4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4. VARIABLES ALEATORIAS Y SUS PROPIEDADES"

Transcripción

1 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ

2 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus valores de acuerdo a los resulados de u eperimeo aleaorio. Usualmee se represea por las úlimas leras del alfabeo:, Y o Z. Ua variable aleaoria es ua fució cuyo domiio es el espacio muesral S y cuyo rago R,esu subcojuo de los úmeros reales. Ejemplos de variables aleaorias: : La suma que aparece al lazar u par de dados. Y: El úmero de caras que aparece al lazar ua moeda res veces. Z: El úmero de errores que se ecuera e la págia de u libro. T: El iempo de vida de la compoee de u sisema W: El iempo de espera para ser aedido e u baco ESMA 4 Uiversidad de Puero Rico

3 Ejemplo. De ua caja que coiee 5 bolas umeradas del al 5 se erae bolas ua por ua y si reposició. Eoces : El mayor de los res úmeros sacados, es ua variable aleaoria. El espacio muesral es: S {,,,,,4,,,5,,,4,,,5,,4,5,,,4,,,5,,4,5,,4,5} y la variable aleaoria asume los valores:, 4 y 5. Por ejemplo,,,4 4 ESMA 4 Uiversidad de Puero Rico

4 Si el rago de valores R de la variable aleaoria es fiio o ifiio eumerable eoces se dice que es ua variable aleaoria discrea. Si su rago de valores R es ifiio o eumerable eoces se dice que es ua variable aleaoria coiua. ESMA 4 Uiversidad de Puero Rico 4

5 4... Fució de probabilidad de ua variable aleaoria discrea Si es ua variable aleaoria discrea co rago de valores R eoces, su fució de probabilidad se defie por: p P[ ], para odo R y iee las siguiees propiedades: p> y Σ p, R Cuado R o coiee muchos valores es más coveiee epresar p e ua abla de valores, la cual es llamada abla de fució de probabilidad. ESMA 4 Uiversidad de Puero Rico 5

6 Ejemplo.. Hallar la fució de probabilidad de la variable aleaoria del ejemplo.. Solució: E ese caso el rago de valores de es R {, 4, 5} y la fució de probabilidad esa dada e la siguiee abla: P / 4 / 5 6/ ESMA 4 Uiversidad de Puero Rico 6

7 4... Fució de disribució acumulaiva Sea ua variable aleaoria discrea co fució de probabilidad p y rago de valores R, eoces su fució de disribució acumulaiva se defie por: F P p es cualquier úmero real. E paricular, si es u valor que esá e R, el cual cosise de eeros o egaivos, eoces: F p p p p p Ejemplo.. Hallar la fució de disribució acumulaiva para el Ejemplo.. Solució: F / 4 4/ 5 ESMA 4 Uiversidad de Puero Rico 7

8 Disribucio acumuladaco La gráfica de ua fució de disribució acumulaiva es o decreciee y del ipo escaloado, co salos e los puos que esá e el rago de valores y cuya magiud es igual al valor de la fució de probabilidad e dicho puo. Más formalmee iee la siguiee propiedad: Propiedad. La relació ere la fució de disribució de probabilidad y la fució de disribució acumulaiva esá dada por: p F - F- para odo valor de e el rago de valores de la variable aleaoria. ESMA 4 Uiversidad de Puero Rico 8

9 Disribucio acumuladaco. lim lim b b F b F F b F ESMA 4 Uiversidad de Puero Rico 9

10 4.. Variables aleaorias coiuas Ua variable aleaoria se dice que es coiua si eise ua fucio o egaiva f defiida para odo umero real e, que saisface P B f d B Dode B es cualquier subcojuo de los umeros reales. La fucio f es llamada la fucio de desidad de la variable aleaoria. Noar que P f d ESMA 4 Uiversidad de Puero Rico

11 4.. Variables aleaorias coiuas Si B es u iervalo [a,b], y f represea la fucio de desidad de eoces b f d P a b Area debajo de f a Noar que o P o f d area o de ua liea Tambie, si f es cualquier fucio coiua o egaiva al que eoces c f d f g es ua fucio de desidad c ESMA 4 Uiversidad de Puero Rico

12 Ejemplo.4 El promedio de graduacio de los esudiaes de ua uiversidad es ua variable aleaoria coiua co fucio de desidad f c4 para 4 y f e oro caso a Hallar el valor de c b U esudiae que se gradua co promedio.5 o mas recibe u premio. Cual es la probabilidad de que eso ocurra Solucio: a f d 4 c4 d c[ ] 4 c c b P 4 > d [ ] 4.5 [.5.5 ] ESMA 4 Uiversidad de Puero Rico

13 Variables aleaorias coiuas co. Si f represea la fucio de desidad de la variable aleoira eoces su fucio de disribucio acumalaiva esa dada por Teorema: ff F f d Prueba: F lim h F h h F h f d h f d h f d h hf ε h f ε dode <ε< h. Luego F f. ESMA 4 Uiversidad de Puero Rico

14 Variables aleaorias coiuasco. Si F represea la disribucio acumulaiva de la v.a.c. eoces P>a-Fa Pa<<bFb-Fa Ejemplo.5: Si la variable aleaoria iee la siguiee fucio de desidad f si f si > a Hallar F y graficarla b Hallar P.<<.6 c Probar que como es simerica,p-a<<a*fa- ESMA 4 Uiversidad de Puero Rico 4

15 Ejemplo.5 solucio ESMA 4 Uiversidad de Puero Rico 5 < < < d d F a.4.]. [.5.8].6 [ < < F F P b ] [ < < a F a F a F a F a F a a P simeria Por c

16 Ejemplo.6 El umero de horas diarias que u io vee elevisio se cosidera como ua variable aleaoria co fucio de desidad f e oro caso f e si > a Hallar la disribucio acumulada de b Hallar la probabilidad de que u io vea mas de res horas diarias de elevisio Solucio: a F < > e d e e e e b P > F [ e e ] 4e.99 ESMA 4 Uiversidad de Puero Rico 6

17 4..4 Valor Esperado y Variaza de ua Variable Aleaoria Discrea Sea ua variable aleaoria discrea co fució de probabilidad p y rago de valores R, eoces su Valor Esperado o Media se defie como el úmero: μ E p La suma es sobre odos los valores que esá e R. Propiedades del valor Esperado: aecec becce c EYEEY d E[g] g p. E paricular, si g co,, eoces E p, que es llamado el -esimo momeo de ESMA 4 Uiversidad de Puero Rico 7

18 Ejemplo.7 U juego cosise e acerar u úmero del al. A la persoa que aciera el úmero se le da u premio de 5 dólares y a las dos persoas que iee el úmero que le aecede o precede se le da dólares. Si el boleo cuesa dólar. Cuál será la Gaacia Nea esperada de ua persoa que compra u boleo? Solució: La Gaacia Nea es igual a la gaacia por el premio recibido meos el coso del boleo. Sea G la gaacia por el premio recibido. Hallaremos primero la Gaacia Esperada: G PG GpG 5 / 5/ / / 997/ Luego, la gaacia esperada por boleo será 7/.7. Así que la Gaacia Nea esperada será Lo que sigifica que ua persoa pierde ceavos ESMA 4 Uiversidad de Puero Rico 8

19 ESMA 4 Uiversidad de Puero Rico 9 Valor Esperado y Variaza de ua Variable Aleaoria Discrea co. La Variaza de ua variable aleaoria discrea co fució de probabilidad p y media μ se defie por: Dode la suma es sobre odos los valores del rago de. Propiedades: a Vara b VaraVar c Varaa Var d La raiz cuadrada posiiva de la variaza es llamada desviacio esadar y se represea por σ p E VAR μ μ σ μ μ μ μ μ μ μ μ E E E E E E VAR

20 Ejemplo.8. Hallar la media y variaza para la variable aleaoria del Ejemplo.. Solució: p p -μ -u p / / /..5.5 μ4.5 σ.45 Ora formas del calcular la variaza es σ p-μ. ESMA 4 Uiversidad de Puero Rico

21 Ejemplo.9 Ua caja coiee bolas de colores disios co dos bolas de cada color. Se erae al azar y co reemplazamieo bolas de la caja hasa que salga dos bolas del mismo color. Sea el umero de bolas eraidas. a Hallar P> para,,. b Hallar la fucio de probabilidad de c Hallar el valor esperado de. Solucio: a El eveo [>] es equivalee a decir que ere las primeras bolas hay ua de cada color. Eso puede ocurrir de P maeras. Las combiacioes so las maeras de elegir los colores disios y so los disios arreglos que se puede hacer co los colores elegidos. Por oro lado hay maeras posibles de eraer las bolas. Por lo ao, P > para,,.., ESMA 4 Uiversidad de Puero Rico

22 Ejemplo.9 co. ESMA 4 Uiversidad de Puero Rico b PF-F--P>--P>-P>--P> Usado los resulados de la pare a se iee P P ] [ para,,.. Noar que.luego,... p p p p P ] [ ] [ ] [ ] [... j j j j j p j j j j j j j j

23 Ejemplo.9 co ESMA 4 Uiversidad de Puero Rico c ]... [ ]... [ > > P P E m Wel resulado aerior se puede simplificar mas usado el hecho que el se puede aproimar usado la formula de aproimacio de Sirlig y la suma es ua pare de la serie epoecial de e

24 4..5 Valor Esperado y Variaza de ua Variable Aleaoria coiua Si es ua variable aleaoria coiua co fucio de desidad f, eoces su media y variaza esa defiidos por E f d VAR μ f d ESMA 4 Uiversidad de Puero Rico 4

25 Ejemplo. Hallar el valor esperado y variaza del ejemplo.4. Solucio: E f d [ 4 4 ] d 4 [ 4 ] 4 4 El valor del promedio academico de graduacio que se espera es de. Var E E E 4 E f d 4 [ 4 ] d [ 4 5 ] Luego, Var4/5-44/5.8 ESMA 4 Uiversidad de Puero Rico 5

26 Ejemplo. Hallar el valor esperado del ejemplo.6 Solucio: E e d e d e e d La ulima iegral vale, porque represea el area oal debajo de la fucio de desidad. Se espera que u io mire elevisio, horas semaales ESMA 4 Uiversidad de Puero Rico 6

27 Ejemplo. Sea u variable aleaoria discrea co rago de valores R {,,.,}. Eoces, E i P i Similarmee si es ua variable coiua o egaiva co fucio de disribucio acumulada F, eoces E [ F ] d Solo probaremos el caso coiuo E ESMA 4 f d f dd f dd [ F ] d La prueba basicamee se basa e el cambio e el orde de los limies de iegracio Uiversidad de Puero Rico 7

28 Desigualdad de Marov Si eoces E P a a Solo probaremos el caso coiuo Para odo a> a E f d f d f d a a af d ap > a La primera desigualdad se jusifica porque el iegrado de la primera iegral es posiivo y e la seguda iegral >a. Luego, E P > a a ESMA 4 Uiversidad de Puero Rico 8

29 Desigualdad de Chebychev Para cualquier variable aleaoria, y cualquier > se cumple que P[ μ σ ] E oras palabras, la probabilidad de que ua variable aleaoria difiera de su media e mas de veces su desviacio esadar es a lo mas / La prueba de la desigualdad de Chebychev se obiee aplicado la desigualdad de Marov a la variable oegaiva -μ co a σ. Lo cual da E μ σ P [ μ > σ ] De dode σ σ P[ μ > σ ] ESMA 4 Uiversidad de Puero Rico 9

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013 El Marge de Riesgo México Por: Pedro Aguilar B. paguilar@csf.gob.mx paguilar@ifiium.com.mx Sepiembre 2013 Coeido 1. Aspecos Geerales sobre Marge de Riesgo 2. La Problemáica 3. Plaeamieo de ua Posible Solució

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Uiversidad Carlos III de Madrid. El mudo físico: represeació co señales y sisemas Señales: Fucioes co las que represeamos variacioes de ua magiud física Volaje, iesidad, fuerza, emperaura, posició r ()

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8 Méodos Numéricos - cap. 7. Ecuacioes Difereciales PVI /8 Ecuacioes Difereciales Ordiarias (EDO Ua Ecuació Diferecial es aquella ecuació que coiee difereciales o derivadas de ua o más fucioes. Ua Ecuació

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

SISTEMAS, MATRICES Y DETERMINANTES

SISTEMAS, MATRICES Y DETERMINANTES .- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

Circuitos Eléctricos II Series de Fourier

Circuitos Eléctricos II Series de Fourier Circuios Elécricos II Series de Fourier Coeido. Fucioes Periódicas. Serie rigoomérica de Fourier 3. Compoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. Cálculo de los coeficiees

Más detalles

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad Uiversidad Carlos III de Madrid 3.4 Sisemas LIT SLIT: Sisemas Lieales e Ivariaes co el Tiempo Liealidad Supogamos que la señal se puede expresar como ua combiació lieal de señales más simples ( x i ()

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

Tema 2: Sistemas. 2.1 Introducción

Tema 2: Sistemas. 2.1 Introducción Tema : Sisemas Tema : Sisemas. Iroducció U sisema respode co uas deermiadas señales a la acció de oras. x() sisema y ( ) = T x( ) Ejemplo Tiempo coiuo: sisema mecáico () dy b d y() T{ } { } d y() dy()

Más detalles

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma CAPÍULO RES ANÁLISIS DE FOURIER IEMPO CONINUO Iroducció La represeació de la señal de erada a u sisema (eediedo como sisema u cojuo de elemeos o bloques fucioales coecados para alcazar u objeivo deseado)

Más detalles

ACELERACIÓN UNIVERSIDAD DE CARABOBO FACULTAS DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA DPTO. DISEÑO MECÁNICO Y AUTOMATIZACIÓN

ACELERACIÓN UNIVERSIDAD DE CARABOBO FACULTAS DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA DPTO. DISEÑO MECÁNICO Y AUTOMATIZACIÓN FCULTS DE INGENIERÍ PÁGIN: 5-1 de 16 INTRODUCCIÓN El esudio de las aceleracioes e los mecaismos ariculados coplaares se puede abordar ya sea por méodos aalíicos o por méodos gráficos. Ese capíulo se deermiará

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO DECRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació a u

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid 2013

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid 2013 Tema 2: Aálisis gráfico esadísico de relacioes Uiversidad Compluese de Madrid 2013 Aálisis gráfico descripivo de ua variable (I) Daos de series emporales: Evolució aual de la rea el Cosumo per cápia e

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

Fourier. Series de Fourier

Fourier. Series de Fourier Series de Fourier. Fucioes Periódicas oeido. Serie rigoomérica de Fourier 3. ompoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. álculo de los coeficiees de la Serie de Fourier

Más detalles

SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X

SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X Jorge E. Heráez, Eih C. e Heráez Uiversia e Paamá, Cero Regioal Uiversiario De Veraguas, Deparameo e Maemáica. RESUMEN E el presee rabajo esuiamos la ecuació

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

MS-1 Modelos de supervivencia Página 1 de 20

MS-1 Modelos de supervivencia Página 1 de 20 CURSO: - TEMA : Pricipales modelos de moralidad. Modelizació esocásica. Ley de De Moivre. Leyes de Dormoy y de Sag. Leyes de Gomperz y de Makeham. Oros modelos de moralidad. Esudiaremos aquí disios modelos

Más detalles

Instituto Tecnológico de San Luís Potosí

Instituto Tecnológico de San Luís Potosí Isiuo ecológico de Sa Luís Poosí Cero de elecomuicacioes eleproceso y Redes de Compuadoras Señales Elécricas Fís. Jorge Humbero Olivares Vázquez Cero de elecomuicacioes Eero 7 Isiuo ecológico de Sa Luís

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO CRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació e la maemáica

Más detalles

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n =

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n = Hoa Problemas Aálisis II /9 85.- Sea la fució oliómica: N R Demosrar que: i ii iii iv Solució: Cosideremos la ideidad: R N. Derivado e ambos miembros reseco de mulilicado desués or se obiee: - Derivado

Más detalles

5 Variables aleatorias bidimensionales y de mayor dimension.

5 Variables aleatorias bidimensionales y de mayor dimension. 5 Variables aleatorias bidimesioales de maor dimesio. Edgar Acua ESMA 4 Edgar Acua Sea S el esacio muestral de u eerimeto aleatorio. Sea s s dos ucioes que asiga u umero real a cada elemeto s de S. Etoces

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción CAPÍTULO UNO SEÑALES Y SISTEMAS. Iroducció Los cocepos de señales y sisemas surge e ua gra variedad de campos y las ideas y écicas asociadas co esos cocepos juega u papel imporae e áreas a diversas de

Más detalles

6. Intervalos de confianza

6. Intervalos de confianza 6. Iervalos de cofiaa Curso 0-0 Esadísica Coceo de iervalo de cofiaa Se ha realiado ua ecuesa a 400 ersoas elegidas al aar ara esimar la roorció de voaes de u arido olíico.? Resulado Ecuesa Sí 0 ooros

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

CONTROL DE ASISTENCIA A EXAMEN

CONTROL DE ASISTENCIA A EXAMEN Uiversidad de Las Palmas de Gra Caaria Escuela Técica Superior de Igeieros de Telecomuicació Teoría de la Señal - Eame Covocaoria Ordiaria: 3 de febrero de 2009 CONTROL DE ASISTENCIA A EXAMEN La firma

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Tema 8B El análisis fundamental y la valoración de títulos

Tema 8B El análisis fundamental y la valoración de títulos PARTE III: Decisioes fiacieras y mercado de capiales Tema 8B El aálisis fudameal y la valoració de íulos 8B.1 Iroducció. 8B.2 El aálisis fudameal y la valoració de íulos. 8B.3 Modelos para la valoració

Más detalles

Universidad Tecnológica Nacional Facultad Regional Rosario Cátedra de Ing. De las Reacciones

Universidad Tecnológica Nacional Facultad Regional Rosario Cátedra de Ing. De las Reacciones Uiversidad Tecológica Nacioal Faculad Regioal Rosario Cáedra de Ig. e las Reaccioes Trabajo pracico Nº 3: Flujo o ideal: isribució de iempos de residecia e u reacor flujo pisó AÑO 14 Ig. Roque Masciarelli

Más detalles

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden PRÁCTICA 1 Sisemas elécricos de rimer y segudo orde Objeivo: Deermiar la resisecia iera de u geerador. Realizar medicioes de la cosae de iemo de circuios de rimer orde asabajas y de los arámeros de diseño

Más detalles

NORMA DE CARACTER GENERAL N

NORMA DE CARACTER GENERAL N NORMA DE CARACTER GENERAL N REF.: MODIFICA EL TÍTULO III DEL LIBRO IV, SOBRE VALORIZACIÓN DE LAS INVERSIONES DEL FONDO DE PENSIONES Y DEL ENCAJE, DEL COMPENDIO DE NORMAS DEL SISTEMA DE PENSIONES. Saiago,

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA Tema Cálculo de primiivas Maemáicas II º Bachillerao TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es ua primiiva de f() si F () = f() Ejemplos: fució:

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTCS Oposicioes de Secudaria TEM 63 FRECENC Y ROBBLDD. LEYES DEL ZR. ESCO ROBBLÍSTCO.. roducció. 2. robabilidad Clásica o riori. 3. robabilidad a oseriori o Frecuecial. 4. Modelos de robabilidad.

Más detalles

José Morón SEÑALES Y SISTEMAS

José Morón SEÑALES Y SISTEMAS SEÑALES Y SISTEMAS José Moró SEÑALES Y SISTEMAS Uiversidad Rafael Urdaea Auoridades Recorales Dr. Jesús Esparza Bracho, Recor Ig. Maulio Rodríguez, Vicerrecor Académico Ig. Salvador Code, Secreario Lic.

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER.

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER. EJERCICIOS DE FORMAS DE ONDA DESARROLLOS EN SERIE DE FOURIER. EJERCICIO. Hallar el valor eficaz,, e las foras e oa repreaas e la figura. RESOLUCIÓN: Los valores eficaces e las res foras e oa so iguales.

Más detalles

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010 FUNCIONES ACUARIALES COMO VARIABLES ALEAORIAS SOBRE UNA SOLA VIDA Por Oscar Arada Maríez Nadia Araceli Casillo García Abril E ese primer documeo se presea el ueo efoque del cálculo acuarial, e dode las

Más detalles

Técnicas experimentales de Física General 1/11

Técnicas experimentales de Física General 1/11 La distribució de Itroducció. Ejemplo. Defiició geeral de. Grados de libertad. reducido. La distribució de. Probabilidades de. Ejemplos: 1. Distribució de Poisso.. Bodad de u ajuste. Técicas eperimetales

Más detalles

03) Rapidez de Cambio. 0301) Cambio

03) Rapidez de Cambio. 0301) Cambio Págia 1 03) Rapidez de Cambio 0301) Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Págia 2 A) Iroducció Uo de los aspecos más desacables de la auraleza es su carácer variable. La Tierra y odos

Más detalles

1.3.- Señal aleatoria: caso particular de señal permanente, no tiene expresión matemática explícita, x(t 1 ) =?

1.3.- Señal aleatoria: caso particular de señal permanente, no tiene expresión matemática explícita, x(t 1 ) =? EAL - # -.- Señales elécricas e domiio de iempo SEÑALES ELECRICAS Clasiicació de señales elécricas e domiio de iempo: De acuerdo a su duració emporal: rasiorias (Eergía iia o Permaees (Poecia iia. De acuerdo

Más detalles

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n NÚMEROS COMBINATORIOS Def:Dado u úmero etero o egativo, se defie el factorial de (! como el producto! = ( 1...1 Def: Dados dos úmeros,k eteros o egativos tales que k, se defie el úmero combiatorio sobre

Más detalles

Para resolver una probabilidad con la distribución binomial se aplica la siguiente fórmula

Para resolver una probabilidad con la distribución binomial se aplica la siguiente fórmula CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

Combinatoria y definiciones básicas de probabilidad

Combinatoria y definiciones básicas de probabilidad Combiatoria y defiicioes básicas de probabilidad Defiicioes de probabilidad Probabilidad como ituició Probabilidad como la razó de resultados favorables Probabilidad como medida de la frecuecia de ocurrecia

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

! Calculo de límites ( ) Lim. Lim Lim = Lim = Lim Lim

! Calculo de límites ( ) Lim. Lim Lim = Lim = Lim Lim ! Calclo de límies Límies laerales Aproimació a po. por defeco (izq.), por eceso (der.) Para qe eisa límie iee qe eisir límies laerales y qe ao el límie e el po como los laerales sea igal a úmero qe o

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES UNIVERSIDAD AUTÓNOMA CHAPINGO PREPARATORIA AGRÍCOLA ÁREA DE MATEMÁTICAS CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES f : R R ( ) h p AUTOR Vícor Rafael Valdovios Chávez Ooño de AUTOR Vícor Rafael Valdovios

Más detalles

El método de Monte Carlo

El método de Monte Carlo El método de Mote Carlo El método de Mote Carlo es u procedimieto geeral para seleccioar muestras aleatorias de ua població utilizado úmeros aleatorios. La deomiació Mote Carlo fue popularizado por los

Más detalles

Resumen No Distribución Conjunta de Variables Aleatorias (contin.) Ma34a Prob. y Proc. Estocásticos 29 de Junio, 2006

Resumen No Distribución Conjunta de Variables Aleatorias (contin.) Ma34a Prob. y Proc. Estocásticos 29 de Junio, 2006 Ma34a Prob. y Proc. Estocásticos 29 de Juio, 2006 Resume No. 3 Prof. Cátedra: M. Kiwi Prof. Auxiliares: A. Cotreras, R. Cortez 1. Distribució Cojuta de Variables Aleatorias (coti. Defiició 1 [Variables

Más detalles

FORMULACIÓN Y EVALUACIÓN DE PROYECTOS

FORMULACIÓN Y EVALUACIÓN DE PROYECTOS FORMULACIÓN Y EVALUACIÓN DE PROYECTOS UNIDAD II EVALUACIÓN Y ANÁLISIS PARA LA TOMA DE DECISIONES . CRITERIOS DE EVALUACIÓN DE PROYECTOS Como se ha esudiado aeriormee, la evaluació de proyecos permie ideificar

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices... Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

La Serie de Fourier Trigonométrica

La Serie de Fourier Trigonométrica La Serie de Fourier Trigoomérica Dr. Luis Javier Morales Medoza FIEC Uiversidad Veracruzaa Poza Rica Tuxpa Ídice 5.. Iroducció 5.. La serie rigoomérica de Fourier 5.3. Relació ere los coeiciees de Fourier

Más detalles

Patrones de datos y elección de técnica de pronóstico

Patrones de datos y elección de técnica de pronóstico Curso de Ecoomería de Series de Tiempo Faculad de Ecoomía Uiversidad Nacioal Auóoma de México Paroes de daos y elecció de écica de proósico * Maerial de apoyo para desarrollar el capíulo 3 de Hae, e. al.

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

OPCIÓN A EJERCICIO 1_A x 1 0 1

OPCIÓN A EJERCICIO 1_A x 1 0 1 IES Fco Ayala de Graada Sobrates de 006 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x 1 0 1 Sea las matrices A = y B =. 1 x+1 (1 puto) Ecuetre el valor o valores de x de forma

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO CAPÍTULO DOS SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO. Iroducció E ese capíulo se iroduce y discue varias propiedades básicas de los sisemas. Dos de ellas, la liealidad y la ivariabilidad e el iempo,

Más detalles

Capítulo III. Beneficios por fallecimiento.

Capítulo III. Beneficios por fallecimiento. Capíulo III. Beeficios por falleciieo. Vereos las écicas acuariales que peria deeriar el coso de pagos que depeda del falleciieo de las persoas, coo ejeplos eeos la deeriació de pagos de prias de u seguro

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

Ejercicios Resueltos de Clasificación de Funciones

Ejercicios Resueltos de Clasificación de Funciones Istituto Tecológico de Ciudad Madero Uidad I. Complejidad Computacioal Capitulo. Clasificació de Algoritmos Ejercicios Resueltos de Clasificació de Fucioes.. Determie si f ( ) perteece a la clase idicada

Más detalles

UNIDAD 3 Transformadas de Laplace

UNIDAD 3 Transformadas de Laplace Traformada de aplace 3. Defiicioe a raformada de aplace de ua fució () f, repreeada co el ímbolo, e la operació maemáica defiida mediae la iguiee iegral impropia: { ()} lim b f e f () d b Por lo geeral,

Más detalles

Práctica 3 MUESTREO E INTERVALOS DE CONFIANZA

Práctica 3 MUESTREO E INTERVALOS DE CONFIANZA Deparameo de Méodos Cuaiaivos e Iformáicos. Objeivos: a) Calcular los parámeros de la disribució de medias o proporcioes muesrales de amaño, exraídas de ua població de media y variaza coocidas. b) Calcular

Más detalles