódicas

Simetrías de Ondas Periódicas Simerís de Ods Periódics Ls simerís permie clculr más fácilmee ls ceficiees de Furier de u señl periódic. ips de Simerís: ) Pr ) Impr ) Medi Od Cmicies de ess simerís: ) Pr + Medi Od Cur de Od Pr ) Impr

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente.

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente. LAS POTENCIAS Y SUS PROPIEDADES Defiició de poteci y sigos de est. Multiplicció y divisió de potecis de igul bse. Poteci de poteci. Poteci de u producto y de u cuociete. Multiplicció y divisió de potecis

Más detalles

Multiplicar y dividir radicales

Multiplicar y dividir radicales Multiplicr y dividir rdicles 1 Repso Simplificr: 000 4 0 18 1000 4 4 4 10 4 0 0 ( ( ) 0 8) 0 0 0 8 Multiplicción de rdicles Si y son números reles, n n n n n Podemos decir que cundo multiplicmos rdicles

Más detalles

MATEMÁTICAS-FACSÍMIL N 9

MATEMÁTICAS-FACSÍMIL N 9 MTEMÁTIS-FSÍMIL N 9. b b b ) - b ) b - ) b D) E) 6 cm ( b) =. El triángulo está inscrito en l mitd de l circunferenci. Si h c = cm y el ldo = 5cm. El rdio de l circunferenci es: ) cm ) 6 cm ) 6 cm O D)

Más detalles

MATEMÁTICA FINANCIERA. Préstamos Comerciales

MATEMÁTICA FINANCIERA. Préstamos Comerciales Préstmos MATEMÁTICA FINANCIERA PRÉSTAMOS Luis Alclá UNSL Segudo Cutrimeste 2016 Defiició Se llm préstmo l operció ficier cosistete e l etreg de u ctidd dd de diero (C 0 ), el pricipl (o deud), por prte

Más detalles

Magnitudes proporcionales I

Magnitudes proporcionales I Mgnitudes proporcionles I Mgnitud: Es todo quello que puede ser medido. Mgnitudes proporcionles: Dos mgnitudes son proporcionles si son dependientes entre sí, es decir, si un de ells vrí, l otr tmbién

Más detalles

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado,

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado, Fcultd de Cotdurí Adiistrció. UNAM Rdicles Autor: Dr. José Muel Becerr Espios MATEMÁTICAS BÁSICAS RADICALES OPERACIONES CON RADICALES U rdicl es culquier rí idicd de u expresió. L rdicció es l operció

Más detalles

Utilizando la fórmula que nos proporciona el número de divisores se tiene que:

Utilizando la fórmula que nos proporciona el número de divisores se tiene que: Hoj de Prolems º Alger IV /. Hllr u úmero etero A que o teg ms ftores primos que, y 7, siedo demás que ª tiee divisores más que A y que ª tiee divisores ms que A. Clulr tmié l sum de todos los divisores

Más detalles

Ejercicios Resueltos T.P. Nº 4: SERIE DE FOURIER

Ejercicios Resueltos T.P. Nº 4: SERIE DE FOURIER Ejeriios Resuelos P Nº 4: SERIE DE FOURIER Ejeriio L señl dd es x( Se pide lulr los oefiiees de l Serie rigooméri de Fourier, es deir,, b y Como l señl o iee igú ipo de simerí, ls iegrles pr hllr los oefiiees

Más detalles

2. CONJUNTOS NUMÉRICOS

2. CONJUNTOS NUMÉRICOS 1. TEORÍA DE CONJUNTOS CONCEPTO DE PERTENENCIA: " " Se el cojuto A {, b} A b A c A CONCEPTO DE SUBCONJUNTO: " " A B [ x A x B, x ] A, A A A, A CONJUNTOS ESPECIALES Cojuto Vcío: { } { } {0} Cojuto Uiverso:

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N GUIA DE TRABAJO PRACTICO Nº PAGINA Nº 69 GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N 4 OBJETIVOS: Lgrar que el Alum: Iterprete el ccept de Dierecial Resuelva ejercicis y prblemas de aplicació. CONTENIDOS:

Más detalles

a se llama la n-ésima potencia de a, siendo a la base y n el

a se llama la n-ésima potencia de a, siendo a la base y n el Guí de estudio Expoetes rdicles Uidd A: Clse Cmilo Eresto Restrepo Estrd, Li Mrí Grjles Vegs Sergio Ivá Restrepo Ocho.. Expoetes rdicles. Este trjo está pesdo pr repsr el álger elemetl estudid e el chillerto.

Más detalles

PROPORCIONALIDAD DIRECTA E INVERSA

PROPORCIONALIDAD DIRECTA E INVERSA PROPORCIONALIDAD DIRECTA E INVERSA Rzón entre dos números Siempre que hblemos de Rzón entre dos números nos estremos refiriendo l cociente (el resultdo de dividirlos) entre ellos. Entonces: Rzón entre

Más detalles

RESOLUCIÓN MCD (A; B) = C A dq 1

RESOLUCIÓN MCD (A; B) = C A dq 1 SEMANA MCD - MCM. L sum de dos números A y B es 65, el cociente entre su MCM y su MCD es 8. Hlle (A - B). A) 8 B) 6 C) 7 D) 48 E) 48 MCD (A; B) = C A dq B dq Donde q y q son números primos entre sí. Luego:

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

a b y se lee a es a b ; a se denomina antecedente y b consecuente.

a b y se lee a es a b ; a se denomina antecedente y b consecuente. 1 Centro Educcionl Sn Crlos de Argón. Dpto. de Mtemátic. Prof.: Ximen Gllegos H. Guí Nº 5 PSU NM 4: Proporcionlidd Nombre: Curso: Fech: Aprendizje Esperdo: Plnte y resuelve problems que requieren plicr

Más detalles

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1

8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1 E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes

Más detalles

Tema 6: Matrices m n

Tema 6: Matrices m n www.seleividd-grd.om Tem : Mries.. Mries. Defiiió primeros ejemplos Se llm mriz rel de dimesió mx l ojuo de m úmeros reles ordedos e m fils (horizoles) olums (veriles). L form más geerl de represer u mriz

Más detalles

Transformaciones lineales

Transformaciones lineales Trsformcioes lieles [Versió prelimir] Prof. Isbel Arrti Z. 1 Se V y W espcios vectoriles sobre el cuerpo R de los úmeros reles. U trsformció liel o plicció liel de V e W es u fució T : V W que stisfce:

Más detalles

A B C. Halla: A) 93 B) 95 C) 87 D) 77 E) Usando las leyes del álgebra de conjuntos, simplificar: A B B A B

A B C. Halla: A) 93 B) 95 C) 87 D) 77 E) Usando las leyes del álgebra de conjuntos, simplificar: A B B A B RITMÉTIC OPERCIONES CON CONJUNTOS 1. Ds cjuts y s tles que: ( U ) = ; ( - ) = 1; ( - ) = 1. Hll () + () ) ) 8 C) 6 D) E) 7. Si (P()) = 18; (P ()) = 16; P( ) = 8. Hll P ( U ) ) 18 ) C) 6 D) 14 E) 1. Se

Más detalles

ANÁLISIS DE CIRCUITOS

ANÁLISIS DE CIRCUITOS ANÁLISIS DE CIRCITOS GRADO EN ELECTRÓNICA Y ATOMÁTICA INDSTRIAL CRSO 2011-12 TEMA 3. SISTEMAS TRIFÁSICOS PARTE I Prfesr: Frnis J. Cell Allá Desph: S333 Emil: fjvier.ell@uh.es 1 TEMA 3. SISTEMAS TRIFÁSICOS

Más detalles

TEMA 4. Anillos de polinomios.

TEMA 4. Anillos de polinomios. TEMA 4 Anillos de polinomios. Ejercicio 4.1. Encontrar un polinomio f(x) de grado 3 tal que: f(0) = 6, f(1) = 12 y f(x) (3x + 3) mod (x 2 + x + 1). Ejercicio 4.2. Demostrar que en un D.E. todos los ideales

Más detalles

( ) (término. a n. 1,..., es una: Sesión 1. Unidad I Progresiones y series. A. Sucesiones y series. B. Progresión Aritmética.

( ) (término. a n. 1,..., es una: Sesión 1. Unidad I Progresiones y series. A. Sucesiones y series. B. Progresión Aritmética. esió Uidd I Progresioes y series. A. ucesioes y series..- Los primeros 4 térmios de l sucesió = y = + (térmio recurrete) so: A),,, B),,, C),,, D),,, E),,,.- Escribe los cutro primeros térmios de l sucesió

Más detalles

PAIEP. Sumas de Riemann

PAIEP. Sumas de Riemann Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,

Más detalles

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN MCD (A; B) = C SEMANA 10 MCD - MCM. q = MCM( A;B) MCD ( A,B) = 7 1 MCD A,B = 7 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN MCD (A; B) = C SEMANA 10 MCD - MCM. q = MCM( A;B) MCD ( A,B) = 7 1 MCD A,B = 7 1 SEMANA MCD - MCM. La suma de dos números A y B es 65, el cociente entre su MCM y su MCD es 8. Halle (A - B). A) 8 B) 6 C) 7 D) 48 E) 48 MCD (A; B) C A dq B dq Donde q y q son números primos entre sí. Luego:

Más detalles

Z={...,-4,-3,-2,-1,0,1,2,3,4,...}

Z={...,-4,-3,-2,-1,0,1,2,3,4,...} TEMA Prelimires: Números y cojutos P- Números eteros: Se deomi úmeros turles (tmbié llmdos eteros positivos) los úmeros que os sirve pr cotr objetos:,,,4,5,... El cojuto de los úmeros turles se desig por

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

ESQUEMA DE LOS CONJUNTOS NUMÉRICOS

ESQUEMA DE LOS CONJUNTOS NUMÉRICOS Miisterio de Educció Uiversidd Tecológic Nciol Fcultd Regiol Treque Luque ESQUEMA DE LOS CONJUNTOS NUMÉRICOS NÚMEROS NATURALES De cuerdo l esquem terior, existe cojutos chicos y grdes, y lguos de ellos

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

MATEMÁTICAS LOS NÚMEROS REALES 4º DE ESO

MATEMÁTICAS LOS NÚMEROS REALES 4º DE ESO MATEMÁTICAS LOS NÚMEROS REALES º DE ESO 1. Núeros reles Clsifiió de los úeros reles Frió geertriz de u úero deil Reresetió de úeros rioles e l ret rel Aroxiioes Itervlos. Ríes y oteis Proieddes de ls oteis

Más detalles

Números complejos. .a C ib/ C.c C id/ D a C c C i.b C d/.a C ib/.c C id/ D ac bd C i.ad C bc/

Números complejos. .a C ib/ C.c C id/ D a C c C i.b C d/.a C ib/.c C id/ D ac bd C i.ad C bc/ Númers cmplejs El cjut frmad pr tds ls úmers de la frma acib, dde a y b s úmers reales, c las peracies de adició y prduct defiidas pr: 1/100.a C ib/ C.c C id/ D a C c C i.b C d/.a C ib/.c C id/ D ac bd

Más detalles

6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2)

6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2) 1. Halla el cociente y el resto de la división: (3x 2 7x + 5) : (x 2 ) 2. Halla el cociente y el resto de la división: (x 3 3x 2 2) : (x 2 + 1) 3. Calcula y simplifica: a) 3x(x + 7) 2 + (2x 1)( 3x + 2)

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS NÚMEOROS COMPLEJOS Defcó: El cojuto de los úmeros complejos es C R R {(, / R y b R} C está formdo por todos los pres ordedos de úmeros reles etre los que defmos u relcó, l guldd, y dos opercoes brs que

Más detalles

SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA

SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA AuldeMte.com SUCESIONES. PROGRESIÓN ARITMÉTICA Y GEOMÉTRICA Breve reseñ históric: Los pitgóricos llmb trigulres los úmeros 3, 6, 0,,... e cosoci co l costrucció que prece e l figur. Se trt de u primer

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Aroxiió de deiles Itervlos. Ríes y oteis Notió ietífi. Oerioes Rdiió. Proieddes de ls oteis de exoete riol Rdiles equivletes Silifir rdiles Extrió

Más detalles

TEMA 2: SISTEMAS DE ECUACIONES LINEALES

TEMA 2: SISTEMAS DE ECUACIONES LINEALES Profesor: Rf Gozález Jiméez Istituto St Eulli TEM 2: SISTEMS DE ECUCIONES LINELES ÍNDICE 2..- Sistems de Ecucioes Lieles. Geerliddes. 2.2.- Sistems equivletes. 2.3.- Resolució de S.E.L. por mtriz ivers.

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Las reglas de divisibilidad Por: Enrique Díaz González

Las reglas de divisibilidad Por: Enrique Díaz González Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Itroducció Desde l escuel elemetl los estudites se les eseñ cudo u etero es divisible, por ejemplo,

Más detalles

Las reglas de divisibilidad

Las reglas de divisibilidad Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Uiversidd Itermeric de Puerto Rico e el Recito de Poce Itroducció Desde l escuel elemetl los estudites

Más detalles

POTENCIA DE UN NÚMERO NATURAL. a, es igual al producto de n veces el número Natural

POTENCIA DE UN NÚMERO NATURAL. a, es igual al producto de n veces el número Natural LICEO DE CERVANTES PP. AGUSTINOS BOGOTÁ ÁREA DE MATEMÁTICAS ASIGNATURA: Mtemátics DOCENTE: Elky F. Ortiz GRADO: QUINTO FECHA: CALIFICACIÓN DESCRIPCIÓN: Guí - Tller de potecició, Rdicció y logritmció. ESTUDIANTE:

Más detalles

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4.

1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4. Amplició potecis y rdicles º ESO Curso 06_07. ESTIMACIÓN DE RADICALES Llmremos estimr u ríz dr u proimció de ell. or ejemplo, 78. Ríz de 78 proimdmete es.. RADICALES EN FORMA DE OTENCIA El vlor de u ríz

Más detalles

TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES

TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES SUCESIÓN NUMÉRICA: es u fució cuyo domiio es el cojuto de los úmeros turles (o u subcojuto de él) y l imge está icluid e el cojuto de los Reles ( ) SUCESIÓN ARITMÉTICA:

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

b=c hipotenusa cateto

b=c hipotenusa cateto 1. nstruir un triángul equiláter nid l ltur. 2. nstruir un triángul isóseles nid l ltur y ls lds igules y.. 1. Diujr un triángul equiláter ulquier n ld ulquier 2. Prlngr l ltur st 50 mm (punt ) 3. Prlngr

Más detalles

EJERCICIOS DE VERANO DE MATEMÁTICAS

EJERCICIOS DE VERANO DE MATEMÁTICAS EJERCICIOS DE VERANO DE MATEMÁTICAS º E.S.O. ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN DE FORMA CLARA Y CONCISA NÚMEROS. Reliz ls siguientes operciones

Más detalles

EJERCICIOS DE RAÍCES

EJERCICIOS DE RAÍCES EJERCICIOS DE RAÍCES º ESO RECORDAR: Definición de ríz n-ésim: n x x Equivlenci con un potenci de exponente frccionrio: n m x Simplificción de rdicles/índice común: Propieddes de ls ríces: x m/n n n b

Más detalles

CURIOSIDADES MATEMATICAS EL TRIANGULO DE PASCAL GENERALIZADO

CURIOSIDADES MATEMATICAS EL TRIANGULO DE PASCAL GENERALIZADO CURIOSIDADES MATEMATICAS EL TRIANGULO DE PASCAL GENERALIZADO JOSÉ FRANCISCO LEGUIZAMÓN ROMERO GRUPO DE INVESTIGACIÓN PIRÁMIDE LÍNEA MEDIOS EDUCATIVOS EN MATEMÁTICAS FACULTAD DE CIENCIAS DE LA EDUCACIÓN

Más detalles

Unidad didáctica 3 Las potencias

Unidad didáctica 3 Las potencias Uidd didáctic Ls potecis 1.- Qué es u poteci? U poteci, es u producto de fctores igules que se repite vris veces. veces El fctor que se repite se llm bse,. El úmero de veces que se repite l bse es el expoete,.

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

Valores y medias. Las propiedades genéticas de una población pueden expresarse en términos de frecuencias alélicas y genotípicas

Valores y medias. Las propiedades genéticas de una población pueden expresarse en términos de frecuencias alélicas y genotípicas Vlores y medis Componentes del fenotipo Medi de l poblción Efecto medio de un gen Vlor mejornte o mérito genético Desvición dominnte Intercción epistátic Bibliogrfí: Flconer. Cp. 7 Nichols. Cp. 14 Vlores

Más detalles

1.- Sean los polinomios:

1.- Sean los polinomios: . EJERCICIOS DE POLINOMIOS 1.- Sean los polinomios: A(x) = 6x 5-4x 4-4x - x + x + 8 B(x) = 5x 5 + 4x 4 - x - x + 5x - 8 C(x) = - 8x 6 + 4x 5 + x 4 - x + 4 Hallar: 1.- A(x) + B(x).- A(x) - C(x).- A(x) -

Más detalles

Raíces Reales y Complejas

Raíces Reales y Complejas Ríces Reles y Complejs Rmó Espioz Armet AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Durte el siglo XVIII, Euler, d Alembert y Lgrge probro, idepedietemete, que todo poliomio de grdo 1 teí u ríz sobre el cmpo

Más detalles

1 Áreas de regiones planas.

1 Áreas de regiones planas. Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].

Más detalles

( x ) 2 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. 1 Saca factor común: 2 Expresa los polinomios siguientes como cuadrado de un binomio:

( x ) 2 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. 1 Saca factor común: 2 Expresa los polinomios siguientes como cuadrado de un binomio: Pág. 1 Página 95 PRACTICA Factor común e identidades notables 1 Saca factor común: a) 9x 2 + 6x 3 b) 2x 3 6x 2 + 4x c) 10x 3 5x 2 d) x 4 x 3 + x 2 x a) 9x 2 +6x 3 = 3(3x 2 + 2x 1) b) 2x 3 6x 2 + 4x = 2x(x

Más detalles