Parámetros Estadísticos

Documentos relacionados
VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

ESTADÍSTICA poblaciones

MEDIDAS DE TENDENCIA CENTRAL

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

ESTADÍSTICA DESCRIPTIVA

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

Muestra: es un subconjunto, extraído de la población, cuyo estudio sirve para inferir características de toda la población

ESTADÍSTICA DESCRIPTIVA

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Estadística descriptiva

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

Tema 2: Distribuciones bidimensionales

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

5.3 Estadísticas de una distribución frecuencial

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

TEMA 2: LOS NÚMEROS COMPLEJOS

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva Introducción

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

Estadística Espacial. José Antonio Rivera Colmenero

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

V II Muestreo por Conglomerados

TEMA 4: VALORACIÓN DE RENTAS

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

6. ESTIMACIÓN PUNTUAL

REGRESIÓN LINEAL SIMPLE

Cálculo y EstadísTICa. Primer Semestre.

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

LOS NÚMEROS COMPLEJOS

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

PROBABILIDAD Y ESTADÍSTICA APLICADA

ESTADÍSTICA. Unidad didáctica ESTADÍSTICA: CONCEPTOS BÁSICOS Caracteres y variables estadísticos

Análisis estadístico de datos muestrales

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.

LECCIONES DE ESTADÍSTICA

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

Aproximación a la distribución normal: el Teorema del Límite Central

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

Guía práctica para la realización de medidas y el cálculo de errores

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

Una Propuesta de Presentación del Tema de Correlación Simple

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

V Muestreo Estratificado

TEMA UNIDAD I: ESTADÍSTICA DESCRIPTIVA

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

-Métodos Estadísticos en Ciencias de la Vida

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

Frecuencia absoluta Les gusta 28 No les gusta 12 Total 40. Posibles resultados. Revisoras: Raquel Caro y Nieves Zuasti

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Tema I. Estadística descriptiva 1 Métodos Estadísticos LECCIONES DE ESTADÍSTICA

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

III. GRÁFICOS DE CONTROL POR VARIABLES (1)

Nociones de Estadística

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

2 - TEORIA DE ERRORES : Calibraciones

Técnicas básicas de calidad

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

Apuestas deportivas por Internet

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE

Manual de Estadística

Sistema binario. Disoluciones de dos componentes.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

MS Word Editor de Ecuaciones

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

2.2 Distribuciones de frecuencias unidimensionales.

Transcripción:

Parámetros Estadístcos E el tema ateror, hemos vsto ua prmera orma de reducr la complejdad de los datos estadístcos de ua dstrbucó, medate la costruccó de tablas y represetacoes grácas. Las tablas estadístcas so ua orma orgazada de dar toda (o cas toda) la ormacó, todos los datos de que dspoemos. Co las grácas estadístcas se perde algo de ormacó (mucho o poco, segú los casos), pero el mesaje "etra por los ojos", que es lo que se pretede. E cualquera de los casos, la catdad de datos que se da es excesva para que sea operatvo, para poder hacer reerecas cocsas a esa dstrbucó o comparacoes rápdas co otras dstrbucoes. Esta es la razó de ser de los parámetros estadístcos, el resumr e u úmero u aspecto relevate de la dstrbucó que pueda dar ua dea de la msma o compararla e ese aspecto, co otras. Evdetemete, todo proceso de sítess colleva ua pérdda de ormacó; pero se gaa e el hecho de que es más ácl trabajar co uos pocos parámetros co sgcado muy precso que co la totaldad de los datos. Los parámetros estadístcos suele clascarse, segú el papel que juega, e varos tpos: Meddas de cetralzacó Meddas de dspersó Meddas de poscó Meddas de asmetría Meddas de aputameto O de tedeca cetral. Las más mportates so: moda (el valor que se preseta co mayor recueca), meda artmétca (suma de todos los valores de ua varable estadístca dvddo por el úmero de valores), meda geométrca, meda armóca y medaa (el valor del dvduo que ocuparía el lugar cetral s se colocara ordeados de meor a mayor). Desvacó meda, varaza, desvacó típca,... Srve para medr el grado de alejameto (dspersó) de los datos. Cuartles, decles, percetles: Señala la stuacó de alguos valores mportates e la dstrbucó. Por ejemplo, los cuartles so los valores que deja a cada lado el 5% y el 75% de los demás. Co los coecetes de asmetría se trata de medr s las observacoes está dspuestas smétrca o asmétrcamete respecto a u valor cetral (e geeral, la meda artmétca) y el grado de esta asmetría. O curtoss, dca s la dstrbucó es más o meos putaguda. I.E.S. Hstorador Chabás -1- Jua Bragado Rodríguez

Meddas de cetralzacó Se llama meddas de cetralzacó a las meddas o parámetros que pretede relejar "e toro a qué valores se agrupa los datos relejados", "qué valores so los más recuetes", etc. A las meddas de cetralzacó també se las llama meddas de tedeca cetral o promedos. Las meddas de tedeca cetral más mportates so: meda artmétca, meda geométrca, meda armóca, medaa y moda. Meda artmétca Se llama meda artmétca de ua varable estadístca a la suma de todos los valores de dcha varable dvddo por el úmero de valores. Sea x ua varable estadístca que toma los valores x 1, x, x 3,..., x co recuecas absolutas 1,, 3,..., respectvamete. La meda artmétca de la varable x se represeta por x, y vee dada por la sguete expresó: x x x x +...+ 1 1 1 1 1 x x 1 1 x Caso dscreto Ejemplo: Las calcacoes e la asgatura Hstora del Arte de los 40 alumos de ua clase vee dada por la sguete tabla: Hallar la calcacó meda. Calcacoes 1 3 4 5 6 7 8 9 Númerode alumos 4 5 8 9 3 4 3 E la práctca, los cálculos se dspoe de la sguete orma: I.E.S. Hstorador Chabás -- Jua Bragado Rodríguez

La meda artmétca será: 1 34 45 58 69 73 84 93 x 40 1 40 53 ' Luego la calcacó meda e Hstora del Arte es 5' 3 Caso cotuo S la varable x es cotua, o aú sedo dscreta, y por tratarse de muchos datos se ecuetra agrupados e clases, se toma como valores x 1,x,x 3,...,x las marcas de clase. Ejemplo: Ejemplo: Se ha aplcado u test sobre satsaccó e el trabajo a 88 empleados de ua ábrca, obteédose los sguetes resultados: Putuacoes Calcular la putuacó meda. Nú mero de trabajadores 38 44 7 44 50 8 50 56 15 56 6 5 6 68 18 68 74 9 74 80 6 I.E.S. Hstorador Chabás -3- Jua Bragado Rodríguez

La putuacó meda será 5. 04 x 59' 14 88 5 0 15 10 5 0 x x Observacoes: Geométrcamete, la meda artmétca está e el puto del eje x stuado bajo "el cetro de gravedad del hstograma", es decr, e el puto dode debería apoyarse el hstograma, para mateerse e equlbro. La meda artmétca es la medda o parámetro de cetralzacó que más se utlza. Puede expresarse e las msmas udades que la varable estudada. Es más: S cambamos de udad los valores de la varable, el cambo de valor expermetado por la meda artmétca equvale a eectuar el msmo cambo de udad co ella. Preseta la vetaja de teer e cueta todos los datos de la dstrbucó, además de resultar muy secllo su cálculo. I.E.S. Hstorador Chabás -4- Jua Bragado Rodríguez

Tee el grave coveete de que s la dstrbucó posee valores extremos, excepcoalmete raros y poco sgcatvos, éstos produce ua dstorsó sobre el valor de la meda, alterado el sgcado de ésta. Por ejemplo, s se trata de hallar la talla meda de los alumos de ua clase y hay u alumo de '05 m, este valor alterará cosderablemete la talla meda de la clase. No sempre es posble realzar el cálculo de la meda artmétca. Por ejemplo: S los datos de la dstrbucó o so cuattatvos so cualtatvos. Cuado los datos de la dstrbucó se ecuetra agrupados e clases, estado alguas de ellas abertas. Por ejemplo, e ua ecuesta sobre lectores de la presa dara, se obtuvo la sguete dstrbucó: Grupos de edad Número de persoas Meores de 18 años 64 Etre 18 y 40 años 1.367 Etre 40 y 60 años 85 Mayores de 60 años 341 E estos casos e los que o sempre es posble calcular la meda, se utlza otras meddas o parámetros de cetralzacó, como por ejemplo la moda y la medaa. U error recuete e el cálculo de la meda. Meda poderada. Hasta aquí hemos cosderado todos los datos co la msma mportaca, es decr, como s todos ellos tuvera la msma abldad. No obstate, puede suceder que e algú caso, debdo al crtero adoptado o a las crcustacas e que se obtuvero los datos, sea ecesaro dar más mportaca a uos datos que a otros. E este caso, la meda se llama meda poderada y su expresó es: x xa xa xa a a +...+ a 1 1 1 1 1 1 1 xa a x 1 1 xa a I.E.S. Hstorador Chabás -5- Jua Bragado Rodríguez

dode a so las dsttas poderacoes o pesos que se adjudca a los datos. Ejemplo: E u curso de C.O.U. los alumos durate u período evaluatvo ha realzado las sguetes pruebas: u exame, dos cotroles y tres tervecoes e clase. Las pruebas, segú acuerdo del Semaro, se valora de la sguete orma: 50% el exame, 30% los cotroles y 0% las tervecoes. S u determado alumo ha obtedo: 7 e el exame, 6 y 8 e los cotroles y 10, 5 y e las tervecoes, obteer su ota meda de la evaluacó. 030 ' 0 ' 705 ' ( 68) ( 10 5 ) x 3 105 030 ' 3 00 ' ' 3 6'73 S e este msmo ejemplo hubésemos cosderado todas las otas co la msma mportaca, la ota meda obteda sería: 7 x 6 8 10 5 6 633 ' Ejemplo: E la tabla sguete se da el cosumo de combustble líqudo, e ltros por habtate, de los pases de la CEE e 1983 (Estadístcas de la Eergía, OCDE 1985). País Ltros por habtate Luxemburgo.518 Damarca 1.813 Bélgca 1.43 Alemaa F. 1.415 Itala 1. 58 Fraca 1. 34 País Ltros por habtate Irlada 1.076 G.Bretaña 1.031 Greca 989 Holada 80 España 814 Portugal 754 Hallar la meda del cosumo de combustble líqudo por habtate para el global de la CEE. S calculamos el cosumo e toda la CEE como meda de los cosumos e cada uo de los 1 pases membros, se tee: 518 1813 143 1415 158 134 1076 1031 989 80 814 754 x 1 I.E.S. Hstorador Chabás -6- Jua Bragado Rodríguez

1608. ' ltros habtate S embargo, esta meda ha sdo erróeamete calculada, pues o se ha tedo e cueta que, por ejemplo, hay muchos más alemaes que luxemburgeses, es decr, o se ha tedo e cueta el peso de la poblacó de cada país. La meda correcta se llama meda poderada (de podus = peso) de los datos segú la poblacó de cada país y daría la sguete tabla: País Poblacó (e mlloes ) Luxemburgo Damarca 0'4 51 ' Bé lg ca 9' 9 Alemaa F. 61'4 Itala Fraca 56'6 54'7 Poblacó País (e mlloes ) Irlada 35 ' GBretaña. 55' 6 Greca 98 ' Holada 14'4 Españ a 381 ' Portugal 101 ' sedo el total de la poblacó de la CEE 319'6 mlloes de habtates. La meda poderada se calcula multplcado cada valor por los pesos (e este caso, poblacoes) respectvos, sumado estos productos y dvdedo por la suma de los pesos (e este caso poblacó total). 518 0' 4 1813 5' 1143 9' 9 1415 61' 4 158 56' 6 134 54' 7 x 0' 4 5' 19' 9 61' 4 56' 6 54' 7 3' 5 55' 6 9' 8 14' 4 38' 110' 1 1076 3' 51031 55' 6 989 9' 8 80 14' 4 814 38' 1 754 10' 1 1161 ' 6 ltros hab Uso de la calculadora para la obtecó de x Los pasos a segur so los sguetes: 1) Procura que la calculadora se ecuetre e dsposcó de eectuar cálculos estadístcos. E tal caso suele presetar e la parte alta de la patalla la otacó SD. E cada modelo, esto se cosgue de u modo dstto. I.E.S. Hstorador Chabás -7- Jua Bragado Rodríguez

) Comprueba que o hay ada acumulado. Para ello pulsa la tecla. S sale 0 e la patalla, estás e codcoes de acumular los datos. S o, borra lo que hay e memora medate la secueca INV AC. 3) Acumulacó de datos: 1 er a dato x 1 recueca 0 a dato x recueca M o DATA M o DATA Así sucesvamete hasta haber cargado todos los datos. 4) Pulsado cualquera de las teclas x x x obtedremos el valor correspodete, y esta cosulta puede hacerse e cualquer mometo del proceso. Después, s se quere, se puede segur troducedo datos. La tecla os da la suma de las recuecas absolutas y por tato equvale a tecla x os da la meda. 1. La 5) S se troduce erróeamete algú dato, se puede suprmr del sguete modo: Dato erróeo INV M o DATA Cálculo de 1 x usado la tabla de recuecas 1) La calculadora debe de estar e modo DEG pero o e modo SD. Ates de comezar, comprueba que o hay gú dato acumulado e la memora. S lo hay, bórralo co la secueca AC M (modelos CASIO). Itroducremos los datos de la sguete maera: 1 er dato x 1 a recueca M Aparece e la patalla el resultado del prmer producto, que aotaremos e la columa correspodete. a dato x recueca M Aparece e la patalla el resultado del segudo producto, que aotaremos debajo del ateror. y así sucesvamete hasta haber do aotado todos los productos. I.E.S. Hstorador Chabás -8- Jua Bragado Rodríguez

) Pulsado la tecla MR obteemos la suma de todos los productos, es decr x 1 Propedades de la meda Las dos propedades que se cta a cotuacó, además de smplcar los cálculos so de aplcacó posteror. 1. S se suma ua costate a todos los valores x, la meda aumeta e el msmo úmero. E eecto, s los uevos valores so x x k, se tee que la ueva meda, x, será: x 1 ( x k) x k x k 1 1 1 1 x 1 1 1 1 k. S se multplca todos los valores de la varable x por el msmo úmero, la meda queda multplcada por el msmo úmero. S tomamos x k x, la ueva meda, x será: ( kx) kx k 1 1 x 1 1 1 1 x k x Meda geométrca La meda geométrca se dee como: k 1 G x 1 x x k x 1 G k x 1 I.E.S. Hstorador Chabás -9- Jua Bragado Rodríguez

sedo k 1 El cálculo de la meda geométrca resulta más ácl s e la expresó ateror se toma logartmos: 1 log G log x log x log x k 1 1 Es decr, el logartmo de la meda geométrca es gual a la meda artmétca de los logartmos de los valores de la varable. Ejemplo: Calcula la meda geométrca de la sguete dstrbucó: 3 log x 1 ' 9363 0' 936 log G 0' 936 G 10 1' 96607 3 10 1 Meda armóca La meda armóca se dee como: H 1 1 x x x 1 1 1 x I.E.S. Hstorador Chabás -10- Jua Bragado Rodríguez

H 1 1 x Ejemplo: Calcula la meda armóca de la sguete dstrbucó: 3 1 10 H 3 55 18 ' ' x 1 Moda Se llama moda de ua varable estadístca al valor de dcha varable que preseta mayor recueca absoluta. Se represeta por M. 0 La moda o tee por qué ser úca, puede haber varos valores de la varable co la mayor recueca. E este caso se drá que la dstrbucó es bmodal, trmodal, etc., segú que sea, 3, etc, los valores de la varable que preseta mayor recueca. També se aplca este ombre a dstrbucoes e las que destaca varos valores co recuecas muy altas, práctcamete guales, auque o todas sea máxmas. Varable estadístca dscreta Ejemplo: Calcular la moda de la dstrbucó x 1 3 4 3 5 La Moda es M 0 3 ya que su recueca 5 es la mayor de la dstrbucó. I.E.S. Hstorador Chabás -11- Jua Bragado Rodríguez

Ejemplo: Calcular la moda de la dstrbucó x 16 17 18 19 0 1 1 8 3 8 Esta dstrbucó es bmodal, ya que preseta dos modas: M 17 M 0 0 0 que correspode a dos valores que preseta détca recueca (8), que es la mayor de la dstrbucó Varable estadístca cotua Ahora be, e el caso de datos agrupados e tervalos teemos que dstgur etre tervalos de ampltud costate e tervalos de ampltud varable. Itervalos de ampltud costate: E el caso de datos agrupados e tervalos es ácl determar la clase modal (clase co mayor recueca), pero el valor detro del tervalo que se presume tega mayor recueca se obtee a partr de la sguete expresó: D1 M0 L c D D 1 L límte eror de la clase modal. c = ampltud de los tervalos. D 1 dereca etre la recueca absoluta de la clase modal y la recueca absoluta de la clase ateror. D dereca etre la recueca absoluta de la clase modal y la recueca absoluta de la clase sguete. Ejemplo: Se ha aplcado u test sobre satsaccó e el trabajo a 88 empleados de ua ábrca, obteédose los sguetes resultados: I.E.S. Hstorador Chabás -1- Jua Bragado Rodríguez

Putuacoes Nú mero de trabajadores 38 44 7 44 50 8 50 56 15 56 6 5 6 68 18 68 74 9 74 80 6 Calcular la moda. La moda está e el tervalo 56 6por ser el que preseta, mayor recueca. Al tervalo 56 6que cotee la moda se le llama clase modal o tervalo modal. Como prmera aproxmacó de la moda se podría tomar la marca de la clase modal, es decr: 59. Aplcado la expresó ateror y teedo e cueta que L 56 c6 D 515 10 D 518 7 1 1 10 M 0 56 6 59 5 10 7 ' Este es el valor que, teórcamete, se supoe tee mayor recueca. Itervalos de ampltud varable: E este caso, teemos que susttur la recueca de cada tervalo por su correspodete desdad de recueca, que como sabemos es el cocete etre la recueca y la ampltud del tervalo. Aquí, la clase modal será la clase que tega mayor desdad de recueca d1 M0 L c d d 1 L límte eror de la clase modal. c = ampltud del tervalo que tee mayor desdad de recueca. d 1 dereca etre la desdad de recueca de la clase modal y la desdad de recueca de la clase ateror. I.E.S. Hstorador Chabás -13- Jua Bragado Rodríguez

d dereca etre la desdad de recueca de la clase modal y la desdad de recueca de la clase sguete. Ejemplo: Cosderemos la sguete dstrbucó: Itervalos 0,4 4,10 10,0 0,40 40,70 0 100 180 60 40 Costrumos la tablas co las desdades de recueca Itervalos d c 04, 0 5 4, 10 100 16' 6 10, 0 180 18 0, 40 60 13 40, 70 40 8 El tervalo que tee mayor desdad de recueca es 10, 0, por tato 18 16' 6 M 0 10 10 1' 19 ( 18 16' 6) ( 18 13) Cálculo de la moda por el método gráco Para las dstrbucoes cuyos datos se ecuetra clascados e tervalos exste u método gráco que permte obteer la moda co certa aproxmacó. Para ello se represeta el hstograma de recuecas absolutas a ser posble sobre papel mlmetrado co el de poder obteer ua mayor precsó. Segudamete se ue, co líeas de putos, los extremos de la clase modal co las cotguas como e el dagrama adjuto (rectas AC y BD). La moda M 0 vee dada por la abscsa P del puto de corte. El dagrama adjuto permte calcular la moda del ejemplo ateror del test sobre satsacó e el trabajo M 0 59'5 por el método gráco utlzado la semejaza de trágulos. I.E.S. Hstorador Chabás -14- Jua Bragado Rodríguez

5 0 15 10 5 0 M 0 x Los trágulos ADP y CPB so semejates y por tato se tee PH DA PK CB Coocemos PK 6PH DA 10 CB 7 luego PH 10 6 PH 60 7PH 6010PH PH 35 ' 7 17 Por tato la moda será M 0 56 3' 5 59' 5 Observacoes Puede ocurrr que alguas dstrbucoes o tega moda; eso ocurre cuado las recuecas de todos los datos so guales. La moda es meos represetatva que la meda artmétca, pero e alguas ocasoes o ocurre así. Es útl para descrbr stuacoes e las cuales tervee varables cualtatvas, como por ejemplo el sexo, el grupo saguíeo o el vel de estudos. No tee setdo hablar de la meda del sexo o de la meda del vel de estudos de los membros del gobero, por ejemplo, y e cambo sí tee setdo decr que la moda es el sexo masculo y el vel de estudos el uverstaro. També tee terés el valor de la moda e los juegos de azar, e los cuales determados valores aparece más veces que otros. Por ejemplo, s e el lazameto de dos dados obteemos las sguetes sumas:, 5, 8, 7, 7, 8, 7, 9, 11, 8, 1, 7, 5, 7, está claro que saber cual es la moda es mportate, y e cambo, coocer la meda o tee utldad e u juego de apuestas. I.E.S. Hstorador Chabás -15- Jua Bragado Rodríguez

E la moda o tervee todos los datos de la dstrbucó. Aú cuado la moda se cosdera ua medda o parámetro de cetralzacó, o sempre tee por qué stuarse e la zoa cetral; es recuete ecotrar la moda próxma a los valores extremos de la dstrbucó. E detva, la moda represeta el valor domate de la dstrbucó; así, por ejemplo, e uas eleccoes la moda es el partdo más votado. Medaa S los datos de la muestra estudada se ordea sguedo u crtero de crecmeto o decrecmeto, se deoma medaa al valor del dato que ocupa el lugar cetral, o dcho de otro modo, la medaa es el valor que dvde a la sere de datos e dos partes exactamete g uales. Se represeta co el símbolo M e. V arable estadístca dscreta. Datos smples. E este caso se ordea los datos de meor a mayor y la meda será el térmo o valor ce- tral. S el úmero de datos es mpar, el valor cetral de la varable es úco. Ejemplo: La medaa de la sere estadístca, 3, 5, 6, 9, 11, 1 es M e 6 S el úmero de datos es par, o exste térmo cetral, so dos térmos cetrales, y por ello se dce que hay dos medaas, que so los dos valores cetrales. No obstate, acostumbra tomarse como medaa la semsuma de los dos valores cetrales, auque dcho valor o perteezca al cojuto de datos. Ejemplo: E la sere estadístca, 3, 5, 6, 9, 11, 1, 13 es 6 M e 9 75 ' Varable estadístca dscreta. Datos agrupados. Para la determacó de la medaa se calcula, e prmer lugar, las recuecas acumuladas, F, y la mtad de las recuecas totales. A cotuacó se observa cuál es la prm era F que su- o guala a la mtad de las recuecas totales, dstguédose dos pera casos: 1) S ese prmer F super a a la mtad de las recuec as totales, etoces la medaa es el valor de la varables x que correspode a dcho F. Ejemplo: Las calcacoes e la asgatura de hstora del arte de los 40 alumos de ua clase vee dadas por la sguete tabla: I.E.S. Hstorador Chabás -16- Jua Bragado Rodríguez

Calcacoes 1 3 4 5 6 7 8 9 Númerode alumos 4 5 8 9 3 4 3 Calculamos las recuecas absolutas acumuladas: La mtad del úmero de datos es 40 0 Etoces la medaa es M e 5, dado que es el prmer valor de la varable cuya recueca absoluta acumulada, 1, excede a la mtad del úmero de datos, 0. ) S el prmer F guala exactamete a la mtad de las recuecas totales, etoces se toma covecoalmete como medaa la meda artmétca de los valores de la varable, x y x1, que correspode a dcha F y a F 1. Ejemplo: Cosderemos la sguete tabla de recuecas x 3 6 7 8 9 15 0 15 40 1 0 La mtad del úmero de datos es 100 50 Como 50 cocde co la recueca absoluta acumulada del valor 7, la medaa vedrá dada por la semsuma de 7 y el valor sguete 8. 7 M e 8 75 ' Varable estadístca cotua E este caso, procededo de orma aáloga a como acabamos de hacer, resulta ácl detectar cuál es la clase medaa (dode se alcaza la mtad de los datos), pero para obteer el valor cocreto de la varable que deja a su zquerda gual úmero de datos que a su derecha, aplcaremos la expresó: I.E.S. Hstorador Chabás -17- Jua Bragado Rodríguez

M L c e F 1 L c = límte eror de la clase medaa. = ampltud del tervalo. = úmero total de datos. F 1 = recueca absoluta acumulada de la clase ateror a la clase medaa. = recueca absoluta de la clase medaa. Ejemplo: Se ha aplcado u test sobre satsaccó e el trabajo a 88 empleados de ua ábrca, obteédose los sguetes resultados: Putuacoes Nú mero de trabajadores 38 44 7 44 50 8 50 56 15 56 6 5 6 68 18 68 74 9 74 80 6 Calcular la medaa. Para calcular la medaa ormamos la tabla estadístca co las recuecas absolutas acumuladas F. I.E.S. Hstorador Chabás -18- Jua Bragado Rodríguez

Clases F 38 44 7 7 44 50 8 15 50 56 15 30 56 6 5 55 44 6 68 18 73 68 74 9 8 74 80 6 88 88 Al prmer tervalo cuya recueca absoluta acumulada exceda a la mtad del úmero de datos, se le llama clase medaa o tervalo medaa. Así pues, se tee L 56 c6 44 F1 30 y 5 Susttuyedo e la expresó de la medaa resulta: 44 30 M e 56 6 59' 36 5 I.E.S. Hstorador Chabás -19- Jua Bragado Rodríguez

Cálculo de la medaa por el método gráco A través del hstograma de recuecas Por debajo de la medaa se ecuetra la mtad de los valores observados, y la otra mtad se halla por ecma (de ahí su ombre). Por tato, dvde el hstograma e dos zoas de gual área. 5 0 15 10 5 0 M e x A través del polígoo de recuecas acumuladas També podemos determar grácamete la medaa utlzado el polígoo acumulatvo de recuecas. Obsérvese cómo, al ur por ua recta el límte eror y superor de cada tervalo, estamos admtedo mplíctamete que la dstrbucó e el teror de cada tervalo es uorme. F 90 80 70 60 50 40 30 0 10 0 M 38 44 50 56 e 6 68 74 80 x I.E.S. Hstorador Chabás -0- Jua Bragado Rodríguez

A través de la semejaza de trágulos e el polígoo de porcetajes acumulados 8' 41 6 1591 ' x x 336 ' Por lo tato la medaa será: M e 56 3' 36 59'36 Observacoes La medaa es partcularmete útl e los sguetes casos: a) Cuado etre los datos exste alguo ostesblemete extremo que, como hemos vsto, aecta a la meda. b) Cuado los datos está agrupados e clases y algua de ellas es aberta. Como cosecueca de la decó de medaa, se tee que el 50% de los datos so meores o guales a ella y el 50% restate so mayores o guales. La medaa es el prmer parámetro de cetralzacó que depede del orde de los datos y o de su valor. I.E.S. Hstorador Chabás -1- Jua Bragado Rodríguez

Geométrcamete, y para dstrbucoes que se pueda represetar medate u hstograma de recuecas, la medaa es u valor de la varable, tal que la vertcal levatada sobre el msmo dvde al hstograma e dos partes de gual área. Relacó etre meda, moda y medaa Para dstrbucoes umodales, s al costrur el polígoo de recuecas se observa que la dstrbucó es smétrca o lgeramete asmétrca, etoces es posble comprobar expermetalmete la sguete relacó: Meda Moda 3(Meda Medaa) Gracas a esta relacó se puede obteer, co u certo error, alguos de estos parámetros e ucó de los otros, sempre y cuado se compruebe que la dstrbucó es smétrca o lgeramete asmétrca. A cotuacó represetamos tres dstrbucoes estadístcas, e las que se stúa los parámetros de cetralzacó: M x M e o M o M e x x M e M o I.E.S. Hstorador Chabás -- Jua Bragado Rodríguez

Queremos destacar que, a veces, las meddas de cetralzacó o sempre so ua descrpcó adecuada de todos los datos de ua dstrbucó. Para ello veamos a cotuacó, co algua varate, u aecdótco ejemplo expuesto por J. C. Staley e Measuremet Today's Schools. Ejemplo: E certa ocasó se setaro cco hombres e u baco de u parque. Dos de ellos era vagabudos y todos sus bees ascedía a 1000 pts cada uo. El tercero era u obrero que o teía más propedades que ua cueta bacara co 50.000 pts. El cuarto era u admstratvo que etre su vveda y su cueta bacara teía uos bees valorados e 6.000.000 de pts. El quto era u agracado de la Loto que teía u captal gual a 400.000.000 pts. Calcular las meddas de cetralzacó La sere estadístca es la sguete: 1.000; 1.000; 50.000; 6.000.000; 400.000.000 S calculamos las meddas de cetralzacó de esta sere estadístca se obtee: 1. 000 1. 000 50. 000 6. 000. 000 400. 000. 000 x 81. 10. 310 pts 5 M0 1. 000 pts Me 50. 000 pts Vemos que la meda o da ua dea de cómo es la dstrbucó; tampoco la moda permte asegurar ada, pues s be 1.000 pts so los bees del 40% de la dstrbucó (los dos vagabudos), este valor se ecuetra muy lejos y es práctcamete sgcate para el multmlloaro de la Loto. Por últmo, co el coocmeto de la medaa, que descrbe muy be el captal del obrero, ada permte armar de los captales de los otros cuatro señores. Co el de evtar cotradccoes como la presete e la aécdota, se debe evtar grades derecas umércas etre los datos de ua dstrbucó. Por otra parte, los parámetros estadístcos de ua dstrbucó orma mejor de ésta cuato mayor es el úmero de datos. I.E.S. Hstorador Chabás -3- Jua Bragado Rodríguez

Meddas de poscó. Cuatles Al estudar la Medaa hemos vsto que, ua vez ordeados de meor a mayor los datos de ua dstrbucó, la medaa dvde a éstos e partes guales. Aálogamete, tee terés estudar otros parámetros que dvda a los datos de la dstrbucó e ucó de otras cuatías. Recbe geércamete la deomacó de cuatles aquellos valores que dvde la dstrbucó e tervalos, de orma que cada uo de ellos tega la msma recueca. Los cuatles toma deomacoes especícas segú sea el úmero de tervalos e que se dvde la dstrbucó. así: Cuartles Se llama cuartles a tres valores que dvde a la sere de datos e cuatro partes guales, coteedo cada ua de ellas el 5% de la poblacó. Se represeta por Q 1,Q y Q3 y se desga cuartl prmero, segudo y tercero respectvamete. Los cuartles Q1, Q, y Q3 so los valores que supera, exactamete, al 5%, 50% y 75% de los valores de la dstrbucó respectvamete. El cuartl Q cocde co la medaa de la dstrbucó. Hay dos valores, uo que separa a la poblacó e u 5% por debajo y u 75% por ecma, y el otro que deja por debajo al 75% y por ecma al 5% de la poblacó. Se llama cuartl eror (CI) y cuartl superor (CS), y correspode a Q y Q respectvamete. S el problema que estudamos so las otas e ua determada asgatura "Estar por ecma del cuartl superor" sgca estar etre el 5% de los mejores. 1 3 Qutles Se llama qutles a cuatro valores que dvde a la sere de datos e cco partes guales, coteedo cada ua de ellas el 0% de la poblacó. y se desga qutl prmero, segudo, tercero y cuar- Se represeta por K,K,K to respectvamete. y K 1 3 4 Decles Se llama decles a ueve valores que dvde a la sere de datos e dez partes guales, coteedo cada ua de ellas la décma parte de la poblacó. Se represeta por D, D, 1,D9 y se desga decl prmero, segudo, tercero,cuarto,..., y oveo respectvamete. Hablar del decl 4 sgca dejar por debajo del valor que represeta al 40% de la poblacó. I.E.S. Hstorador Chabás -4- Jua Bragado Rodríguez

Cetles o Percetles Se llama cetles o percetles a 99 valores que dvde a la sere de datos e ce partes guales. Se represeta por P 1, P,,P9 9 y se desga percetl prmero, segudo, tercero, cuarto,..., y oagésmo oveo respectvamete. Hablar del cetl 38 sgca dejar por debajo del valor que represeta al 38% de la poblacó. Cuado se dce "Segú su telgeca abstracta este chco está e el cetl 85" sgca que su telgeca abstracta, es superor a la del 85% de la poblacó e eror al 15% restate. Los cetles so muy utlzados por los pscólogos para dar los resultados de los tests Ejemplo: Al aalzar los resultados de ua evaluacó de COU, el proesor orma a u determado padre que su hjo se ecuetra e el decl 8 respecto del resultado total de la clase. Esto sgca que el alumo deja al 80% de la clase por debajo de su putuacó, o, lo que es gual, se ecuetra detro del 0% de los que obtuvero mejores calcacoes. A cotuacó se represeta u gráco dode se muestra las relacoes etre los dsttos cuatles. Q 1 Q Q 3 K 1 K K 3 K 4 D 1 D D 3 D 4 D 5 D 6 D 7 D 8 D 9 P 0 P 10 P 0 P 30 P 40 P 50 P 60 P 70 P 80 P 90 P 100 M e Obsérvese que la Medaa cocde co el cuartl segudo Q, el decl quto D 5 y el percetl de orde ccueta, es decr: P 50 M Q e D 5 P50 I.E.S. Hstorador Chabás -5- Jua Bragado Rodríguez

Cálculo de los Cuatles Debdo a que los Cuatles so parámetros del tpo de la Medaa, su cálculo se realza de orma aáloga. Varable dscreta Ejemplo: Las calcacoes e la asgatura de Hstora del Arte de los 40 alumos de ua clase vee dadas por la sguete tabla: Calcacoes 1 3 4 5 6 7 8 9 Númerode alumos 4 5 8 9 3 4 3 Calcular: a) Los cuartles prmero y tercero b) Los percetles de orde 30 y 70 Formemos la tabla de recuecas cluyedo las absolutas acumuladas. a) Q 1 deja la cuarta parte de la dstrbucó a la zquerda; como 10, se ver- 4 ca que el cuartl prmero es 4, por ser éste el prmer valor de la varable cuya recueca absoluta acumulada excede a la cuarta parte del úmero de datos: Q 1 4 Q 3 deja las tres cuartas partes de la dstrbucó a la zquerda; como 3 30, se verca que el cuartl tercero es 6'5, por ser éste el prmer valor 4 de la varable cuya recueca absoluta acumulada excede a las tres cuartas partes: Q 3 65 ' I.E.S. Hstorador Chabás -6- Jua Bragado Rodríguez

b) P 30 deja el 30% de la dstrbucó a la zquerda; como 30 1, se verca 100 que el percetl de orde 30 es 4, por ser éste el prmer valor de la varable cuya recueca absoluta acumulada excede al 30% del total del úmero de datos: P 30 4 P 70 deja el 70% de la dstrbucó a la zquerda; como 70 8, se verca 100 que el percetl de orde 70 es 6, por ser éste el prmer valor de la varable cuya recueca absoluta acumulada excede al 70% del total del úmero de datos: P 70 6 Varable cotua Se tee para los cuartles las órmulas sguetes: Para el cuartl eror: Q L c 1 4 F 1 Para el cuartl superor: 3 Q L c 3 4 F 1 Se tee para los decles la órmula sguete: Para el decl de orde k D k : k D L c k 10 F 1 Se tee para los cetles o percetles la órmula sguete: Para el cetl de orde k P k : k F P L c 100 k 1 Ejemplo: Se ha aplcado u test sobre satsaccó e el trabajo a 88 empleados de ua ábrca, obteédose los sguetes resultados: I.E.S. Hstorador Chabás -7- Jua Bragado Rodríguez

Putuacoes Nú mero de trabajadores 38 44 7 44 50 8 50 56 15 56 6 5 6 68 18 68 74 9 74 80 6 Calcular: a) Los cuartles prmero y tercero. b) Los percetles de orde 40 y 90. Formamos la tabla estadístca cluyedo las recuecas absolutas acumuladas: a) Q 1 deja la cuarta parte de la dstrbucó a la zquerda; como, resulta 4 que la clase que cotee el prmer cuartl (mrado la columa de recuecas absolutas acumuladas) es la que tee por límtes 50 56. Aplcado ua expresó aáloga a la de la medaa para datos agrupados e tervalos, se tee: Q L c 1 F 1 4 50 6 15 15 5' 8 Q 3 deja las tres cuartas partes de la dstrbucó a la zquerda; como 3 66, resulta que la clase que cotee el tercer cuartl (mrado la columa de recuecas absolutas acumuladas) es la que tee por límte 6 68. Aplcado ua expresó aáloga a la de la medaa para datos agrupados e - 4 tervalos, se tee: 3 F 1 4 66 55 Q3 L c 6 6 65'67 18 I.E.S. Hstorador Chabás -8- Jua Bragado Rodríguez

Observacoes b) P 40 deja el 40% de la dstrbucó a la zquerda; como 40 40 88 35', resulta que la clase que cotee el percetl de orde 100 100 40 (mrado la columa de recuecas absolutas acumuladas) es la que tee los límtes 56 6. Aplcado ua expresó aáloga a la de la medaa, se tee: 40 F 1 100 P40 L c 56 6 P deja el 90% de la dstrbucó a la zquerda. 90 35' 30 5 57'5 Como 90 90 88 79', resulta que la clase que cotee el percetl 100 100 de orde 90 (mrado la columa de recuecas absolutas acumuladas) es la que tee los límtes 68 74. Aplcado ua expresó aáloga a la de la medaa, se tee: 90 F 1 100 P90 L c 68 6 79' 73 9 713 ' Los cuatles, preeretemete los decles y percetles, so parámetros estadístcos muy utlzados e las cecas socales. A los cuatles se les suele deomar parámetros de estructura, ya que os proporcoa ormacó acerca de la estructura o dstrbucó tera de los datos. Cálculo gráco de los cuatles Para calcular grácamete los cuatles de ua dstrbucó exste u método muy secllo que cosste e represetar el polígoo de porcetajes acumulados, stuado e el eje "x" los valores de la varable (s es dscreta), o los tervalos (s es cotua), y e el eje "y" la recueca absoluta acumulada e porcetaje, es decr, la obteda al multplcar la recueca absoluta acumulada por el cocete etre 100 y la suma de todas las recuecas absolutas. Covee realzar la represetacó sobre papel mlmetrado, a de poder obteer ua mayor precsó. Porcetajes de recuecas absolutas acumuladas F 100 I.E.S. Hstorador Chabás -9- Jua Bragado Rodríguez

Para obteer el cuatl de que se trate, se traza ua paralela al eje "x" por el puto correspodete al cuatl deseado. Ésta corta al polígoo de recuecas absolutas acumuladas e u puto; por éste se traza ua paralela al eje "y", que corta al eje "x" e el puto buscado. Ejemplo: Se ha aplcado u test sobre satsaccó e el trabajo a 88 empleados de ua ábrca, obteédose los sguetes resultados: Putuacoes Nú mero de trabajadores 38 44 7 44 50 8 50 56 15 56 6 5 6 68 18 68 74 9 74 80 6 Calcular el cuartl eror, el decl 7 y el percetl de orde 90. Qué cetl correspode a 45 putos? Cuartl eror El cuartl eror correspode al percetl 5. 17' 05 6 796 ' x x ' 8011 Q 1 50 ' 8011 5' 8011 I.E.S. Hstorador Chabás -30- Jua Bragado Rodríguez

Decl 7 El decl 7 correspode al percetl 70. 0' 45 6 75 ' x x 0 ' D 7 6 ' 64' Percetl 90 10' 3 6 705 ' x x 413 ' P 90 68 413 ' 713 ' Qué cetl correspode a 45 putos? 909 ' x x 151 ' 6 1 795 ' 151 ' 946 ' Correspode aproxmadamete al cetl 9. I.E.S. Hstorador Chabás -31- Jua Bragado Rodríguez

Meddas de dspersó Ejemplo: Se ha aplcado a dos grupos de 8 alumos de 8º de EGB u test de 100 pregutas sobre capacdad umérca, obteédose los sguetes resultados: GrupoA 46 48 49 50 50 51 5 54 GrupoB 10 18 30 50 50 70 8 90 Las medas de cada ua de las dos dstrbucoes so: x A 50 x 50 B y s embargo, los dos grupos de alumos so be dsttos. Metras que e el grupo A la mayoría de los alumos ha cotestado práctcamete a la mtad de las pregutas, e el grupo B hay alumos que cas ha cotestado a la totaldad, y otros que ha cotestado a muy pocas pregutas. Por tato las putuacoes del grupo A está muy cocetradas, poco dspersas; e cambo las del grupo B se ecuetra poco cocetradas e toro a la meda y dremos que se ecuetra muy dspersas. Así pues, la vestgacó acerca de ua dstrbucó queda completa s solo se estuda las meddas de cetralzacó, sedo mprescdble coocer s los datos umércos está agrupados o o alrededor de los valores cetrales. A esto es a lo que se llama dspersó, y a los parámetros que mde estas desvacoes respecto a la meda se les llama meddas de dspersó o parámetros de dspersó. Las meddas de dspersó más mportates so: el rago o recorrdo, la desvacó meda, la varaza y la desvacó típca. Rago o recorrdo Se llama rago o recorrdo de ua dstrbucó a la dereca etre el mayor y el meor valor de la varable estadístca. Bajo el supuesto de que los valores de la varable esté ordeados e setdo crecete, su expresó matemátca sería: R x x1 E el ejemplo ateror, RA 54 46 8 y R B 90 10 80. E cosecueca, al teer el msmo úmero de datos ambas dstrbucoes y ser el recorrdo de la dstrbucó del grupo A mucho más pequeño, dremos que está más cocetrada, o meos dspersa, que la dstrbucó del grupo B. Observacoes Cuato meor es el recorrdo de ua dstrbucó mayor es el grado de represetatvdad de los valores cetrales. El recorrdo tee la vetaja de su secllez de cálculo. I.E.S. Hstorador Chabás -3- Jua Bragado Rodríguez

Tee gra aplcacó e procesos de cotrol de caldad, y de ua maera geeral, e aquellos procesos que se preteda vercar logtudes, pesos y volúmees, estado prejados de atemao los límtes permtdos. El recorrdo preseta el coveete de que solo depede de los valores extremos. De esta orma basta que uo de ellos se separe mucho, para que el recorrdo se vea sesblemete aectado. Es por tato muy sesble a la luctuacó de estos valores extremos. Para palar e algua medda este coveete se utlza e ocasoes otros dos ragos: Rago tercuartílco: Q Q3 Q1 Rago etre percetles: P P90 P10 Estos dos valores so más estables que el rago, ya que tede a elmar aquellos valores extremadamete alejados. Desvacó meda S x es la meda artmétca del cojuto de valores x 1, x,..., x de ua varable estadístca, se llama desvacó del valor x, respecto de la meda, a la dereca x x, y desvacó absoluta (respecto de la meda), al valor absoluto de las desvacoes, esto es, a x x. La prmera es postva, o egatva, segú que x sea superor o eror a la meda; la seguda es postva o ula. Parece lógco supoer que la suma de las desvacoes de todos los valores debe relejar el grado de dspersó de la dstrbucó estudada. Sucede, o obstate, que esa suma sempre da cero, cuado se toma las desvacoes "tal cual" (co sgo), por lo que, e todo caso, habría que tomar la suma de las desvacoes absolutas como medda de dspersó, o, aú mejor, la meda artmétca de los valores de las desvacoes absolutas, parámetro que recbe el ombre de desvacó meda. Vee dada por la expresó: DM 1 x 1 x E el caso cotuo, x so las marcas de clase. Ejemplo: Calcular la desvacó meda de la sguete dstrbucó: x 9 11 1 1 4 3 Costrumos la tabla co todos los datos que tervee e la órmula I.E.S. Hstorador Chabás -33- Jua Bragado Rodríguez

x DM 100 10 10 0 10 La desvacó meda os dca que, como promedo, los valores se aparta dos udades respecto de la meda. Varaza y Desvacó típca La desvacó meda tee el coveete de o destacaros sucetemete cuádo u valor se separa de la meda, y, e cambo, destaca excesvamete las pequeñas derecas que otros valores pueda teer respecto de la meda. Para evtar esto y aumetar los cotrastes etre las dspersoes de los valores, se toma los cuadrados de las desvacoes e lugar de las desvacoes smples. Se llama varaza de ua varable a la meda artmétca de los cuadrados de las desvacoes respecto a la meda. La varaza se represeta por s. Sea x ua varable estadístca que toma los valores x 1, x,..., x co recuecas absolutas,,..., respectvamete. 1 La varaza vee dada por la sguete expresó: s x x x x x x 1 1 1 1 x x 1 co recueca x o es u úmero etero, por lo que las desvacoes x x suele ser úmeros decmales. Las operacoes de elevar al cuadrado cada ua de las desvacoes y multplcarlas por las recuecas respectvas pede resultar sumamete laborosas, por ello veamos otra expresó equvalete a la ateror e la que se evta estos cálculos: x x 1 1 1 x x x x x x x 1 1 1 1 1 1 x 1 I.E.S. Hstorador Chabás -34- Jua Bragado Rodríguez

1 x 1 x x x 1 1 1 1 x x xxx 1 x 1 1 1 1 x xx s 1 1 1 x 1 x 1 x x s 1 x 1 Se llama desvacó típca de ua varable estadístca a la raíz cuadrada postva de la varaza. Como cosecueca de la decó, la desvacó típca vee dada por la sguete expresó: s 1 1 x x Uso de la calculadora para la obtecó de s Los pasos a segur so los msmos que para el cálculo de la meda artmétca. Ua vez troducdos todos los datos, pulsado la tecla (o segú el modelo de la calculadora) obteemos e patalla drectamete el valor de la desvacó típca. I.E.S. Hstorador Chabás -35- Jua Bragado Rodríguez

Ejemplo: El úmero de horas que dedca u alumo de COU al estudo durate la semaa es el sguete: 3'5, 5, 4, 6, 5'5, 3. Calcular el rago, la varaza y la desvacó típca. Rago: 6 3 3 x 7 Meda: x 6 45 ' Varaza: s x 185 ' x 45 ' 116 ' 6 Desvacó típca: s 116 ' 108 ' Ejemplo: Las calcacoes e la asgatura de Hstora del Arte de los 40 alumos de ua clase vee dadas por la sguete tabla: Calcacoes 1 3 4 5 6 7 8 9 Númerode alumos 4 5 8 9 3 4 3 Calcular el rago, la varaza y la desvacó típca. Rago: 9 1 8 Meda: x 1 40 53 ' 196 53 ' 431 ' 40 Varaza: s Desvacó típca: s 431 ' 08 ' I.E.S. Hstorador Chabás -36- Jua Bragado Rodríguez

Ejemplo: Se ha aplcado u test sobre satsaccó e el trabajo a 88 empleados de ua ábrca, obteédose los sguetes resultados: Putuacoes Nú mero de trabajadores 38 44 7 44 50 8 50 56 15 56 6 5 6 68 18 68 74 9 74 80 6 Calcular el rago, la varaza y la desvacó típca. Rago: 80 38 4 Meda: x 504 88 59' 14 31559. 5914 ' 88' 73 88 Varaza: s Desvacó típca: s 88' 73 9' 4 I.E.S. Hstorador Chabás -37- Jua Bragado Rodríguez

Observacoes Tato la varaza como la desvacó típca depede de todos los valores de la dstrbucó así como de la meda. E los casos e que o sea posble calcular la meda artmétca, o será posble tampoco obteer la varaza y la desvacó típca por ser ucoes de la meda artmétca. La varaza tee el coveete que o vee expresada e las msma udades que los datos, debdo a que las desvacoes va elevadas al cuadrado. Así, por ejemplo, s los datos so metros, la varaza vedrá dada e metros cuadrados. E cambo, la desvacó típca vee expresada e las msmas udades que los datos de la dstrbucó, de ahí que la desvacó típca resulte más teresate que la varaza. Utlzacó cojuta de x y s Podemos asegurar que, salvo para dstrbucoes muy estraalaras, el porcetaje de dvduos que se ecuetra e el tervalo ( x s, x s) oscla etre el 60% y el 80% y suele ser próxmo al 68%. Dgamos para acordaros, que e ese tervalo está aproxmadamete los /3 de la poblacó. E las dstrbucoes umodales, smétrcas o lgeramete asmétrcas, se verca que: 1. E el tervalo x s,x s se ecuetra el 68% de los datos.. E el tervalo x s,x s se ecuetra el 95% de los datos. 3. E el tervalo (x 3s, x 3s) se ecuetra el 99% de los datos. Cuado la dstrbucó o es totalmete smétrca calcularemos los extremos de los tervalos, y para hallar el porcetaje e cada tervalo haremos u recueto a ojo de las catdades que hay etre los extremos del msmo co los datos que tegamos e la tabla de recuecas, y luego calcularemos la proporcó x s x x s I.E.S. Hstorador Chabás -38- Jua Bragado Rodríguez

x s x x s x 3s x x 3s El uso cojuto de la meda y la desvacó típca os permte comparar valores de ua msma varable e dstrbucoes dsttas, o be ambas dstrbucoes. A tal, so útles los sguetes coceptos: Coecete de varacó de Pearso La desvacó típca es u térmo absoluto del que se puede sacar coclusoes erróeas sobre la dspersó de la muestra. Para comparar las desvacoes de poblacoes muy dsttas, e vez de la desvacó típca se usa el coecete de varacó de Pearso. Mde la varacó relatva. Se llama coecete de varacó de Pearso de ua dstrbucó de meda x y desvacó típca s, al úmero CV s x I.E.S. Hstorador Chabás -39- Jua Bragado Rodríguez

Ejemplo: De dos muestras, la prmera co meda 30 y desvacó típca 4 y la seguda co meda 60 y desvacó típca 6, cuál es la que aparece más dspersa? Cosderado las desvacoes típcas dríamos que la seguda. S embargo, reducedo los datos a ua msma escala (puesto que ua meda es el doble de la otra), ocurre justamete lo cotraro. S aalzamos el coecete de varacó de Pearso para las dos muestras teemos que para la muestra de meda 30 es 4 30 013 ', es decr el 13%, y para la muestra de meda 60 es 6 01 ', es decr el 10%, lo que os muestra que la prmera tee, relatvamete más desvacó típca que la 60 seguda. El coecete de varacó de Pearso suele expresarse porcetualmete y sólo se usa e varables que o tome valores egatvos y o tega medas próxmas a cero, pues u deomador pequeño dstorsoa el cocete. Putuacó típca E ua dstrbucó de meda x y desvacó típca s, se llama putuacó típca del valor x de la varable al úmero Z x x s La putuacó típca mde la desvacó respecto de la meda del dato cosderado, tomado como udad la desvacó típca, por lo que releja cuá desvado se halla éste respecto de la meda, depedetemete de la udad utlzada. Observacoes Las putuacoes típcas so muy usadas e las cecas socales. La meda artmétca de las putuacoes típcas es 0. La desvacó típca de las putuacoes típcas es 1. Las putuacoes típcas se utlza para comparar las putuacoes obtedas e dsttas dstrbucoes. A mayor putuacó típca mejor putuacó e su dstrbucó respecto de la otra dstrbucó co que se compara. Covee o coudr putuacó típca, que se reere a putuacoes obtedas por cada dvduo del grupo, co desvacó típca, que se reere a u parámetro obtedo para todo el grupo. I.E.S. Hstorador Chabás -40- Jua Bragado Rodríguez

Ejemplo: Ua empresa textl tee uos beecos etos de 6.000.000 de pts e u año, y otra empresa del sector químco tee uos beecos de 1.000.000 de pts auales. Sabedo que los beecos del sector textl tuvero ua meda por empresa de 5.000.000 de pts co ua desvacó típca de 1.000.000 de pts, y los beecos del sector químco tuvero ua meda de 10.000.000 de pts por empresa, co ua desvacó típca de de 3.000.000 de pts Qué empresa está mejor gestoada? Para cotestar a esta preguta tedremos que comparar los beecos de cada empresa co los de su sector. Empresa textl Empresa químca 6. 000. 000 5. 000. 000 Z 1 1. 000. 000 1. 000. 000 10. 000. 000 Z 066 ' 3. 000. 000 Esto os dca que, detro de su sector, la dustra textl tuvo u mejor redmeto que la químca Ejemplo: U alumo ha cotestado a dos test, obteedo las sguetes putuacoes: TEST A: 50 putos TEST B: 3 putos El proesor ha calculado que el grupo de alumos que ha cotestado a cada uo de los tests tee las sguetes medas y desvacoes típcas: Para el TEST A: x A 45 y s 6 A ; Para el TEST B: xb 6 y sb E cuál de los dos tests ha obtedo, comparatvamete co el grupo, mejor resultado el alumo? Para poder cotestar a esta preguta tedremos que comparar las putuacoes del alumo co las del grupo; para ello, restamos a cada ua de las putuacoes del alumo la meda del grupo y dvdmos por la desvacó típca. 50 45 TEST A: Z 083 ' TEST B: Z 6 3 6 3 Así pues, s be la putuacó drecta del test A ha sdo mayor que la obteda e B, comparatvamete co el grupo es mucho mayor la obteda e el test B que e el A. I.E.S. Hstorador Chabás -41- Jua Bragado Rodríguez

Mometos de ua dstrbucó de recuecas Los mometos so meddas que caracterza a ua dstrbucó de recuecas, exstedo ua relacó buívoca etre ua dstrbucó y el cojuto de todos sus mometos. Se llama mometo cetral de orde k al parámetro estadístco: (x x) k 1 1 k Observa que: el mometo cetral de orde 1 es sempre 0 el mometo cetral de orde es la varaza 1 0. s cuato mayor sea k más luye e el valor del mometo correspodete los valores muy alejados de la medda. El mometo cetral de orde 3 srve para medr la asmetría de la dstrbucó y el de orde 4 su grado de aputameto o aplastameto, es decr, el que la gráca sea más o meos pcuda. Basádose e los mometos, se dee los sguetes parámetros: Coecete de Asmetría Co los coecetes de asmetría se trata de medr s las observacoes está dspuestas smétrca o asmétrcamete respecto a u valor cetral (e geeral, la meda artmétca) y el grado de esta asmetría. Todos los coecetes que se utlza so úmeros abstractos y, por tato, s dmesoes. el más utlzado de todos es debdo a Fsher y tee la sguete expresó: g 1 s 1 x x 1 3 s 3 I.E.S. Hstorador Chabás -4- Jua Bragado Rodríguez

3 Puesto que x x puede ser postvo o egatvo, el coecete de asmetría puede ser postvo o egatvo, teédose, segú los casos, la sguete terpretacó: S g 1 0 La dstrbucó es asmétrca a la zquerda. Los valores a la zquerda de la meda "pesa" más que los que está a la derecha. A la derecha, los valores cae co más rapdez: la curva es sesgada a la zquerda. S g 1 0 La dstrbucó es smétrca S g 1 0 La dstrbucó es asmétrca a la derecha. La curva es sesgada a la derecha. g 1 0 g 0 1 g 1 0 Coecete de Aputameto o Curtoss Co el coecete de aputameto o curtoss se trata de medr el grado de aputameto de ua dstrbucó respecto a la dstrbucó ormal, que se toma como patró, y cuyo coecete de curtoss es 0. La dstrbucó ormal es la más mportate, tato e la teoría de la probabldad como e le práctca de los trabajos estadístcos. Se caracterza por ser smétrca respecto al eje x x. Su ucó de desdad, e la práctca hstograma de recuecas, tee orma de campaa. su mportaca es debda e gra medda a que a ella coverge u cojuto mportate de dstrbucoes estadístcas: Bomal, Posso,, t de Studet, etc. Se llama coecete de aputameto o curtoss al parámetro: I.E.S. Hstorador Chabás -43- Jua Bragado Rodríguez

g s 1 x x 1 4 s 4 3 Este coecete, sempre postvo, tee u valor crítco, el valor 0, cosderado ormal. Los casos so los sguetes: S g 0 La dstrbucó es leptocúrtca (más aputada que la ormal. S g 0 La dstrbucó es ormal. S g 0 La dstrbucó es platcúrtca (meos aputada que la ormal. g 0 g 0 g 0 Ejemplo: Determar los coecetes de asmetría y curtoss de la sguete dstrbucó de recuecas: x 1 3 4 6 10 Costrumos la tabla co todos los datos que vamos a ecestar: I.E.S. Hstorador Chabás -44- Jua Bragado Rodríguez

1 40 40 x g 0 06 ' 083 g 0 50 1 ' 3 3 015 3 ' 4 0 16 07 ' 16 16 16 0 0 I.E.S. Hstorador Chabás -45- Jua Bragado Rodríguez