Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:"

Transcripción

1 Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices y B que cumple B=B, eoces: a) (+B) 2 = 2 + B 2 b) (+B)(-B) = 2 - B 2 c) (-B) 2 = 2 - B E u sisema homogéeo: a) Si el rago de la mariz de los coeficiees coicide co el úmero de icógias el sisema admie solucioes disias de la rivial. b) Si el rago de la mariz de los coeficiees es mayor que el úmero de icógias, sólo iee la solució rivial. c) Siempre hay solució. 5.- El deermiae de ua mariz cuadrada es ulo si: a) Hay ua fila idéica a ua columa. b) Coicide co su raspuesa. c) No iee iversa. 6.- Sea el sisema X=B co mariz cuadrada regular. a) X= - B b) X=B - c) X= B 7.- Sea ua mariz aisimérica de orde impar, eoces: a) 0 b) c) 8.- Si y B so marices ales que B= y B=B, eoces: a) =B 2 b) c) 9.- Dado el sisema X=(0) siedo M 3, se verifica: * a) o es siempre igual al, siedo * la mariz ampliada del sisema. b) 0 => sisema compaible deermiado. c) 0 => sisema compaible ideermiado. 0.- Sea M, siedo 0, eoces el rago de es: a) - b) Uidad Docee de Maemáicas 37

2 Sisemas. Marices y Deermiaes c) <.- Si X+B = XC+D, eoces: a) X = (-C) - (D-B), si C 0. b) X = (-B+D)(-C) -, si C 0. c) No se puede despejar X 2.- Sabiedo que la mariz +2 I es iversible (dode I es la mariz uidad) y que se verifica la ecuació maricial 2X+X+B=0, eoces: a) X=-B(2I+) - b) X=-(2I+) - B c) (2+)X+B=0 3.- Sea y B marices cuadradas de orde, se verifica: a) B B b) 3 =3 c).b. B 4.- Sea M ua mariz real de orde 3. M es orogoal si y solo si: a) M = M - b) Sus vecores columa cosiuye ua base oroormal de R 3. c) Sus vecores columa so orogoales ere sí 5.- Sea S y S2 dos sisemas lieales equivalees, cuyas marices de coeficiees so y 2 respecivamee. Eoces: a) S y S2 iee el mismo úmero de ecuacioes. b) y 2 iee el mismo rago. c) Nigua de las dos aeriores. 6.- Sea ua mariz cuadrada de orde 3 co k 0. Se verifica: a) k b). 2k c) k 7.- Sea M orogoal. Se verifica: a) b) c) rago()= 8.- Sea y B M (K) y O la mariz ula del mismo orde, ales que B = O. Eoces: a) = O ó bie B = O. b) 0 ó bie B 0. c) Nigua de las dos aeriores. 9.- Sea X = K u sisema lieal de m ecuacioes co icógias al que r() r( ) 3. Se verifica eoces que: a) El sisema es icompaible. b) Podemos despejar 3 icógias e fució de las demás. c) Podemos despejar - 3 icógias e fució de las res resaes. Uidad Docee de Maemáicas 38

3 Sisemas. Marices y Deermiaes 20.- Sea y B marices cuadradas de orde disio de, se verifica: a) B B b) p p c) B B 2.- Sea y B dos marices iversibles del mismo orde, eoces: a). ( B) B b) ( B) B c) ( B) B 22.- Dada ua mariz M m co m >, se verifica: a) El rago puede omar cualquier valor del iervalo [0, m] b) El rago puede omar cualquier valor del iervalo [0, ] c) El rago puede omar cualquier valor del iervalo (, m) Sea, B y C res marices cualesquiera cuadradas del mismo orde. Podemos afirmar: a) (BC) = (B)C b) B = B c) C = BC = B 24.- Si ua mariz es produco de marices elemeales, eoces: a) es iversible. b) es ua mariz elemeal. c) igua de las dos aeriores Sea y las marices de coeficiees y ampliada, respecivamee, del sisema icompaible X K. Eoces: r r a) b) r r c) r r 26.- Sea M m, se verifica: a) es simérica. b) es aisimérica. c) Sea ua mariz de orde 3 al que rago () =. Eoces: a) 0 y iee al meos ua líea cosiuida por ceros. b) c) 0 y las res filas so proporcioales Siedo S u sisema homogéeo de 2 ecuacioes lieales co 3 icógias, eoces, se puede asegurar: a) S iee ua solució úica. b) S iee varias solucioes. c) Que S ega algua solució depede de los coeficiees del sisema Ua mariz cualquiera verifica: a). =. b). es simérica. c). = I (mariz uidad del orde correspodiee) Uidad Docee de Maemáicas 39

4 Sisemas. Marices y Deermiaes 30.- Si es ua mariz aisimérica ( = - ) y de orde impar, se verifica: a) - = b) 0 c) = Cosideremos el sisema S formado por res ecuacioes lieales E,E2 y E3. Ua de las afirmacioes siguiees es FLS: a) Si S es compaible, eoces el sisema S formado por las ecuacioes E y E2 ambié es compaible. b) Si S es icompaible, eoces el sisema S formado por las ecuacioes E y E2 ambié es icompaible. c) El sisema S de ecuacioes E, E2 y E3 + E + E2 es equivalee a S Sea M mx al que rago()=r, se verifica: a) Todos los meores de orde r de so disios de cero. b) El subespacio egedrado por los vecores fila de iee dimesió r. c) El subespacio egedrado por los vecores columa de puede eer dimesió disia de r Sea y B marices cuadradas, eoces ua de las siguiees afirmacioes es FLS: a) b) Si.B = I =(mariz ideidad). B c) B B 34.- Sea M3 al que 0. Cosideramos el sisema defiido por X=0. a) El sisema es icompaible. b) El sisema es compaible deermiado. c) El sisema es compaible ideermiado Sea ua mariz de rago r. Podemos afirmar que: a) Todos los meores de de orde r so disios de cero. b) El subespacio egedrado por los vecores fila de es de dimesió r. c) iee r filas liealmee idepediees, pero, o podemos asegurar lo mismo de las columas Si es ua mariz de dimesió 3x4 cuyo rago es 2, eoces se puede asegurar que: a) Los deermiaes de odas las submarices de de orde x so cero. b) Todos los meores de orde 2 de so disios de cero. c) So ulos odos los meores de orde 3 de la mariz El deermiae de la mariz M de orde 2 es igual a. Eoces se puede asegurar: a) M b) 3M 3 M c) M - = M 38.- Sea y B marices cualesquiera ales que.b = I =(mariz ideidad), eoces: a) B es la iversa de b). B Uidad Docee de Maemáicas 40

5 c) M xm Sisemas. Marices y Deermiaes y B M mx 39.- Sea M al que rago()=r, se verifica: a) Todos los meores de orde r de so disios de cero. b) es iversible si y solo si r=. c) Co esa iformació o sabemos cuáas columas liealmee idepediees iee la mariz Sea M 3x 2, B M 5x 3, eoces: a) B B b) B B c) No exise i B, i B. 4.- Sea,B M ; sea 0 la mariz ula del mismo orde. Se verifica: a) B=0 =0 ó B=0 b) Si es iversible y B=0 eoces B=0. c) B=B, por ser y B marices cuadradas del mismo orde Sea y B marices cuadradas del mismo orde, se verifica: a) B B b) 2 =2 c) Sea y B marices reales de dimesioes mx y xm respecivamee co m. Podemos afirmar: a).b es ua mariz cuadrada de orde. b). es ua mariz cuadrada simérica de orde m. c) El produco B.B o puede efecuarse Sea y B marices cuadradas del mismo orde 2 co elemeos reales y sea k u úmero real, se verifica: a) B B b).b. B c) k k 45.- Sea X=C u sisema lieal de cico ecuacioes co res icógias al que rago()=rago( * )=2, siedo * la mariz ampliada del sisema. Se verifica: a) Puede despejarse dos icógias cualesquiera e fució de la ercera. b) El sisema puede ser icompaible. c) Hay res ecuacioes que so combiació lieal de las oras dos Sea M orogoal. Se verifica: a). I (I es la mariz uidad) b) 0 c).=i (I es la mariz uidad) 47.- Sea y B dos marices cuadradas del mismo orde co iversible, eoces: a).b. B b).b. B c) Nigua de las dos aeriores. Uidad Docee de Maemáicas 4

6 Sisemas. Marices y Deermiaes 48.- Sea X=C u sisema lieal de mecuacioes y icógias al que rago()=rago( * )=r<, siedo * la mariz ampliada del sisema. Se verifica: a) El sisema es compaible deermiado. b) El sisema es compaible ideermiado pudiedo despejar r icógias cualesquiera e fució de las demás. c) Hay r icógias que puede despejarse e fució de las demás Si X+B = CX+D, siedo, B, C y D marices cuadradas ales que C 0, podemos afirmar: a) X = (-C) - (D-B) b) X = (-B+D)(-C) - D B c) X C 50.- Sea M orogoal y simérica. Se verifica: a) b) c) + =I (I es la mariz uidad) 5.- Sea B ua mariz cuadrada co B 0, y sea =2B. Se verifica: a) 2B b) B 2 c) o iee porqué eer iversa Para cualquier mariz cuadrada, la mariz + es: a) aisimérica. b) simérica. c) orogoal Sea y B marices cuadradas de orde, eoces: a).b B b) B=B c) B B 54.- Si e ua mariz cuadrada de orde la ercera columa es res veces la primera, se puede afirmar que. a) Exise -. b) El rago de es meor que. c) El rago de es El deermiae de la mariz 0 2 es: 2 a) -2 b) 2 c) o exise el deermiae de 56.- Dada ua mariz cualquiera M m, el produco es siempre u mariz: a) iversible b) simérica Uidad Docee de Maemáicas 42

7 Sisemas. Marices y Deermiaes c) de dimesió m. 0 x La ecuació x x x a) iee por solució x=0. b) iee por solució x=. c) o es posible resolverla Sea S u sisema homogéeo de 5 ecuacioes co 5 icógias al que rg = 3, eoces: a) S es compaible ideermiado y el cojuo solució es u subespacio vecorial de R 5 de dimesió ideermiada. b) S es compaible ideermiado y el cojuo solució es u subespacio vecorial de R 5 de dimesió 3. c) S es compaible ideermiado y el cojuo solució es u subespacio vecorial de R 5 de dimesió Sea ua mariz cuadrada de orde 3 al que 5, eoces, se verifica: a) 2 0 b) 2 0 c) Sea y B marices cuadradas del mismo orde. Podemos afirmar: a) B B. B b) B, cuado es iversible. c) p p, p R. 6.- Si X+B = XC+D, siedo, B, C, D y X marices cuadradas del mismo orde ales que C 0, podemos afirmar: a) X = (-C) - (D-B) b) X = (D-B)(-C) - c) No se puede despejar X Sea ua mariz cuadrada de cualquier orde, que cumple: 2 +2+I=0, eoces: a) +I=0. b) es iversible. c) +2= Sea ua mariz orogoal de orde 3. Se verifica: a) b) c) Nigua de las dos aeriores Después de efecuar operacioes elemeales e las filas de la mariz ampliada del sisema S X=K se ha obeido la mariz equivalee Podemos afirmar que la solució geeral del sisema S es: Uidad Docee de Maemáicas 43

8 x 0 a) y 7 z 0 b) (x,y,z)=0,7,, Sisemas. Marices y Deermiaes R. c) S es icompaible Sea y B marices cuadradas. Podemos afirmar: a) B = B. b) Traza( B) = Traza(B ). c) rago( B) = rago(b ) Sea M co r()< se verifica: a) 0 b) es iversible. c) Exise u meor de orde - disio de cero Sea M 5 co k. Se verifica: a) 3 3k. b) k. c) k 68.- Sea M 3. Sabiedo que 4, eoces: a) 5 20 b) 3 64 c) Las marices y so: a) Marices siméricas. b) Marices regulares. c) Marices orogoales Si es ua mariz regular, se verifica: a) b) c) Sea S u sisema de varias ecuacioes lieales co 3 icógias Compaible Ideermiado, y sea (x,y,z ), (x 2,y 2,z 2 ) dos solucioes pariculares de S, eoces: a) (x +x 2,y +y 2,z +z 2 ) es solució de S. b) (x +x 2,y +y 2,z +z 2 ) es solució de S sólo si S es homogéeo. c) (x +x 2,y +y 2,z +z 2 ) o es solució de S e igú caso Si 2 +=I, eoces: a) - = 2. b) - =+I. Uidad Docee de Maemáicas 44

9 c) Si es ua mariz 3x3 y a). b) 64. c) 4. Sisemas. Marices y Deermiaes eoces 8 2 vale: 74.- Todo sisema de ecuacioes lieales homogéeo cumple: a) Su mariz de los coeficiees iee iversa. b) Tiee solució úica. c) Es compaible El deermiae de ua mariz cuadrada es ulo si: a) Hay ua fila idéica a ua columa. b) Coicide co su raspuesa. c) No iee iversa Sea M m, eoces: a) es simérica. b) c) 77.- Sea ua mariz cuadrada de orde co k 0. Se verifica: a) k b) 2k c) rago() = Uidad Docee de Maemáicas 45

SISTEMAS, MATRICES Y DETERMINANTES

SISTEMAS, MATRICES Y DETERMINANTES .- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución DETERMINNTES II 1 0 4-1 1. Halla los deermiaes de las siguiees marices: = B = 5-1 05 B 4 1 1 10-1 0. Calcula, aplicado la regla de Sarrus, el siguiee deermiae: = 0 0 1-6 -1 0 1 0 0 0 1 00 11 6 00 1 0 0

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices... Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -

Más detalles

MATRICES 1. CONCEPTO DE MATRIZ

MATRICES 1. CONCEPTO DE MATRIZ MTRICES 1. CONCEPTO DE MTRIZ Ua mariz defiida sobre u cuero comuaivo K es ua ordeació recagular de elemeos a K e filas y columas, e la que cada elemeo a de la mariz esá siuado e la fila i y e la columa

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 7 Marices EJERCICIOS PROPUESTOS y. Ejercicios resuelos.. Dadas las marices A y B idica, si es posible. A 0 0 4 B 5 0 a) Los elemeos a 4 y b 4 b) La dimesió de cada ua de ellas c) La mariz raspuesa de cada

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n =

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n = Hoa Problemas Aálisis II /9 85.- Sea la fució oliómica: N R Demosrar que: i ii iii iv Solució: Cosideremos la ideidad: R N. Derivado e ambos miembros reseco de mulilicado desués or se obiee: - Derivado

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8 Méodos Numéricos - cap. 7. Ecuacioes Difereciales PVI /8 Ecuacioes Difereciales Ordiarias (EDO Ua Ecuació Diferecial es aquella ecuació que coiee difereciales o derivadas de ua o más fucioes. Ua Ecuació

Más detalles

Regresión Lineal Simple

Regresión Lineal Simple REGRESIÓN LINEAL Regresió Lieal Simple Plaeamieo El comporamieo de ua magiud ecoómica puede ser explicada a ravés de ora F( Si se cosidera que la relació puede ser de ipo lieal, la formalizació vedría

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

Tema 2: Sistemas. 2.1 Introducción

Tema 2: Sistemas. 2.1 Introducción Tema : Sisemas Tema : Sisemas. Iroducció U sisema respode co uas deermiadas señales a la acció de oras. x() sisema y ( ) = T x( ) Ejemplo Tiempo coiuo: sisema mecáico () dy b d y() T{ } { } d y() dy()

Más detalles

Qué es la Cinética Química?

Qué es la Cinética Química? Tema 4. La velocidad de Cambio Químico I. Velocidad de reacció.. Ecuació de velocidad y orde de reacció. 3. álisis de los daos ciéicos: ecuacioes iegradas de ciéicas secillas. 4. Ciéicas complejas.. Velocidad

Más detalles

es ligada, siendo v V Dos subespacios F y G de V son suplementarios si y solo si se verifica:

es ligada, siendo v V Dos subespacios F y G de V son suplementarios si y solo si se verifica: 1- Dado el sbcojto F={ ( λ μ, λ,μ, μ) R / λ, μ R} de R, se verifica qe: a) dim F= b) {(1,1,0,0),(-,0,,-1)} es a base de F c) F o es sbespacio vectorial de R - E sistema ligado, se verifica qe: a) Agregado

Más detalles

ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Enrique úñez Rincón 1

ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Enrique úñez Rincón 1 ALEPH SUB CERO SERIE DE DIVULGACIÓ ℵ 0 008 II ℵ 0 ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Erique úñez Ricó Los maemáicos, e lugar de simplemee uilizar u méodo que parece fucioar, quiere

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO DECRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació a u

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012 Tema 2: Aálisis gráfico y esadísico de relacioes Uiversidad Compluese de Madrid Febrero de 202 Aálisis gráfico y descripivo de ua variable (I) Daos de series emporales: Rea per c pia EEUU Cosumo per c

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO CRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació e la maemáica

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

ECUACIONES DIFERENCIALES PARCIALES

ECUACIONES DIFERENCIALES PARCIALES TEMA 4 ECUACIONES DIFERENCIAES PARCIAES 4 INTRODUCCIÓN E ese ema se verá procedimieos para resolver ecuacioes e derivadas parciales que surge co frecuecia e prolemas dode aparece viracioes, poeciales y

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad Uiversidad Carlos III de Madrid 3.4 Sisemas LIT SLIT: Sisemas Lieales e Ivariaes co el Tiempo Liealidad Supogamos que la señal se puede expresar como ua combiació lieal de señales más simples ( x i ()

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMS DE ECUCIONES LINELES Tem : SISTEMS DE ECUCIONES LINELES. Ídice:. Epresió mricil de u sisem de ecucioes lieles.. Méodos de resolució... Resolució por el méodo de l mri ivers... Méodo de Guss...

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

CAP ITULO I ALGEBRA LINEAL. 1

CAP ITULO I ALGEBRA LINEAL. 1 CAPÍTULO I ÁLGEBRA LINEAL 1 Tema 1 Espacios Vectoriales Notaremos por R al cuerpo de los úmeros reales Defiició 11 Sea E u cojuto o vacío e el que se tiee defiida ua ley de composició itera (llamada suma):

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

Sistemas, matrices y determinantes

Sistemas, matrices y determinantes .- Dd l mriz Sisems, mrices y deermies æ ö, hllr ls mrices ç è ø ) B ( + I )(( - I) -, b) C (I - )..- Comprobr que culquier mriz cudrd se puede expresr de form úic como sum de dos mrices, u siméric y or

Más detalles

SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X

SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X Jorge E. Heráez, Eih C. e Heráez Uiversia e Paamá, Cero Regioal Uiversiario De Veraguas, Deparameo e Maemáica. RESUMEN E el presee rabajo esuiamos la ecuació

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

CLASE SOBRE APLICACIONES LINEALES

CLASE SOBRE APLICACIONES LINEALES Álgebra Mauel Hervás Curso 0-0 CLAS SOBR APLICACIONS LINALS. INTRODUCCIÓN l problema que se va a abordar es la forma de RLACIONAR los elemetos de dos espacios vectoriales, mediate expresioes matemáticas.

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid 2013

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid 2013 Tema 2: Aálisis gráfico esadísico de relacioes Uiversidad Compluese de Madrid 2013 Aálisis gráfico descripivo de ua variable (I) Daos de series emporales: Evolució aual de la rea el Cosumo per cápia e

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Fourier. Series de Fourier

Fourier. Series de Fourier Series de Fourier. Fucioes Periódicas oeido. Serie rigoomérica de Fourier 3. ompoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. álculo de los coeficiees de la Serie de Fourier

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

Cinética Química. Objetivos. la velocidad de las reacciones químicas. los factores de los cuales depende la velocidad

Cinética Química. Objetivos. la velocidad de las reacciones químicas. los factores de los cuales depende la velocidad Ciéica Química Objeivos Esudiar la velocidad de las reaccioes químicas los facores de los cuales depede la velocidad los mecaismos a ravés de los cuales ocurre las reaccioes que se esudia plicacioes Síesis

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

SISTEMAS DE ECUACIONES LINEALES.

SISTEMAS DE ECUACIONES LINEALES. SISTEMS DE ECUCIONES LINELES. SISTEMS DE ECUCIONES LINELES. U sistema de ecuacioes lieales es u cojuto de m ecuacioes co icógitas de la forma: a x + a2 x2 + a3 x3 + + a x b a2 x + a22 x2 + a23 x3 + + a2

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA Tema Cálculo de primiivas Maemáicas II º Bachillerao TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es ua primiiva de f() si F () = f() Ejemplos: fució:

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene:

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene: Ejercicio. Obteer los cuatro primeros térmios o ulos de la solució e forma de serie de potecias de x del problema de valores iiciales < (x + )y y = y() = : y () = Solució Como os pide que resolvamos u

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Hemos de destacar que a lo largo del tema la letra K denotará un cuerpo conmutativo con característica de dos.

Hemos de destacar que a lo largo del tema la letra K denotará un cuerpo conmutativo con característica de dos. 1. INTRODUCCIÓN. El cocepto de determiate es posible itroducirlo de diferetes formas: Por medio de aplicacioes multilieales alteradas, por iducció o mediate sumas de! sumados para u determiate de orde.

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

1. Diagramas Frecuenciales Respuesta en Frecuencia 2

1. Diagramas Frecuenciales Respuesta en Frecuencia 2 04 a Diagramas Frecueciales.doc 1 1. Diagramas Frecueciales 1. Diagramas Frecueciales 1 1.1.1. Respuesta e Frecuecia 1.. Presetació de la Respuesta e Frecuecia - Diagramas de Bode 8 1..1. Caso Particular:

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas Ecuacioes e Diferecias Recíprocas y Gustavo Adolfo Juárez; Silvia Iés Navarro Facultad de Ciecias Exactas y Naturales, Uiversidad Nacioal de Catamarca. E-mail: juarez.catamarca@gmail.com Recepció: 20/05/2014

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1 Guía: Propiedades de las potecias SGUICM00MT11-A17V1 TABLA DE CORRECCIÓN PROPIEDADES DE LAS POTENCIAS Ítem Alterativa Dificultad Estimada 1 C Media D Media D Media 4 B Media 5 D Compresió Media 6 E Compresió

Más detalles

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes. ESPACIOS VECTORIALES 1. INTRODUCCIÓN Escalares y Vectores E la técica existe catidades como Logitud, Área, Volume, Temperatura, Presió, Masa, Potecial, Carga eléctrica que se represeta por u úmero real.

Más detalles

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices.

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices. Edgar Acuña/ ESMA 6665 Lecc 8 75 6.3. Uso de la SVD para determiar la estructura de ua matriz Primero defiiremos alguas características de matrices. Rago de ua matriz: Sea A ua matriz m x se etoces su

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO Sea ua partícula de masa m costreñida a ua sola dimesió e el espacio y detro de u segmeto fiito e esa dimesió. Aplicamos tambié el

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Capítulo 9. Método variacional

Capítulo 9. Método variacional Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes

Más detalles

ÁLGEBRA MATRICIAL. INVERSA DE UNA MATRIZ

ÁLGEBRA MATRICIAL. INVERSA DE UNA MATRIZ Cpíulo Álgebr mricil vers de u mriz Cpíulo ÁLEBRA MARCAL NVERSA DE UNA MARZ Mrices E el cpíulo erior se irodujo el cocepo de mriz, defiiédose u mriz A de mño m x co elemeos e u cuerpo (geerlmee cosiderremos

Más detalles

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son TEMA : MATRICES Y DETERMINANTES 0.- 0 Dada la mariz A a) Calcula los valores de para los que la mariz A A no iene inversa. b) Para 0, halla la mariz X que verifica la ecuación AX A I, siendo I la mariz

Más detalles

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS TEMA 0: POSICIONES RELATIVAS DE RECTAS Y PLANOS Ates de itroducir los coceptos que correspode a este apartado, haremos u repaso de dos coceptos que ecesitamos, matrices y determiates, así como alguas de

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

Preguntas de examen. Apéndice A. A.1 Abril de 2008 (Examen parcial) Preguntas de test (30%) Teoría (10 %)

Preguntas de examen. Apéndice A. A.1 Abril de 2008 (Examen parcial) Preguntas de test (30%) Teoría (10 %) Apédice A Pregutas de exame A. Abril de 2008 (Exame parcial) Pregutas de test (30%) A. Se cosidera las sucesioes ( ) a b. Etoces: (a) Si b coverge, etoces a tambié coverge y sus límites coicide. (b) Si

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

6. ECUACIONES DE RECURRENCIA.

6. ECUACIONES DE RECURRENCIA. 6. ECUACIONES DE RECURRENCIA. 6.1. Itroducció. Las relacioes de recurrecia puede cosiderarse como técicas avazadas de coteo. Resuelve problemas cuya solució o puede obteerse usado variacioes, permutacioes,

Más detalles

Números reales. Operaciones

Números reales. Operaciones Números reales. Operacioes Matemáticas I 1 Números reales. Operacioes Números racioales. Caracterizació. Recuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma

Más detalles

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Uiversidad Carlos III de Madrid. El mudo físico: represeació co señales y sisemas Señales: Fucioes co las que represeamos variacioes de ua magiud física Volaje, iesidad, fuerza, emperaura, posició r ()

Más detalles

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1 1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros

Más detalles