MATRICES. M(n) ó M nxn A =

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATRICES. M(n) ó M nxn A ="

Transcripción

1 MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas y n columnas a. a.... a.n a. a.... a.n a i.j ) i,,,...,m M M M j,,,...n a m. a m.... a m.n K puede ser el cuerpo R ó C y en caso de no decir nada en conra será el cuerpo de los reales. Cada elemeno de una mari lleva dos subíndices, el primero corresponde a la fila del elemeno y el segundo a la columna. Nomenclaura. Sí m, se llama mari fila. Sí n, se llama mari columna. Sí m n, se llama mari recangular. Sí mn, se llama mari cuadrada. Noaciones l conjuno de marices de orden m n, cuyos elemenos oman valores en cuerpo K se denoa por Mm,n,K). Sí KR, es usual la noación Mm,n) ó M m n en lugar de Mm,n,R). El conjuno de marices cuadradas de orden n se denoa por Mn,K). Sí KR, se suele denoar Mn) ó M nxn Mari nula ) es aquella mari en que a ij i,,...,m, j,,...,n. Hay una mari nula para cada orden de marices. Se define como diagonal principal de una mari cuadrada de orden n a los elemenos de la forma: a ii i,,...,m Se define como raa de una mari cuadrada, a la suma de los elemenos de la diagonal principal Traa Tr) a a...a nn Operaciones con marices. Propiedades y esrucura de las operaciones. a) Igualdad: Dos marices y del mismo orden m n son iguales sí a ij b ij, i,,...,m, y j,,...,n b) Suma: Dadas dos marices y del mismo orden m n se define la mari suma C como la mari de orden m n al que c ij a ij b ij i,,...,m, j,,...,n a. a. L a.n b. b. L b.n a. b. a. b. L a.n b.n a. a. L a.n b. b. L b.n a. b. a. b. L a.n b.n M M M M M M M M M a m. a m. L a m.n b m. b m. L b m.n a m. a m. a m. a m. L a m.n a m.n Propiedades de la suma: Commuaiva. sociaiva. ) C C) Elemeno neuro. Elemeno opueso. ) c) Produco por un número: Dada una mari de orden m n y un elemeno λ R la mari λ produco de la mari por el número λ) es una mari de orden m n cuyo elemeno genérico b ij λ a ij I,,...,m, j,,...,n

2 a. a. L a.n λ a. λ a. L λ a.n a. a. L a.n λ a. λ a. L λ a.n λ M M M M M M a m. a m. L a m.n λ a m. λ a m. L λ a m.n Propiedades de produco por escalares k ) k k k k ) k k k k ) k k ) I d) Produco de marices: Dadas dos marices, de orden m n y de orden n p, su mari produco C es una mari de orden m p. Para muliplicar marices se oman los elemeno de la ª mari como vecores fila y los elemenos de la ª mari como vecores columnas, de esá forma, la mari produco esará formada por los producos escalares de los vecores fila de la ª mari por los vecores columna de la ª mari. a. a.... a.n b. b.... b.p a. a.... a.n b. b.... b.p m n n p M M M M M M a m. a m.... a m.n b n. b n.... b n.p F. 7 C a.b. a.b.... a.n b n F. 7 C a.b. a.b.... a.n b n. M F.m7 C a m.b. a m.b.... a m.n b n F. 7 C a b a b... a b F. 7 C a b a b... a b. M F.m7 C a b a b... a b m m.....n.n m.n n. n. n F. C.p a.b.p a.b.p... a.n b n.p F.C.p a.b.p a.b.p... a.n b n.p M F.mC.p a m.b.p a m.b.p... a m.n b n.p La condición necesaria y suficiene para que dos marices se puedan muliplicar es que el número de columnas de la ª mari sea igual al número de filas de la segunda mari, ya que de esa forma el número de componenes de los vecores fila de la ª mari será igual al número de componenes de los vecores columna de la ª mari, pudiéndose en ese caso muliplicar escalarmene ambos vecores. El produco de marices no es conmuaivo, salvo en dos excepciones: i) El produco de una mari por su inversa. I ii) El produco de una mari por la mari idenidad. I I. Propiedades del produco de marices sociaiva. C) ) C Disribuiva por la iquierda. C) C Disribuiva por la derecha. C) C k ) k ) k ) Las principales esrucuras del conjuno de las marices Mm,n,K) son: - Para la ley suma: Grupo conmuaivo. Para las leyes suma y produco por un número: Espacio vecorial. La dimensión de ese espacio vecorial es m n. La base canónica de ese espacio vecorial, son las marices de orden mxn con odos los elemenos, salvo un elemeno de valor. - Sí mn, el conjuno Mn,K iene, respeco a las operaciones de suma y produco de marices, esrucura de anillo uniario no conmuaivo con divisores de cero. El elemeno unidad es la mari unidad I, al que odos sus elemenos son salvo los de la diagonal principal que valen ).

3 e) Trasposición de marices: Dada una mari de orden m n se define su mari raspuesa, que se denoa,, ó como la mari que se obiene al inercambiar en la mari las filas con las columnas de al forma que los érminos de la mari raspuesa se relacionan con los de la mari inicial mediane la siguiene relación: a ij a ji i,,...,n, j,,...,m. Si el el orden la mari en m n, el su raspuesa será n m. Ejemplo: : 4 4 Las principales propiedades de la rasposición de marices son ) ) ) k ) k f) Inversa de una mari: Sea una mari de orden n. Si exise una mari M n n al que I n Se dice que es inverible o no singular regular). En al caso la mari se denomina inversa de y se denoa por. No odas las marices de orden n ienen inversa. La condición necesaria y suficiene para que una mari de orden n enga inversa es que su deerminane sea disino de cero. Propiedades: - La inversa de la mari inversa es la propia mari. ) - Si dos marices admien inversa, la inversa del produco es el produco de las inversas cambiado de orden. ) - La inversa de la raspuesa es igual a la raspuesa de la inversa. ) ) El cálculo de la mari inversa se puede hacer por res méodos diferenes: - Méodo de Gauss. - Méodo de Gauss-Jordan. - Por deerminanes GUSS: a. a. a. Sea a. a. a. a. a. a. a. a. a. M TRNSFORMCIONES M b. b. b. EQUIVLENTES a. a. a. M M b. b. b. a. a. a. M M b. b. b. se obiene como inversa de : b. b. b. b. b. b. b. b. b. GUSSJORDN Se planea como una ecuación donde la inversa de ) es una mari genérica con n n incógnias que se denomina X: X I la ecuación se resuelve muliplicando las dos marices del primer érmino e igualando la mari produco obenida con la mari idenidad del segundo miembro érmino a érmino, obeniendo n sisemas de n ecuaciones con n incógnias. La resolución de los n sisema permie calcular los n n elemenos de la mari inversa.

4 4 Ejemplo: Sea, su mari inversa será de la forma y x X, y deberá cumplir la ecuación: y x operando el primer miembro: y x y x igualando las dos marices érmino a érmino: y. : x.: y. : x.: a parir de esas igualdades se pueden planear dos sisemas de : x x y y y las soluciones respecivas de cada sisema son,),,) por lo que la mari inversa es: POR DETERMINNTES ) adj Se realia por pasos:. Se calcula el deerminane de : No. Se calcula la adj. Se raspone la adjuna de. ) adj 4. Se divide cada elemeno de la raspuesa de la adjuna por el deerminane de g) Divisores de cero Un produco de marices pueda dar la mari nula sin ser nula ninguna de las marices facores, a esas marices se las denomina divisores de cero. Ejemplo: ) ) ) ) h) Cancelaiva No siempre de una igualdad enre marices del ipo C se puede deducir que C Solamene se podrá deducir en el caso de que

5 Principales ipos de marices cuadradas. Una mari cuadrada de orden n es: a. a. a - Triangular superior sí a ij i>j. a. a a a. - Triangular inferior sí a ij i<j. a. a. a. a. a. a. - Diagonal sí a ij sí i j. a. a. a - Escalar sí es diagonal y a ii a i,,...,n. a a - Unidad sí es escalar y a ii i,,...,n. - Regular sí iene elemeno inverso para la operación produco de marices. la mari inversa se la denoa por. I. NOT ) - Singular sí no es regular. - Simérica sí - nisimérica sí. También se denomina hemisimérica). - Periódica si p N / p. Sí p es el menor número que verifica la igualdad, p es el período. - Idempoene sí ². - Nilpoene sí n N / n. - Involuiva Si ² I - Orogonal sí. - Hermíica si coincide con la mari raspuesa conjugada. Para obener la mari conjugada de una dada, se halla el conjugado de cada elemeno. Tiene inerés al rabajar con números complejos. - nihermíica sí es opuesa con la mari raspuesa conjugada. Tiene inerés al rabajar con números complejos. Rango de una mari. El rango de una mari de orden m n es el número de vecores fila o vecores columna linealmene independienes. Se denoará rang, Rg ó rg. El rango de una mari como máximo será menor o igual a la menor de sus dimensiones. Para calcular el rango de una mari hay dos méodos: i) Méodo de Gauss. Se riangularia la mari, una ve riangulariada, el rango es el número de érminos disinos de cero de la diagonal principal ii) Por menores. El rango de una mari es igual al orden del mayor menor disino de cero que exisa en la mari. Sea una mari de dimensión m n. Se llama menor de orden p de al deerminane de cada submari cuadrada formada por los elemenos siuados en las inersecciones de p filas y p columnas de, es decir, obenida suprimiendo las m p filas y las n p columnas resanes. Se dice que el rango de una mari es r, y se escribe rg r, si: Hay algún menor de orden r no nulo. Cualquier menor de orden mayor r es nulo. En él calculo del rango de una mari ahorra mucho rabajo la écnica de orlar menores. De esá forma, si se quiere esudiar el rango n en una mari, se busca un menor de orden n disino de cero. Para saber si la mari puede ener rango n, basará esudiar los menores orlados del menor disino de cero de un orden menor, es decir solo los menores de orden n que conengan al menor de orden n.... 5

6 Ejemplo La mari más ípica de ese curso es la 4, que corresponde a la mari ampliada de un sisema de, normalmene se verá de la siguiene forma: a. a. a. b a. a. a. b a. a. a. b en la mari exisen cuaro menores de orden a. a. a. a. a. b a. b a. b a. a. a. a. a. ; a. a. b ; a. b a. ; b a. a. a. a. a. a. a. b a. b a. b a. a. omando como referencia el menor de orden dos: a. a. a. a. sus menores orlados son: a. a. a. a. a. b a. a. a. ; a. a. b a. a. a. a. a. b si alguno de ellos es disino de cero, el rango de será. Sí los dos son nulos, el rango de será, no siendo necesario esudiar los oros dos menores de orden. El Rg ) mín Rg, Rg)

7 7 Subdivisión de una mari en cajas. Una mari puede subdividirse en cajas o submarices considerando como una mari de menor orden cuyos elemenos son marices. veces puede faciliar los cálculos. EJEMPLO Muliplicar las marices efecuando subdivisión por cajas. SOLUCIÓN : ) : ) )

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de matriz. Una matriz de orden m n es un conjunto de m n elementos pertenecientes a un conjunto, que para nosotros tendrá estructura de cuerpo conmutativo y lo denotaremos por K, dispuestos

Más detalles

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m . Primeras definiciones Una mariz es un conjuno de elemenos (números) ordenado en filas y columnas. En general una mariz se nombra con una lera mayúscula y a sus elemenos con leras minúsculas indicando

Más detalles

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3.

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3. DETERMINNTES DETERMINNTES DE ORDEN 1, 2 y 3 El deerminane de una mariz cuadrada es un número real asociado a dicha mariz que se obiene a parir de sus elemenos. Lo denoamos como de () o. Llamamos orden

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis.

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis. Marices Mariz: Es el ordenamieno recangular de escalares en filas y columnas, encerradas en un corchee ó parénesis. Las marices se designan así: æa11 a1 a13 a1 n ö a1 a a3 an a31 a3 a33 a 3n am 1 am am3

Más detalles

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son TEMA : MATRICES Y DETERMINANTES 0.- 0 Dada la mariz A a) Calcula los valores de para los que la mariz A A no iene inversa. b) Para 0, halla la mariz X que verifica la ecuación AX A I, siendo I la mariz

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio, Opción Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D.

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D. MTEMÁTICS II NDLUCÍ Pruebas de acceso a la Universidad ÁLGEBR SOLUCIONES. (--) Tienen inversa las marices y D. = y D =. (-B-) a) Rango de. Si a y Si a = o Sisema = B a, ( ) R = a =, ( ) R = Si a y a, S.C.D.

Más detalles

Unidad 4 Espacios vectoriales. Aplicaciones lineales

Unidad 4 Espacios vectoriales. Aplicaciones lineales Unidad 4 Espacios vecoriales. Aplicaciones lineales 5 6 SOLUCIONES. Las propiedades asociaiva y conmuaiva se verifican ya que la suma de números reales que se esablecen en los elemenos de las marices cumple

Más detalles

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz Elemenos de álculo Numérico Trabajo Prácico N o Elemenos de álculo Numérico (iencias Biológicas) Trabajo Prácico N Subespacios, Rango de una mariz Deerminar cuáles de los siguienes subconjunos son subespacios

Más detalles

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4 Marices ANTES DE COMENZAR RECUERDA resuelve esos sisemas. a) x + y + z x y z x y + z b) y + z x + y z x y z 7 a) x + y + z x x y z y z ( yz) y z x y + z yz y+ z y 7z y 7z 6z z z y z y x + y + z y, z x

Más detalles

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante MATEMÁTICAS II Examen del 8/05/0 Solución Imporane Las calificaciones se harán públicas en el aula virual el 08/06/0. La revisión será el /06/0 y el /06/0 de -3 horas en la sala D-4-. MATEMÁTICAS II 8/05/0

Más detalles

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x ÁLGEBRA MANUEL HERVÁS CURSO - Enunciado Se considera el espacio vecorial SOLUCIONES ESPACIO EUCLÍDEO referido a la base B e, e, e coordenadas en la base dual B* f, f, f. Hallar las de la forma lineal que

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Unidad 1 Marices PÁGINA 7 SOLUCIONES 1. La resolución de los sisemas puede expresarse de la forma siguiene: La segunda mariz proporciona la solución x = 5,y = 6. La úlima mariz proporciona la solución

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS Marices EJERCICIOS PROPUESTOS y. Ejercicios resuelos.. Escribe una mariz A de orden 4 al que: i + j si i > j aij ij si i j i ( j) si i < j Haciendo los cálculos correspondienes enemos 6 9 8 A 5 4. Los

Más detalles

1. Realizando las operaciones indicadas y aplicando la igualdad de matrices, obtenemos:

1. Realizando las operaciones indicadas y aplicando la igualdad de matrices, obtenemos: Unidad 1 Marices 5 SOLUCIONES 1. Realizando las operaciones indicadas y aplicando la igualdad de marices, obenemos: Resolviendo el sisema, a = 5, b = 12, c = 6, d= 4. 2. La solución en cada caso queda:

Más detalles

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n:

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n: EJERCICIOS. PLICCIONES DE LOS DETERMINNTES.. Calcular el siguiene deerminane de orden n: n n n n n n n n n n n n n. Demosrar que si es una mariz al que n n, se verifica lo anerior? =, enonces. Y si es

Más detalles

XA + A B = A, siendo 0 0 1

XA + A B = A, siendo 0 0 1 MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA Ejercicio. (Examen Junio 202 Específico Opción A) 2 0 [2'5 punos] Considera las marices AA = 0 2, BB = 0 2 0 y CC = 0 2. 2 Deermina, si exise, la mariz

Más detalles

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los

Más detalles

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS 0- y 0 - Ejercicio. (Examen Junio 0 Específico Opción A) ['5 punos] Considera las marices 0 A = 0 B = 0 0 y C = 0 Deermina, si exise, la mariz X

Más detalles

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS.

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. Espacios vesoriales euclídeos. Proyecciones orogonales. Mínimos cuadrados. 5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.-

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción Reserva

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

Rectangulares. Cuadradas

Rectangulares. Cuadradas UNIDAD Marices n cualquier acividad de la vida y en paricular cuando se maneja información con daos numéricos conviene ser ordenados; las ablas de doble enrada nos proporcionan una forma de ordenar los

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1 Pruebas de Apiud para el Acceso a la Universidad. JUNIO 1998. Maemáicas II. OPCIÓN A 1. Discuir el sisema a z solución del mismo cuando a = [1 puno] (a 1) y a z 1 (a 1) y (a 1) z según sea el valor del

Más detalles

rango( A ) = 3 porque A tiene sólo 3 filas y A contiene a A Es un SI A = F3 F Página 1

rango( A ) = 3 porque A tiene sólo 3 filas y A contiene a A Es un SI A = F3 F Página 1 º BACHILLERATO B MATEMÁTICAS II RESOLUCIÓN EJERCICIOS DE ÁLGEBRA SELECTIVIDAD 5 (Profesor: Rafael Núñez) Considera el sisema dado por AX = B α x A = B = α y X = y 3 4 α 3 z a) [ 75 punos] Deermina, si

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante MATEMÁTICAS II Examen del /09/006 Soluciones Imporane Las calificaciones se harán públicas en la página web de la asignaura y en el ablón de anuncios del Dpo. de Méodos Cuaniaivos en Economía y Gesión,

Más detalles

Geometría del espacio

Geometría del espacio Geomería del espacio º) Dados los vecores u = (,, ) v = (,, ), calcula: a) sus módulos. b) su produco escalar. c) el coseno del ángulo que forman. d) el valor de w para que el vecor w (w,, ) sea perpendicular

Más detalles

Ecuaciones Matriciales y Determinantes.

Ecuaciones Matriciales y Determinantes. Ecuaciones Mariciales y Deerminanes. Ecuaciones Mariciales. Tenemos que obener la mariz incógnia, que generalmene se denoa como X, despejándola de la igualdad. Para conseguirlo enemos las siguienes reglas:

Más detalles

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es Álgebra Manuel Hervás Curso - EJERCICIOS DE AUTOVALORES Y AUTOVECTORES EJERCICIO. MATRIZ DIAGONAL La mariz de un endomorfismo en R es A. Calcular los auovalores su muliplicidad algebraica. Calcular los

Más detalles

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz. Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Definición: se llama matriz de m filas y n columnas sobre un cuerpo K (R ó C), a una ordenación rectangular de la forma Notación: a11 a...... a1n a21 a...... a2n A = M M M donde cada elemento a ij Є K

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

Unidad 5 Geometría afín en el espacio

Unidad 5 Geometría afín en el espacio Unidad 5 Geomería afín en el espacio 5 SOLUCIONES. a) Los componenes de los vecores pedidos son: b) Eisen infinias parejas de punos C D que cumplan la condición pedida. Por ejemplo, C(,,) D (,,). c) Sea

Más detalles

Práctica 3 (Resolución)

Práctica 3 (Resolución) Operaciones y funciones con Derive: A ROW [n,...] A COL [n,...] APPEND(A, B) CHARPOLY(A, λ) EIGENVALUES(A) Submariz formada por las filas de A indicadas. Submariz formada por las columnas de A indicadas.

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

MATRICES. Matriz de los coeficientes. Matriz de las incógnitas. Matriz de los términos independientes. Matriz ampliada. Información general

MATRICES. Matriz de los coeficientes. Matriz de las incógnitas. Matriz de los términos independientes. Matriz ampliada. Información general MTRICES Sistema de ecuaciones lineales 2x+ 3y z= 5 5x 2y+ 2z= 10 x y+ 3z= 8 Expresión matricial 2 3 1 x 5 5 2 2 y = 10 1 1 3 z 8 2 3 1 5 2 2 1 1 3 Matriz de los coeficientes 3 filas 3 columnas matriz 3

Más detalles

MATRICES. c) Asigna subíndices a las entradas con valor superior a 60 e inferior a 100. d) Cuántos cursan 2ºBACH.?

MATRICES. c) Asigna subíndices a las entradas con valor superior a 60 e inferior a 100. d) Cuántos cursan 2ºBACH.? MTRICES Inroducción 1 En un IES hay 107 alumnos en 3ºESO, y 110 alumnas En 4ºESO hay 84 alumnos y 95 alumnas En 1ºBCH hay 69 alumnos y 68 alumnas, y en ºBCH hay 46 alumnos y 48 alumnas a) Represena mediane

Más detalles

1.- DETERMINANTE DE UNA MATRIZ CUADRADA

1.- DETERMINANTE DE UNA MATRIZ CUADRADA º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA.- DETERMINANTES ACTIVIDADES RESUELTAS PROFESOR: RAFAEL NÚÑEZ Ejercicio de clase : (A) Resuelva la ecuación:.- DETERMINANTE DE UNA MATRIZ

Más detalles

Solución 3.- OPERACIONES CON MATRICES y 1 1 0

Solución 3.- OPERACIONES CON MATRICES y 1 1 0 .- CONCEPTO DE MATRIZ 3 7 Escriba la mariz 2 x 3 en la que a ij = 5i 4j Solución : 6 2 2 2 Calcule, si es posible, los valores de a y b para que sean iguales las marices 3a b 9 b a 7 2b a 7 A= B= a+ b

Más detalles

Álgebras de Boole. Tema Álgebras de Boole

Álgebras de Boole. Tema Álgebras de Boole Tema 5 Álgebras de Boole 5.1 Álgebras de Boole 5.1.1 Álgebras de Boole Definición 5.1.1. Un álgebra de Boole es una erna (A,, ) donde A es un conjuno y, : A A A son dos operaciones binarias inernas con

Más detalles

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones.

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones. Méodos Numéricos 0 Prácica 3 Sisemas sobredeerminados. Aproximación de cuadrados mínimos. Sisemas subdeerminados. Solución de mínima norma. Aplicaciones. Resolución de sisemas sobredeerminados por cuadrados

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Colegio Lux Mundi (Cajar-Granada) Examen Sepiembre de 009 Javier Cosillo Iciarra Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f ( x ) x -x+x. Deermina la asínoa de la

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

Métodos de Regresión

Métodos de Regresión Méodos de Regresión Ciencias y Técnicas Esadísicas Soluciones ejercicios: Regresión Lineal Múliple Versión 3 Emilio León P. Demosrar que la suma de cuadrados de los residuos n i viene dada por i n i y

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Soluciones modelo (Sepiembre de 009) Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f( ) -+. Deermina la asínoa de la gráfica Evidenemene, la función no iene asínoas vericales,

Más detalles

Solución de la ecuación homogénea

Solución de la ecuación homogénea Solución de la ecuación de esado en modelos lineales Solución de la ecuación homogénea Mariz de ransición Propiedades de la mariz de ransición Solución de la ecuación complea Cálculo de la mariz de ransición

Más detalles

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12 Tema Problemas Méricos.- Inroducción..- Disancias...- Enre dos punos..- Enre puno y reca...- Enre puno y plano...- Enre dos recas..5.- Enre reca y plano..6.- Enre dos planos..- Ángulos..- Enre dos recas...-

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

MATRICES OPERACIONES BÁSICAS CON MATRICES

MATRICES OPERACIONES BÁSICAS CON MATRICES MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles

UNIDAD 3: MATRICES Y DETERMINANTES

UNIDAD 3: MATRICES Y DETERMINANTES UNIDAD 3: MATRICES Y DETERMINANTES ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - MATRICES CONCEPTOS BÁSICOS TIPOS DE MATRICES 3- OPERACIONES CON MATRICES 4 4- TRANSFORMACIONES ELEMENTALES EN UNA MATRIZ 6 5- MATRIZ

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDADES PÚBLICAS DE LA COUNIDAD DE ADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 8-9 (Sepiebre) ATERIA: ATEÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El aluno conesará a los

Más detalles

MATRICES. Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas. o simplemente A = (a.

MATRICES. Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas. o simplemente A = (a. MATRICES Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas A= 2 1 5 0 3 8 A es de dimensión 2 3. a a a En general una matriz de dimensión 2 3

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz.

MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz. Concepto de matriz. Igualdad de matrices MATRICES 2º Bachillerato Concepto de matriz. Igualdad de matrices Concepto de matriz. Igualdad de matrices Se llama matriz a una disposición rectangular de números

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,

Más detalles

IES Fco Ayala de Granada Suplente Junio de 2017 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Suplente Junio de 2017 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Suplene Junio de 07 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio opción A, Suplene Junio 07 (modelo 4) x+ si x < 0 Se sabe que la función f : R R dada por f(x) = x + acos(x)

Más detalles

Soluciones hoja de matrices y sistemas

Soluciones hoja de matrices y sistemas Soluciones hoja de marices y sisemas 8 9 - iscuir, en función del arámero a, el siguiene sisema de x y z x y z - ecuaciones lineales x - y ( a ) z - a - x y ( a ) z - a 8 La mariz de los coeficienes es

Más detalles

MATEMÁTICAS I. Curso EJERCICIO ENTREGABLE DE MATRICES, SISTEMAS y DETERMINANTES. X, donde A = 2 1 0

MATEMÁTICAS I. Curso EJERCICIO ENTREGABLE DE MATRICES, SISTEMAS y DETERMINANTES. X, donde A = 2 1 0 MATEMÁTICAS I. Curso 2009-2010 EJERCICIO ENTREGABLE DE MATRICES, SISTEMAS y DETERMINANTES ENUNCIADOS 1 0 1 1.- Dada la ecuación maricial X A = A X, donde A = 2 1 0, obener la mariz X. 1 1 1 Dado que un

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

EJERCICIOS RESUELTOS DE DETERMINANTES

EJERCICIOS RESUELTOS DE DETERMINANTES EJERCICIOS RESUELTOS DE DETERMINANTES 1. Calcular los siguientes determinantes: a) - 13 b) 4-3 8 1 0 3-1 -1 1 3-4 a) - 13 = (-)(-3) 4.13 = 1 2 = -37 4-3 b) 8 1 0 3-1 -1 1 3-4 = 8(-1)(-4) + 1(-1)1 + 0 0

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 217

10Soluciones a los ejercicios y problemas PÁGINA 217 PÁGIN 217 Pág 1 P RCTIC 1 a) Represena en papel cuadriculado la figura H 1 obenida a parir de H mediane la raslación del vecor 1 (3, 2) b) Dibuja la figura H 2 ransformada de H 1 mediane la raslación 2

Más detalles

ALGEBRA II EXAMEN A TITULO DE SUFICIENCIA Ejemplo 1

ALGEBRA II EXAMEN A TITULO DE SUFICIENCIA Ejemplo 1 1. Sea V ALGEBRA II Ejemplo 1 a) Probar que W a, b,0 a, b y U aaa,, a son subespacios de V, b) Deerminar una base de W y una base de U, c) Probar que cada vecor en V se puede expresar de manera única como

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES IES Padre Poveda (Guadi) Maemáicas plicadas a las SS II EJERIIOS UNIDDES : MTRIES Y DETERMINNTES (6-M--) a) ( punos) Si es una mariz de dimensión m n, indique la dimensión de una I mariz si se verifica

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES. Resuelva la siguiene ecuación aricial: X B C, siendo, 4 C.. Deerine la ari X de orden al que: X.. Se considera la ari. a) Calcule los valores de para los que no eise la inversa de.

Más detalles

Tema I. Matrices y determinantes

Tema I. Matrices y determinantes Tema I. Matrices y determinantes 2007 Carmen Moreno Valencia 1. Matrices sobre un cuerpo 2. Operaciones con matrices 3. Determinante de una matriz cuadrada 4. Menor complementario y adjunto 5. Cálculo

Más detalles

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Matrices Definición: Una matriz es un conjunto de números ordenados en filas y columnas. Para definirla se utilizan letras

Más detalles

IV.1. DEFINICIÓN DE APLICACION LINEAL. PROPIEDADES. f : E F. La condición I) indica que la imagen de la suma de dos vectores es la suma de las

IV.1. DEFINICIÓN DE APLICACION LINEAL. PROPIEDADES. f : E F. La condición I) indica que la imagen de la suma de dos vectores es la suma de las Tema IV APLIICACIIONES LIINEALES Objeivos Conocer el concepo de aplicación lineal enre dos espacios vecoriales. Saber comprobar si una deerminada ransformación es lineal. Saber calcular las imágenes mediane

Más detalles

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

ELEMENTOS DE ALGEBRA LINEAL

ELEMENTOS DE ALGEBRA LINEAL ELEMENTOS DE ALGEBRA LINEAL Matriz Una matriz de orden o dimensión n x p es una ordenación rectangular de elementos dispuestos en n filas y p columnas de la siguiente forma: a11 a1 a1p a1 a a p A an1 an

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

DETERMINANTES. Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + 3y = x + 6y = 16.

DETERMINANTES. Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + 3y = x + 6y = 16. DETERMINANTES REFLEXIONA Y RESUELVE Determinantes de orden 2 Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + y = 29 5x y = 8 a b x y = 5 10x + 6y = 16 4x

Más detalles

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina

Más detalles

Semana 14 [1/28] Matrices. 22 de julio de Matrices

Semana 14 [1/28] Matrices. 22 de julio de Matrices Semana 14 [1/28] 22 de julio de 2007 Definiciones básicas Semana 14 [2/28] Definiciones básicas Matriz Una matriz A, de m filas y n columnas con coeficientes en el cuerpo à (en este apunte à será Ê ó C)

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles