i 1,2,..., m (filas) j 1,2,..., n (columnas) t

Tamaño: px
Comenzar la demostración a partir de la página:

Download "i 1,2,..., m (filas) j 1,2,..., n (columnas) t"

Transcripción

1 MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas) Dimesió de la mariz es el úmero m Mariz cuadrada: m Mariz recagular. m Mariz fila: m Mariz columa: Mariz raspuesa: Se cambia filas por columas. Las marices cuadradas puede ser ; Simérica: a aji isimérica: a aji Para comprobar que aii 0, dode poe j poer i: a a 2a 0 a 0 ii ii ii ii 1

2 Triagular superior: a 0 si i j. Ceros por debajo de la diagoal pricipal Triagular iferior: a 0 si i j. Ceros por ecima de la diagoal pricipal Diagoal: a 0 si i j. Sólo elemeos e la diagoal pricipal D o Escalar Los elemeos de la diagoal pricipal so iguales o Uidad: a ii 1. o Nula: a E I Dos marices co la misma dimesió so iguales si iee los mismos elemeos. La SUM de marices de la misma dimesió se hace sumado los elemeos correspodiees que ocupa la misma posició. La suma de marices iee las propiedades sociaiva ( B C) ( B) C Comuaiva B B Neuro: La mariz ula 0 mx. 0 0 Mariz Opuesa ( ) ( ) 0 Ejemplo:

3 Produco de escalar por mariz : Se muliplica odos los elemeos de la mariz por el escalar y se expresa. Ejemplo: Esa operació iee las propiedades coocidas a) Disribuiva respeco a la suma de marices: k( B) k kb b) Disribuiva respeco a la suma de escalares: ( h k) h k c) sociaiva del produco de escalares: ( hk) h( k) d) 1 :1. Co esas dos operacioes Suma de marices: B y produco de escalar por mariz : el cojuo de las marices m iee esrucura de espacio vecorial de dimesió m. El PRODUCTO de marices mx Bxp Cmxp se efecúa muliplicado las filas de la mariz por las columas de la mariz B, es decir c a b ; k 1.. ik kj odos los elemeos de cada fila por sus correspodiees de cada columa obeiedo ora mariz. Nauralmee para que sea posible realizar ese C mxp produco es ecesario que el úmero de columas coicida co el úmero de filas mx Ejemplo: de la mariz seguda x3 2x2 3x2 El produco de marices iee las propiedades sociaiva ( B C) ( B) C Disribuiva respeco a la suma ( B C) B C Mariz Uidad I I No es, e geeral, comuaivo B B Puede eer Iversa TENCIÓN o B I de la mariz primera B xp. o implica que algua de ellas sea 0 o B C o implica que B C 2 B 2 B B o E geeral B B B B B 3

4 B B B o E geeral B B B B B Propiedades de la mariz raspuesa: ; ; B B B B D D ; ; Poecia: ; RNGO de ua mariz es el úmero de filas o columas liealmee idepediees se expresa rg( ). Ejemplo Hallar el rago de la mariz El rago es rg( ) 2 pues sólo F1 y F 4 so liealmee idepediees. Operacioes co las líeas (filas o columas) de ua mariz que o afeca a su rago. Sumar líeas combiació lieal de oras Cambiar de lugar líeas. Muliplicar ua líea por u úmero o ulo. Suprimir líeas que sea combiació lieal de oras DETERMINNTE El valor de u deermiae es u úmero asociado a ua mariz cuadrada que se represea por o bie de( ). Ese úmero se cosigue sumado (co su sigo) odos los producos posibles que se obiee muliplicado u elemeo de cada fila por uo de cada columa. El sigo de cada produco será (+) si la permuació de los primeros ídices es de la misma clase que la de los segudos ídices y ( ) e caso corario. Propiedades 0 si ua líea es combiació lieal de oras l cambiar 2 líeas cambia el sigo del deermiae 1 1 de(0) 0 ; de( I) 1;de( D) a a a Casos pariculares: El cálculo de u deermiae de orde 2 y de orde 3 se puede calcular por la Regla de Sarrus. E el caso de marices de mayor orde se sigue oros 4

5 procedimieos, fudamealmee el méodo de Gauss que cosigue ua mariz escaloada. Meor de orde k ua mariz cuadrada de orde es el deermiae de la submariz cuadrada de orde k que se obiee eligiedo k filas y k columas. Ejemplo ; M Se ha elegido las 3 primeras filas y columas. Se ha suprimido la úlima fila y la úlima columa. Meor complemeario del elemeo a de la mariz es el deermiae que se obiee suprimiedo la fila i y la columa j e la que se ecuera dicho elemeo. Ejemplo M a de la mariz : ( 1) i j M. djuo del elemeo ( 1) ( 13) 13 E el ejemplo aerior Ejemplo de sigo de los adjuos de ua mariz de orde 4 Desarrollo de u deermiae por los elemeos de ua fila: De ua mariz cuadrada se puede obeer su deermiae como la suma de los elemeos de ua fila por sus adjuos respecivos. a Se deomia Mariz djua la formada por los adjuos de odos sus elemeos. La INVERS de ua mariz cuadrada se puede obeer 1 dode a es la mariz adjua de su raspuesa a 5

6 Tambié se puede obeer la mariz iversa de ua mariz dada siguiedo el méodo de Gauss-Jorda que cosise e formar ua abla co dos marices ua la dada y a su derecha la mariz uidad. Se realiza operacioes elemeales e la dada hasa rasformarla e mariz uidad y realizado las mismas operacioes aeriores e la mariz uidad ésa úlima queda rasformada e la mariz iversa de la dada. Ejemplo Hallar la iversa de la mariz 1. Mediae fórmula ; 2 1 ; 4 9 a ; 2. Mediae Gauss-Jorda a F F F ' F 2 F F ' F 4F ;

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución DETERMINNTES II 1 0 4-1 1. Halla los deermiaes de las siguiees marices: = B = 5-1 05 B 4 1 1 10-1 0. Calcula, aplicado la regla de Sarrus, el siguiee deermiae: = 0 0 1-6 -1 0 1 0 0 0 1 00 11 6 00 1 0 0

Más detalles

MATRICES 1. CONCEPTO DE MATRIZ

MATRICES 1. CONCEPTO DE MATRIZ MTRICES 1. CONCEPTO DE MTRIZ Ua mariz defiida sobre u cuero comuaivo K es ua ordeació recagular de elemeos a K e filas y columas, e la que cada elemeo a de la mariz esá siuado e la fila i y e la columa

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices... Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

SISTEMAS, MATRICES Y DETERMINANTES

SISTEMAS, MATRICES Y DETERMINANTES .- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 7 Marices EJERCICIOS PROPUESTOS y. Ejercicios resuelos.. Dadas las marices A y B idica, si es posible. A 0 0 4 B 5 0 a) Los elemeos a 4 y b 4 b) La dimesió de cada ua de ellas c) La mariz raspuesa de cada

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULTAD DE ECONOMÍA ECONOMETRIA. Proceso Estocástico. Mtro. Horacio Catalán Alonso

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULTAD DE ECONOMÍA ECONOMETRIA. Proceso Estocástico. Mtro. Horacio Catalán Alonso UNIVERSIDAD NACIONAL AUÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULAD DE ECONOMÍA ECONOMERIA Proceso Esocásico Mro. Horacio Caalá Aloso Proceso esocásico Defiició.- U Proceso Esocásico (PE es ua secuecia

Más detalles

ALGEBRA VECTORIAL Y MATRICES.

ALGEBRA VECTORIAL Y MATRICES. ALGEBRA VECTORIAL Y MATRICES. Cosideraremos como ua matriz cuadrada de orde. Determiate es el valor umérico úico asociado a toda matriz cuadrada. Propiedades de los determiates Las propiedades más importates

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas

Más detalles

Unidad I Fundamentos de Algebra Matricial Parte II

Unidad I Fundamentos de Algebra Matricial Parte II Uidad I Fudameos de Algebra aricial Pare II Dra. Ruh. Aguilar Poce Faculad de Ciecias Deparameo de Elecróica Propedeuico 008 Faculad de Ciecias Propedeuico 008 Faculad de Ciecias Nocioes de Calculo aricial

Más detalles

Decimocuarta clase. Respuesta al impulso y convolución

Decimocuarta clase. Respuesta al impulso y convolución Uiversidad Disrial Fracisco José de Caldas - Aálisis de Señales y Sisemas - Marco A. Alzae Decimocuara clase. Respuesa al impulso y covolució E esa clase repasamos y esedemos la clase 3, ya que se raó

Más detalles

Supertriangular Subtriangular Diagonal Unidad

Supertriangular Subtriangular Diagonal Unidad MT. EMPRESRILES TE RESOLVEMOS LS PRIMERS DUDS L eorí de mrices es l que v porr l form operiv de resolver u iumerle cidd de ejercicios de Álger. Por odo lo que supoe eso, os vmos proporcior los coocimieos

Más detalles

Qué es la Cinética Química?

Qué es la Cinética Química? Tema 4. La velocidad de Cambio Químico I. Velocidad de reacció.. Ecuació de velocidad y orde de reacció. 3. álisis de los daos ciéicos: ecuacioes iegradas de ciéicas secillas. 4. Ciéicas complejas.. Velocidad

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

Matrices y Determinantes

Matrices y Determinantes I. E. S. Siete Colias (Ceuta) Departameto de Matemáticas Matemáticas de º de Bachillerato Matrices y Determiates Por Javier Carroquio CaZas Catedrático de matemáticas del I.E.S. Siete Colias Ceuta 00 Matrices

Más detalles

MATEMÁTICA I Capítulo 5. a, a,..., a, término independiente b e incógnitas. = b, por ejemplo 2

MATEMÁTICA I Capítulo 5. a, a,..., a, término independiente b e incógnitas. = b, por ejemplo 2 MTEMÁTIC I - Capítulo MTRICES.. Itroducció. Nocioes básicas. Ua ecuació lieal co coeficietes reales a, a,..., a, térmio idepediete b e icógitas x, x,..., x es ua expresió de la forma a. x + a. x +... +

Más detalles

Unidad 5: MATRICES. m x n a todo conjunto de elementos dispuestos en m. La matriz tiene. La Tabla se puede expresar como matriz:

Unidad 5: MATRICES. m x n a todo conjunto de elementos dispuestos en m. La matriz tiene. La Tabla se puede expresar como matriz: Uidd : MTRIES º ch M pl SS II Ídice: MTRIES Tipos de Mrices OPERIONES DE MTRIES Sum de Mrices Produco De Mrices Produco de u mriz por u úmero Produco de Mrices Poecis de Mrices MTRIZ TRSPUEST DEPENDENI

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

TEORÍA DE CONTROL MODELO DE ESTADO

TEORÍA DE CONTROL MODELO DE ESTADO TEORÍA DE ONTROL MODELO DE ESTADO Defiicioes: (Ogaa) Esado. El esado de u sisema diámico es el cojuo más pequeño de variables (deomiadas variables de esado) de modo que el coocimieo de esas variables e

Más detalles

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Determiates Ramó Espioza Armeta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Sea A M ( K), dode 2. El i-ésimo meor de A es la matriz A i, obteida a partir de A elimiado el regló i y la columa. Eemplo. Sea 3

Más detalles

BLOQUE DE ÁLGEBRA TEMA 1: MATRICES

BLOQUE DE ÁLGEBRA TEMA 1: MATRICES Álgebr Liel Memáics º chillero LOQUE DE ÁLGER TEM : MTRICES U mriz es u cojuo de úmeros reles colocdos recgulrmee ecerrdos ere préesis o corchee o doble brr. Pr or u mriz se uiliz o: u ler myúscul, por

Más detalles

Regresión Lineal Simple

Regresión Lineal Simple REGRESIÓN LINEAL Regresió Lieal Simple Plaeamieo El comporamieo de ua magiud ecoómica puede ser explicada a ravés de ora F( Si se cosidera que la relació puede ser de ipo lieal, la formalizació vedría

Más detalles

A = Héctor Escobar Álgebra Lineal ÁLGEBRA LINEAL: Unidad 1: Álgebra De Matrices. 1. CONCEPTO DE MATRIZ. Una matriz A de

A = Héctor Escobar Álgebra Lineal ÁLGEBRA LINEAL: Unidad 1: Álgebra De Matrices. 1. CONCEPTO DE MATRIZ. Una matriz A de ÁLGEBRA LINEAL: Hécor Escobr Álgebr Liel Uidd : Álgebr De Mrices.. CONCEPTO DE MATRIZ. U mriz A de A = = m m m es u rreglo recgulr de m fils y colums: m ( ) Nos:. i m ; j b. Si R, eoces A es u mriz rel.

Más detalles

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m . Primeras definiciones Una mariz es un conjuno de elemenos (números) ordenado en filas y columnas. En general una mariz se nombra con una lera mayúscula y a sus elemenos con leras minúsculas indicando

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

APÉNDICE: ANÁLISIS DE REGRESIÓN

APÉNDICE: ANÁLISIS DE REGRESIÓN Fud. Físicos de la Iformáica / Fud. Tecológicos de los Compuadores APÉDICE: AÁLISIS DE REGRESIÓ ITRODUCCIÓ El aálisis de regresió es ua herramiea esadísica que permie hacer u ajuse de daos eperimeales

Más detalles

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3.

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3. DETERMINNTES DETERMINNTES DE ORDEN 1, 2 y 3 El deerminane de una mariz cuadrada es un número real asociado a dicha mariz que se obiene a parir de sus elemenos. Lo denoamos como de () o. Llamamos orden

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

ÁLGEBRA APUNTE TEÓRICO - UNIDAD TEMÁTICA Nº 1

ÁLGEBRA APUNTE TEÓRICO - UNIDAD TEMÁTICA Nº 1 ÁLGEBR PUNTE TEÓRICO - UNIDD TEMÁTIC Nº Matrices. Determiates. Sistemas de ecuacioes lieales utor: ZI, lejadra Cristia Ficha de Cátedra: Carreras: Cotador Público- Liceciatura e Ciecias Ecoómicas Materia:

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

ÁLGEBRA MATRICIAL. INVERSA DE UNA MATRIZ

ÁLGEBRA MATRICIAL. INVERSA DE UNA MATRIZ Cpíulo Álgebr mricil vers de u mriz Cpíulo ÁLEBRA MARCAL NVERSA DE UNA MARZ Mrices E el cpíulo erior se irodujo el cocepo de mriz, defiiédose u mriz A de mño m x co elemeos e u cuerpo (geerlmee cosiderremos

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Álgebra Manuel Hervás Curso

Álgebra Manuel Hervás Curso Álgebra Mauel Hervás Curso 0-0 FORMAS LINEALES Defcó Sea E u espaco vecoral sobre referdo a ua base B e e e,,, Se deoma Forma Leal sobre a la aplcacó leal f : E al que x E f ( x) b De modo que elegdo u

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Enrique úñez Rincón 1

ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Enrique úñez Rincón 1 ALEPH SUB CERO SERIE DE DIVULGACIÓ ℵ 0 008 II ℵ 0 ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Erique úñez Ricó Los maemáicos, e lugar de simplemee uilizar u méodo que parece fucioar, quiere

Más detalles

{ a 1, a 2,..., a } n. Cualquier vector n

{ a 1, a 2,..., a } n. Cualquier vector n Deparameo de Aálss Ecoómco UNIVERSIDAD DE ZARAGOZA Tema 3: Formas cuadrácas reales Para odo el ema, se cosdera e R u ssema de refereca (o base) dado { a 1, a 2,..., a }. Cualquer vecor x R se escrbe de

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

Sistemas y Señales I. Ecuaciones de Estado. Variables de Estado

Sistemas y Señales I. Ecuaciones de Estado. Variables de Estado Sisemas y Señales I Ecuacioes de Esado Auor: Dr. Jua Carlos Gómez Variables de Esado Defiició: Las Variables de Esado so variables ieras del sisema, cuyo coocimieo para odo iempo, juo co el coocimieo de

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - Curso de Verao 016 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c y

Más detalles

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes:

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes: Aplicacioes lieales Diagoalizació Defiició: Sea V y W dos espacios vectoriales sobre el mismo cuerpo y sea la aplicació f:v W v f v w La aplicació f es lieal si se verifica las dos codicioes siguietes:

Más detalles

MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física

MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física MAEMÁICAS Posgrado e Naoecología Dr. Robero Pedro Duare Zamorao 16 Deparameo de Física EMARIO. Series de Fourier 1. Iroducció.. Desarrollo de Fourier. 3. Expasioes de Fourier de medio rago. Iroducció.

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos Méodos y écicas de iegració El siguiee ema sugerido para raar e clases es el méodo de iegració por pares veamos de dode surge y alguos ejemplos propuesos ( º ) Méodo de Iegració por pares:. dv u. v u =

Más detalles

Tema 2: Sistemas. 2.1 Introducción

Tema 2: Sistemas. 2.1 Introducción Tema : Sisemas Tema : Sisemas. Iroducció U sisema respode co uas deermiadas señales a la acció de oras. x() sisema y ( ) = T x( ) Ejemplo Tiempo coiuo: sisema mecáico () dy b d y() T{ } { } d y() dy()

Más detalles

ÁLGEBRA LINEAL Ingenierías ÁLGEBRA II. Unidad Nº 6 LM - PM. Valores y Vectores propios. Unidad 6 1. FCEyT - UNSE

ÁLGEBRA LINEAL Ingenierías ÁLGEBRA II. Unidad Nº 6 LM - PM. Valores y Vectores propios. Unidad 6 1. FCEyT - UNSE Álgera II (LM-PM) - Álgera Lieal (Igs.) - F.C.E. T.- UNSE ÁLGEBRA LINEAL Igeierías ÁLGEBRA II LM - PM Uidad Nº 6 Valores Vecores propios. FCET - UNSE Uidad 6 Uidad Nº6: VALORES Y VECTORES PROPIOS.- VALORES

Más detalles

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8 Méodos Numéricos - cap. 7. Ecuacioes Difereciales PVI /8 Ecuacioes Difereciales Ordiarias (EDO Ua Ecuació Diferecial es aquella ecuació que coiee difereciales o derivadas de ua o más fucioes. Ua Ecuació

Más detalles

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS TEMA 0: POSICIONES RELATIVAS DE RECTAS Y PLANOS Ates de itroducir los coceptos que correspode a este apartado, haremos u repaso de dos coceptos que ecesitamos, matrices y determiates, así como alguas de

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis.

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis. Marices Mariz: Es el ordenamieno recangular de escalares en filas y columnas, encerradas en un corchee ó parénesis. Las marices se designan así: æa11 a1 a13 a1 n ö a1 a a3 an a31 a3 a33 a 3n am 1 am am3

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

Capitulo II. II.2 Teoría de curvatura. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Capitulo II. II.2 Teoría de curvatura. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica Capiulo II II.2 Teoría de curvaura 1 Capiulo II Movimieo Plao II.1 Aspecos geerales del movimieo plao. II.2 Teoría de la curvaura. 1. Teorema de Harma. 2. Euler-Savary. 3. Circuferecia de iflexioes y circuferecia

Más detalles

1. Determinantes de orden dos y tres:

1. Determinantes de orden dos y tres: 1. Determinantes de orden dos y tres: TEMA 8: DETERMINANTES. A una matriz cuadrada le vamos a asociar un número que servirá para resolver sistemas, calcular matrices inversas y rangos de matrices. A det

Más detalles

V.- CONDICIÓN DE CONTORNO ISOTÉRMICA EN SÓLIDOS INFINITOS

V.- CONDICIÓN DE CONTORNO ISOTÉRMICA EN SÓLIDOS INFINITOS V.- CONDICIÓN DE CONTONO ISOTÉMICA EN SÓIDOS INFINITOS V.1.- CONDUCCIÓN TANSITOIA EN PACA INFINITA CON CONDICIÓN DE CONTO- NO ISOTÉMICA a coducció a ravés de ua placa plaa de espesor fiio e la direcció

Más detalles

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS I.E.S. Ramó Giraldo UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS. NÚMEROS REALES.. NÚMEROS NATURALES =,,, 4,... Operacioes iteras (el resultado es u úmero atural) - Suma y producto Operacioes eteras (el resultado

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

1) Considera el sistema de ecuaciones:

1) Considera el sistema de ecuaciones: SESIÓN 4: Álgebra lieal umérica ) Cosidera el sistema de ecuacioes: x + aa aa y a) Calcula las matrices iterativas de los métodos de Jacobi y Gauss-Seidel. b) Para qué valores de a coverge el método de

Más detalles

Aplicaciones Lineales. Diagonalización 1.- Sean xy

Aplicaciones Lineales. Diagonalización 1.- Sean xy Aplicacioes Lieales. Diagoalizació.- Sea xy, vectores propios de ua matriz A asociados al mismo valor propio. Etoces: a) x+ y tambié es vector propio de A. b) x+ y tambié es vector propio de A, si x +

Más detalles

CONCEPTOS BÁSICOS DE ESTADISTICA INFERENCIAL

CONCEPTOS BÁSICOS DE ESTADISTICA INFERENCIAL CONCEPTO BÁCO DE ETADTCA NFERENCAL Població N Muesra Parámeros Esadísico µ Esimador dividuo Cada parámero poblacioal le correspoderá u esadísico de la muesra que cosiuirá ua esimació del primero. Defiició

Más detalles

Material didáctico. Bibliografía básica. Aula global

Material didáctico. Bibliografía básica.   Aula global Fracisco J. Gozález, UC3M Maerial didácico Bibliografía básica Señales y Sisemas Ala V. Oppeheim, Ala S. Willsky, S. Hamid Nawab, ª edició (998) Preice Hall; ISBN: 97897764 Circuios Elécricos, James W.

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Convolución discreta cíclica

Convolución discreta cíclica Covolució discreta cíclica Estos aputes está escritos por Darío Coutiño Aquio y Egor Maximeko. Objetivos. Defiir la covolució discreta cíclica y demostrar el teorema sobre la covolució discreta cíclica

Más detalles

MMII_c4_MSV: Ecuación de Laplace en un rectángulo. Problemas no homogéneos

MMII_c4_MSV: Ecuación de Laplace en un rectángulo. Problemas no homogéneos MMII_c4_MSV: Ecuació de Lapace e u recáguo. Probemas o homogéeos Guió: E esa case os ocuparemos de a apicació de Méodo de Separació de Variabes (MSV) a a ecuació de Lapace, o que podremos hacer mediae

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

DESIGUALDADES CLÁSICAS

DESIGUALDADES CLÁSICAS DESIGUALDADES CLÁSICAS PARA EL SEMINARIO DE PROBLEMAS (CURSO 017/018) ALBERTO ARENAS 1 Desigualdades etre medias La estrategia más geeral para probar desigualdades es trasformar la desigualdad a la que

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva TEMA 1 Estadística Descriptiva 1. Variables estadísticas uidimesioales a) Itroducció b) Estudio descriptivo de ua variable c) Represetacioes gráficas d) Medidas de tedecia cetral

Más detalles

I. Funciones trigonométricas. Armónicos.

I. Funciones trigonométricas. Armónicos. PRÁCTICA : APROXIMACIONES DE FOURIER I I Fucioes trigoométricas Armóicos Iformació básica Las fucioes trigoométricas básicas Las fucioes trigoométricas básicas so las fucioes seo y coseo: siωt y cosω t,

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Ecuaciones diferenciales ordinarias: Problemas de valor inicial

Ecuaciones diferenciales ordinarias: Problemas de valor inicial Tiulació: Asigaura: Auor: Igeiero Geólogo Aálisis Numérico César Meédez Ulima acualizació: 6/0/00 Ecuacioes difereciales ordiarias: Problemas de valor iicial Plaificació: Maeriales: Coocimieos previos:

Más detalles

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8 8 7 - - - - - Méodos Numéricos - Cap 7 cuacioes Diereciales Ordiarias PVI 8 cuacioes Diereciales Ordiarias DO Ua cuació Dierecial es aquella ecuació que coiee diereciales o derivadas de ua o más ucioes

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

(a n a n+1 ) n(n + 1) = Comprobar que las siguientes series no son convergentes. ( 1) n. 2 n+2 3 n 2,

(a n a n+1 ) n(n + 1) = Comprobar que las siguientes series no son convergentes. ( 1) n. 2 n+2 3 n 2, FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 4. Probar que si la serie es covergete,

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

2.3 SISTEMAS DE ECUACIONES (2.3_AL_T_062, Revisión: , C14)

2.3 SISTEMAS DE ECUACIONES (2.3_AL_T_062, Revisión: , C14) .3 SISTEMS DE ECUCIONES (.3_L_T_06, Revisió: 05-04-06, C4) La forma geeral de este problema es: L x (euaió lieal) Cuado L operador matriial SISTEM DE ECUCIONES (SISTEM MTRICIL). Método más simple de soluió:

Más detalles

Tema 3. ANALISIS DE LA RESPUESTA DE SISTEMAS EN TIEMPO CONTINUO

Tema 3. ANALISIS DE LA RESPUESTA DE SISTEMAS EN TIEMPO CONTINUO Igeiería de iema Tema 3. ANALISIS DE LA RESPUESTA DE SISTEMAS EN TIEMPO CONTINUO 3. Repuea Temporal de Siema e Tiempo Coiuo Sea u iema coiuo cuya repuea y( ) ae ua erada u ( ) e objeo de eudio, repreeado

Más detalles