MATEMÁTICAS I. Curso EJERCICIO ENTREGABLE DE MATRICES, SISTEMAS y DETERMINANTES. X, donde A = 2 1 0

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICAS I. Curso EJERCICIO ENTREGABLE DE MATRICES, SISTEMAS y DETERMINANTES. X, donde A = 2 1 0"

Transcripción

1 MATEMÁTICAS I. Curso EJERCICIO ENTREGABLE DE MATRICES, SISTEMAS y DETERMINANTES ENUNCIADOS Dada la ecuación maricial X A = A X, donde A = 2 1 0, obener la mariz X Dado que un vaso de limonada, 3 bocadillos y 7 paseles cuesa 14 euros; y que 1 vaso de limonada, 4 bocadillos y 10 paseles cuesa 17 euros. Hallar el precio oal de 1 vaso de limonada más 1 bocadillo y 1 pasel. Se dice que una mariz M es idempoene si M 2 =M. Si A y B son marices ales que AB=A y BA=B, enonces demosrar que la mariz A es idempoene. 1.- Planeamos la ecuación maricial X A = A X a b c a b c #1: d e f = ` d e f g h i g h @2, La mariz X solución será: a b c a + 3 b - 4 c a - b - 2 c b - #8: 4 2 a - b - 2 c c b 2 En ese caso enemos el sisema de 2 ecuaciones con 3 incógnias: x+ 3y+ 7z= 14 x+ 4y+ 10z= 17 3 (7 - ) - 5 x+y+z= + + = Por ano, 8 euros Usando las propiedades de la raspuesa de una mariz y las hipóesis del enunciado enemos ( ) AB = A AB = A B A = A y ( ) BA B BA B A B B 2 calculamos ( ) ( ) A = A A = A B A = BA A = B A = A. = = = ; UNIDAD DOCENTE DE MATEMÁTICAS DE LA ETSITGC - UPM 1

2 Dada la ecuación maricial X A = X A, donde A = 0 1 0, obener la mariz X Dado que un bolígrafo, 3 cuadernos y 2 carpeas cuesa 12 euros; y que 2 bolígrafos, 8 cuadernos y 5 carpeas cuesa 30 euros. Hallar el precio oal de 1 cuaderno más 1 carpea y 1 bolígrafo. Sean A y B marices cuadradas de orden n disino de 1, calcular 1 AB A 1.- Planeamos la ecuación maricial X A = X A a b c a b c #1: d e f = d e f ` ` g h i g h i #3: 0, - @2]] La mariz X solución será: a 2 a a #5: 0-2 a 0 a 2 a i En ese caso enemos el sisema de 2 ecuaciones con 3 incógnias: x+ 3y+ 2z= 12 2x + 8y + 5z = 30 x+y+z=++ 2 (3 - )=6 Por ano, 6 euros AB A = A B A = A B A = B UNIDAD DOCENTE DE MATEMÁTICAS DE LA ETSITGC - UPM 2

3 Dada la ecuación maricial X A = A +X, donde A = 0 1 0, obener la mariz X Dado que un kg de manzanas, 3 kg de limones y 2 kg de peras cuesa 9 euros; y que 3 kg de manzanas, 11 kg de limones y 7 kg de peras cuesa 31 euros. Hallar el precio oal de un kg de manzanas más 1 kg de limones y 1 kg de peras. Sea A M m n, demosrar que A A es simérica. 1.- Planeamos la ecuación maricial X A = A +X de la cual podemos despejar X=A (A-I) -1 La mariz X solución será: #8: En ese caso enemos el sisema de 2 ecuaciones con 3 incógnias: x+ 3y+ 2z= 9 3x + 11y + 7z = 31 x+y+z= (3 - )= 5 Por ano, 5 euros Una mariz es simérica si coincide con su raspuesa ( ) ( ) A A = A A = A A UNIDAD DOCENTE DE MATEMÁTICAS DE LA ETSITGC - UPM 3

4 Dada la ecuación maricial X A = A X+A 3, donde A = 5 2 6, obener la mariz X. Dado que un vaso de limonada, 3 bocadillos y 2 paseles cuesa 32 euros; y que 2 vaso de limonada, 7 bocadillos y 17 paseles cuesa 76 euros. Hallar el precio oal de 1 vaso de limonada más 1 bocadillo y 1 pasel. Se dice que una mariz M es nihilpoene de orden k si M k =0, siendo k el menor enero posiivo para el cual es válida la igualdad. Probar que A = es nihilpoene e indicar el orden. 1.- Planeamos la ecuación maricial X A = A X+A 3 a b c a b c #1: d e f = d e f g h i g h , La mariz X solución será: a b 3 b d a - 4 b + d 3 (d - 3 b) #9: b + d 2 b - d - a + b - d 3 3 En ese caso enemos el sisema de 2 ecuaciones con 3 incógnias: x+ 3y+ 7z= 32 2x + 7y + 17z = 76 3 (4 - ) + 4 x+y+z= + + = Por ano, 8 euros A 2 = AA= = A = A A = = cuyo orden es k=3. UNIDAD DOCENTE DE MATEMÁTICAS DE LA ETSITGC - UPM 4

5 Dada la ecuación maricial X A = A X, donde A = 0 1 0, obener la mariz X Dado que una bufanda, 3 jerséis y 2 panalones cuesa 14 euros; y que 2 jerséis y un panalón cuesa 17 euros. Hallar el precio oal de una bufanda más 1 jersey y 1 panalón. Se dice que una mariz M es idempoene si M 2 =M. Probar que si A es idempoene, enonces la mariz I-A es idempoene. 1.- Planeamos la ecuación maricial X A = A X a b c a b c #1: d e f = ` d e f ` g h i g h @2 La mariz X solución será: a b c d e -b-d g -b-2d a-c-g En ese caso enemos el sisema de 2 ecuaciones con 3 incógnias: x + 3y + 2z = 105 2y+ 1z = 60 x+y+z= (15 - )= 45 Por ano, 45 euros A es idempoene, A ( ) ( )( ) 2 = A; calculamos 2 2 I A = I A I A = I A A+ AA= I 2A+ A = I 2A+ A= I A. UNIDAD DOCENTE DE MATEMÁTICAS DE LA ETSITGC - UPM 5

6 Dada la ecuación maricial X A = A +2X, donde A = 0 1 0, obener la mariz X. Dado que 2 kg de manzanas, 3 kg de paaas y 1 kg de omaes cuesa 5,5 euros; y que 5 kg de manzanas, 8 kg de paaas y 2 kg de omaes cuesa 13 euros. Hallar el precio oal de un kg de manzanas más 1 kg de paaas y 1 kg de omaes. Demosrar que ninguna mariz A de orden 3 saisface A 2 = - I. 1.- Planeamos la ecuación maricial X A = A +2X de la cual podemos despejar X=A (A-2I) -1 La mariz X solución será: En ese caso enemos el sisema de 2 ecuaciones con 3 incógnias: 2x + 3y + z = 5,5 5x + 8y + 2z = x+y+z= + + = 3,5 2 2 Por ano, 3,5 euros Aplicando deerminanes se iene que imposible pueso 2 0 A A = I A = I A = ( 1) = 1 lo cual es UNIDAD DOCENTE DE MATEMÁTICAS DE LA ETSITGC - UPM 6

7 Dada la ecuación maricial X = A X A, donde A = 0 1 0, obener la mariz X Dado que 3 kg de manzanas, 1 kg de limones y 7 kg de peras cuesa 23 euros; y que 8 kg de manzanas, 2 kg de limones y 20 kg de peras cuesa 31 euros. Hallar el precio oal de 1 kg de manzanas más 1 kg de limones y 1 kg de peras. Probar que A A y A A son siempre marices siméricas. 1.- Planeamos la ecuación maricial X = A X A a b c a b c d e f = d e f ` g h i g h i @1, - -, - -, mariz X solución será: 2 a a - 3 a a 9 a 2 a 2 a 4 a - 2 a 3 9 En ese caso enemos el sisema de 2 ecuaciones con 3 incógnias: 3x + y + 7z = 23 8x + 2y + 20z = x=, y=, z= - enonces x+y+z = Por ano, 38 euros Usando las propiedades de la raspuesa de una mariz, calculamos ( A A ) = ( A ) A = A A. Que es la condición para que AA sea simérica. ( A A) = A ( A ) = A A. Que es la condición para que A A sea simérica UNIDAD DOCENTE DE MATEMÁTICAS DE LA ETSITGC - UPM 7

8 1.- Dada la ecuación maricial X A = A X, donde A X = 0 1 0, obener la mariz Dado que 3 bolígrafos, un cuaderno y 7 carpeas cuesa 23 euros; y que 5 bolígrafos, 1 cuaderno y 13 carpeas cuesa 39 euros. Hallar el precio oal de 1 cuaderno más 1 carpea y 1 bolígrafo. 3 Si A y B son marices siméricas, qué se puede decir de AB-BA? (se enregarán las soluciones de los res ejercicios en esa misma hoja y las hojas añadidas que sean necesarias; en caso de enregar más de una hoja, ésas irán grapadas) 1.- Planeamos la ecuación maricial X A = A X luego a b c a b c d e f = d e f g h i g h @3, 0,, La mariz X solución será: a b c 3 a - 9 b - 2 z c - 2 b 3 a - 2 c a 3 3 En ese caso enemos el sisema de 2 ecuaciones con 3 incógnias: 3x + y + 7z = 23 5x + y + 13z = x=, y=, z= enonces x+y+z=7 3 3 Por ano, 7 euros Por ser A y B siméricas se cumple que A =A y que B =B (AB-BA) =(AB) -(BA) =B A -A B =BA-AB=-(AB-BA) luego AB-BA es una mariz anisimérica UNIDAD DOCENTE DE MATEMÁTICAS DE LA ETSITGC - UPM 8

9 Dada la ecuación maricial X A = A -1 X, donde A = 0 1 0, obener la mariz X Dado que un bolígrafo, 2 cuadernos y 3 carpeas cuesa 12 euros; y que un bolígrafo, 3 cuadernos y 5 carpeas cuesa 18 euros. Hallar el precio oal de 1 cuaderno más 1 carpea y 1 bolígrafo. 3 2 Sea A una mariz que cumple A 3A + 3A = I, demosrar que A es inverible y 1 obener A. 1.- Planeamos la ecuación maricial X A = A -1 X o bien AXA=X a b c a b c d e f = d e f g h i g h i [[0, 0, 0, 0, 0, - 0]] La mariz X solución será: e e 0 En ese caso enemos el sisema de 2 ecuaciones con 3 incógnias: x+ 2y+ 3z= 12 x + y + 5z = 18 x=, y= 6-2, z= enonces x+y+z=6 Por ano, 6 euros 3 2 A 3A 3A I + = 3 2 A 3A 3A I + = AA 3A+ 3I 0 A 0 A 1 2 A = A 3A + 3I 2 1 UNIDAD DOCENTE DE MATEMÁTICAS DE LA ETSITGC - UPM 9

10 Dada la ecuación maricial X = A X A, donde A = 0 1 0, obener la mariz X Dado que 3 vasos de limonada, 1 bocadillo y 7 paseles cuesa 23 euros; y que 2 vasos de limonada y 6 paseles cuesa 16 euros. Hallar el precio oal de 1 vaso de limonada más 1 bocadillo y 1 pasel. Si A es una mariz cuadrada, demosrar que A + A es una mariz simérica. 1.- Planeamos la ecuación maricial X = A X A a b c a b c d e f = d e f ` g h i g h i [[@1, -@1, La mariz X solución será: a -a - 2 a -a a 2 a - 2 a 2 a 4 a En ese caso enemos el sisema de 2 ecuaciones con 3 incógnias: 3x + y + 7z = 23 2x + 6z = x=, y=, z= enonces x+y+z=7 3 3 Por ano, 7 euros Usando las propiedades de la raspuesa de una mariz, calculamos ( ) ( ) A+ A = A + A = A + A. Que es la condición para que A+A sea simérica UNIDAD DOCENTE DE MATEMÁTICAS DE LA ETSITGC - UPM 10

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son TEMA : MATRICES Y DETERMINANTES 0.- 0 Dada la mariz A a) Calcula los valores de para los que la mariz A A no iene inversa. b) Para 0, halla la mariz X que verifica la ecuación AX A I, siendo I la mariz

Más detalles

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS 0- y 0 - Ejercicio. (Examen Junio 0 Específico Opción A) ['5 punos] Considera las marices 0 A = 0 B = 0 0 y C = 0 Deermina, si exise, la mariz X

Más detalles

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante MATEMÁTICAS II Examen del 8/05/0 Solución Imporane Las calificaciones se harán públicas en el aula virual el 08/06/0. La revisión será el /06/0 y el /06/0 de -3 horas en la sala D-4-. MATEMÁTICAS II 8/05/0

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio, Opción Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción Reserva

Más detalles

Soluciones hoja de matrices y sistemas

Soluciones hoja de matrices y sistemas Soluciones hoja de marices y sisemas 8 9 - iscuir, en función del arámero a, el siguiene sisema de x y z x y z - ecuaciones lineales x - y ( a ) z - a - x y ( a ) z - a 8 La mariz de los coeficienes es

Más detalles

1. Realizando las operaciones indicadas y aplicando la igualdad de matrices, obtenemos:

1. Realizando las operaciones indicadas y aplicando la igualdad de matrices, obtenemos: Unidad 1 Marices 5 SOLUCIONES 1. Realizando las operaciones indicadas y aplicando la igualdad de marices, obenemos: Resolviendo el sisema, a = 5, b = 12, c = 6, d= 4. 2. La solución en cada caso queda:

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Unidad 1 Marices PÁGINA 7 SOLUCIONES 1. La resolución de los sisemas puede expresarse de la forma siguiene: La segunda mariz proporciona la solución x = 5,y = 6. La úlima mariz proporciona la solución

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

XA + A B = A, siendo 0 0 1

XA + A B = A, siendo 0 0 1 MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA Ejercicio. (Examen Junio 202 Específico Opción A) 2 0 [2'5 punos] Considera las marices AA = 0 2, BB = 0 2 0 y CC = 0 2. 2 Deermina, si exise, la mariz

Más detalles

1.- DETERMINANTE DE UNA MATRIZ CUADRADA

1.- DETERMINANTE DE UNA MATRIZ CUADRADA º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA.- DETERMINANTES ACTIVIDADES RESUELTAS PROFESOR: RAFAEL NÚÑEZ Ejercicio de clase : (A) Resuelva la ecuación:.- DETERMINANTE DE UNA MATRIZ

Más detalles

Ecuaciones Matriciales y Determinantes.

Ecuaciones Matriciales y Determinantes. Ecuaciones Mariciales y Deerminanes. Ecuaciones Mariciales. Tenemos que obener la mariz incógnia, que generalmene se denoa como X, despejándola de la igualdad. Para conseguirlo enemos las siguienes reglas:

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los

Más detalles

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n:

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n: EJERCICIOS. PLICCIONES DE LOS DETERMINNTES.. Calcular el siguiene deerminane de orden n: n n n n n n n n n n n n n. Demosrar que si es una mariz al que n n, se verifica lo anerior? =, enonces. Y si es

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS Marices EJERCICIOS PROPUESTOS y. Ejercicios resuelos.. Escribe una mariz A de orden 4 al que: i + j si i > j aij ij si i j i ( j) si i < j Haciendo los cálculos correspondienes enemos 6 9 8 A 5 4. Los

Más detalles

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x ÁLGEBRA MANUEL HERVÁS CURSO - Enunciado Se considera el espacio vecorial SOLUCIONES ESPACIO EUCLÍDEO referido a la base B e, e, e coordenadas en la base dual B* f, f, f. Hallar las de la forma lineal que

Más detalles

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006 EXAMEN DE MATEMÁTICAS I 8 de febrero de 006 MATEMÁTICAS I Eamen del º PARCIAL 8 de febrero de 006 Sólo una respuesa a cada cuesión es correca. Respuesa correca: 0. punos. Respuesa incorreca: -0. punos

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz. Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca

Más detalles

1.- DETERMINANTE DE UNA MATRIZ CUADRADA

1.- DETERMINANTE DE UNA MATRIZ CUADRADA 1 Calcule los siguientes determinantes: a) 4 7 5 Resuelva la ecuación 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Solución : 7 b) 1 3 5 4 + x x = 0 1 3 1 0 3 1 4 1 3 Solución : c) 3 4 1 Solución : 35 0 1.

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Soluciones modelo (Sepiembre de 009) Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f( ) -+. Deermina la asínoa de la gráfica Evidenemene, la función no iene asínoas vericales,

Más detalles

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m . Primeras definiciones Una mariz es un conjuno de elemenos (números) ordenado en filas y columnas. En general una mariz se nombra con una lera mayúscula y a sus elemenos con leras minúsculas indicando

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Colegio Lux Mundi (Cajar-Granada) Examen Sepiembre de 009 Javier Cosillo Iciarra Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f ( x ) x -x+x. Deermina la asínoa de la

Más detalles

Unidad 4 Espacios vectoriales. Aplicaciones lineales

Unidad 4 Espacios vectoriales. Aplicaciones lineales Unidad 4 Espacios vecoriales. Aplicaciones lineales 5 6 SOLUCIONES. Las propiedades asociaiva y conmuaiva se verifican ya que la suma de números reales que se esablecen en los elemenos de las marices cumple

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1 Pruebas de Apiud para el Acceso a la Universidad. JUNIO 1998. Maemáicas II. OPCIÓN A 1. Discuir el sisema a z solución del mismo cuando a = [1 puno] (a 1) y a z 1 (a 1) y (a 1) z según sea el valor del

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4 Marices ANTES DE COMENZAR RECUERDA resuelve esos sisemas. a) x + y + z x y z x y + z b) y + z x + y z x y z 7 a) x + y + z x x y z y z ( yz) y z x y + z yz y+ z y 7z y 7z 6z z z y z y x + y + z y, z x

Más detalles

ALGEBRA II EXAMEN A TITULO DE SUFICIENCIA Ejemplo 1

ALGEBRA II EXAMEN A TITULO DE SUFICIENCIA Ejemplo 1 1. Sea V ALGEBRA II Ejemplo 1 a) Probar que W a, b,0 a, b y U aaa,, a son subespacios de V, b) Deerminar una base de W y una base de U, c) Probar que cada vecor en V se puede expresar de manera única como

Más detalles

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D.

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D. MTEMÁTICS II NDLUCÍ Pruebas de acceso a la Universidad ÁLGEBR SOLUCIONES. (--) Tienen inversa las marices y D. = y D =. (-B-) a) Rango de. Si a y Si a = o Sisema = B a, ( ) R = a =, ( ) R = Si a y a, S.C.D.

Más detalles

rango( A ) = 3 porque A tiene sólo 3 filas y A contiene a A Es un SI A = F3 F Página 1

rango( A ) = 3 porque A tiene sólo 3 filas y A contiene a A Es un SI A = F3 F Página 1 º BACHILLERATO B MATEMÁTICAS II RESOLUCIÓN EJERCICIOS DE ÁLGEBRA SELECTIVIDAD 5 (Profesor: Rafael Núñez) Considera el sisema dado por AX = B α x A = B = α y X = y 3 4 α 3 z a) [ 75 punos] Deermina, si

Más detalles

ÁLGEBRA. Ejercicio 1. Modelo Dadas las matrices se pide:

ÁLGEBRA. Ejercicio 1. Modelo Dadas las matrices se pide: Ejercicio 1. Modelo 2.014 Dadas las matrices 1 1 1 0 0 1 A = ( 1 1 2) B = ( 0 1 0) 4 se pide: 3 k 1 0 0 a. Hallar los valores de k para los que existe la matriz inversa A 1. b. Hallar la matriz A 1 para

Más detalles

Métodos de Regresión

Métodos de Regresión Méodos de Regresión Ciencias y Técnicas Esadísicas Soluciones ejercicios: Regresión Lineal Múliple Versión 3 Emilio León P. Demosrar que la suma de cuadrados de los residuos n i viene dada por i n i y

Más detalles

PRACTICA: MATRICES Y DETERMINANTES A = B = C =

PRACTICA: MATRICES Y DETERMINANTES A = B = C = PRACTICA: MATRICES Y DETERMINANTES 1. Sean las matrices cuadradas siguientes A = 1 2 3 B = 9 8 7 C = 1 3 5 4 5 6 6 5 4 7 9 0 7 8 9 3 2 1-3 -2-1 Se pide calcular: a. 2A -3B + C 2A = 2(1) 2 (2) 3(2) 2 4

Más detalles

Ejercicio nº 1.- para que se cumpla la igualdad A 2 xa yl = 0. Solución: Calculamos A 2 xa yl e igualamos a 0: Así, tenemos que ha de ser:

Ejercicio nº 1.- para que se cumpla la igualdad A 2 xa yl = 0. Solución: Calculamos A 2 xa yl e igualamos a 0: Así, tenemos que ha de ser: MATEMATICAS. BC2 TEMA 2: Matrices Ejercicio nº 1.- para que se cumpla la igualdad A 2 xa yl = 0. Calculamos A 2 xa yl e igualamos a 0: Así, tenemos que ha de ser: Por tanto: x = 3, y = 8 Ejercicio nº 2.-

Más detalles

IES Fco Ayala de Granada Suplente Junio de 2017 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Suplente Junio de 2017 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Suplene Junio de 07 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio opción A, Suplene Junio 07 (modelo 4) x+ si x < 0 Se sabe que la función f : R R dada por f(x) = x + acos(x)

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva, Ejercicio 1, Opción B

Más detalles

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS.

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. Espacios vesoriales euclídeos. Proyecciones orogonales. Mínimos cuadrados. 5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.-

Más detalles

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante MATEMÁTICAS II Examen del /09/006 Soluciones Imporane Las calificaciones se harán públicas en la página web de la asignaura y en el ablón de anuncios del Dpo. de Méodos Cuaniaivos en Economía y Gesión,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,

Más detalles

Relación de problemas. Álgebra lineal.

Relación de problemas. Álgebra lineal. Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

2. Encuentra las soluciones de los sistemas siguientes por el método de Gauss, expresándolos en forma matricial:

2. Encuentra las soluciones de los sistemas siguientes por el método de Gauss, expresándolos en forma matricial: UNIDAD : Marices CUESTIONES INICIALES-PÁG. 0. Los elecrodomésicos que vende una cadena en una gran ciudad los iene en cuaro comercios C, C, C 3 y C 4. Vende res marcas de elevisores TV, TV y TV 3. En un

Más detalles

MATRICES. c) Asigna subíndices a las entradas con valor superior a 60 e inferior a 100. d) Cuántos cursan 2ºBACH.?

MATRICES. c) Asigna subíndices a las entradas con valor superior a 60 e inferior a 100. d) Cuántos cursan 2ºBACH.? MTRICES Inroducción 1 En un IES hay 107 alumnos en 3ºESO, y 110 alumnas En 4ºESO hay 84 alumnos y 95 alumnas En 1ºBCH hay 69 alumnos y 68 alumnas, y en ºBCH hay 46 alumnos y 48 alumnas a) Represena mediane

Más detalles

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones 01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y

Más detalles

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0)

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0) a a a a 33 EJERCICIOS de DETERMINANTES º BACH. CC. SS. Cálculo de determinantes por Sarrus 1. Calcular los siguientes determinantes de orden : a) 7 1 b) 4 11 4 6 0 c) 0 0 3 1 d) 3 7 3 7 e) 7 1 4 1 f) 33

Más detalles

Solución 3.- OPERACIONES CON MATRICES y 1 1 0

Solución 3.- OPERACIONES CON MATRICES y 1 1 0 .- CONCEPTO DE MATRIZ 3 7 Escriba la mariz 2 x 3 en la que a ij = 5i 4j Solución : 6 2 2 2 Calcule, si es posible, los valores de a y b para que sean iguales las marices 3a b 9 b a 7 2b a 7 A= B= a+ b

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES PROLEMS RESUELTOS SELECTIVIDD NDLUCÍ 06 MTEMÁTICS PLICDS LS CIENCIS SOCILES TEM : MTRICES Junio, Ejercicio, Opción Reserva, Ejercicio, Opción Reserva, Ejercicio, Opción Reserva 3, Ejercicio, Opción Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,

Más detalles

Señales de Potencia,Energía y Orden Superior

Señales de Potencia,Energía y Orden Superior Señales de Poencia,Energía y Orden Superior Clasificación de Señales: as señales se clasifican maemáicamene evaluando su energía o poencia en un inervalo que va siempre desde a + de modo de abarcar la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

SISTEMAS, MATRICES Y DETERMINANTES

SISTEMAS, MATRICES Y DETERMINANTES .- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a

Más detalles

Práctica 3 (Resolución)

Práctica 3 (Resolución) Operaciones y funciones con Derive: A ROW [n,...] A COL [n,...] APPEND(A, B) CHARPOLY(A, λ) EIGENVALUES(A) Submariz formada por las filas de A indicadas. Submariz formada por las columnas de A indicadas.

Más detalles

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos Hoja 7. Problema 1 1. Sea A=( 1 1 1 1. Calcula: a A 1 b (5A 1 c

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES IES Padre Poveda (Guadi) Maemáicas plicadas a las SS II EJERIIOS UNIDDES : MTRIES Y DETERMINNTES (6-M--) a) ( punos) Si es una mariz de dimensión m n, indique la dimensión de una I mariz si se verifica

Más detalles

Problemas Tema 8 Enunciados de problemas sobre determinantes

Problemas Tema 8 Enunciados de problemas sobre determinantes página 1/8 Problemas Tema 8 Enunciados de problemas sobre determinantes Hoja 1 1. Calcula los siguientes determinantes: 3 1 8 4 0 0 3 5 c) 4 6 4 6 d) 2 3 6 9 2. Calcula los siguientes determinantes: 1

Más detalles

- sen(x) cos(x) cos(x) sen(x)

- sen(x) cos(x) cos(x) sen(x) EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 7-X-4 CURSO 4- Opción A.- a) [ punto] Si A y B son dos matrices cuadradas y del mismo orden, es cierta en general la relación

Más detalles

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12 Tema Problemas Méricos.- Inroducción..- Disancias...- Enre dos punos..- Enre puno y reca...- Enre puno y plano...- Enre dos recas..5.- Enre reca y plano..6.- Enre dos planos..- Ángulos..- Enre dos recas...-

Más detalles

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es Álgebra Manuel Hervás Curso - EJERCICIOS DE AUTOVALORES Y AUTOVECTORES EJERCICIO. MATRIZ DIAGONAL La mariz de un endomorfismo en R es A. Calcular los auovalores su muliplicidad algebraica. Calcular los

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

Guía de Matrices 2i, para i = j

Guía de Matrices 2i, para i = j Wilson Herrera Guía de Matrices { i, para i = j. Escribir la matriz [a ij ] x si a ij = j, para i j. 0, para i < j. Escribir la matriz [a ij ] x si a ij =, para i = j, para i > j.. Escribir la matriz [i

Más detalles

2-2 1., y la matriz S -1, que es la matriz inversa de la matriz S. Indicar la

2-2 1., y la matriz S -1, que es la matriz inversa de la matriz S. Indicar la . [04] [EXT-A] Obtener razonadamente: a) El valor del determinante de la matriz S = - - 5, y la matriz S -, que es la matriz inversa de la matriz S. Indicar la relación entre que el determinante de una

Más detalles

Tema 2 Algebra de matrices

Tema 2 Algebra de matrices Tema lgebra de marices. Efecúa odos los posibles producos enre las siguienes marices: 8 8 7 7 7 C D ; C ; D 7 ; 8 C ; 8 8 D C 7 DD hora resolveremos el problema con Wiris:. Lo primero que debemos hacer

Más detalles

MATRICES Octubre 2015

MATRICES Octubre 2015 MATRICES Octubre 015 5 4 1. Sea la matriz 1 1 4 4 1 a) Prueba que 0 donde I es la matriz identidad y 0 es una matriz con todos sus elementos igual a 0. b) Calcula A 3. (J 007) Sean las matrices 0, 1,,

Más detalles

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Método de Euler

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Método de Euler Méodos de Inegración Méodo de Euler Para resolver inegrales de la forma ax + bx + c El maemáico suízo Leonard Euler, ideó unas susiuciones que permien ransformar esas inegrales a inegrales de funciones

Más detalles

Determina si existe, la matriz X que verifica. propiedades que utilices, los siguientes determinantes:

Determina si existe, la matriz X que verifica. propiedades que utilices, los siguientes determinantes: 1. Considera las matrices A=( ) ( ). Determina si existe, la matriz X que verifica.sol ( ) 2. Se sabe que ( ).Calcula, indicando las propiedades que utilices, los siguientes determinantes: a) SOL. a) 24

Más detalles

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis.

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis. Marices Mariz: Es el ordenamieno recangular de escalares en filas y columnas, encerradas en un corchee ó parénesis. Las marices se designan así: æa11 a1 a13 a1 n ö a1 a a3 an a31 a3 a33 a 3n am 1 am am3

Más detalles

APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN

APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN kf Propósio Al finalizar esa sección, quien impare el curso habrá logrado que los esudianes: Reconozcan que para obener la función F que modela el problema,

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2014 OPCIÓN A Ejercicio 1 a) (1 punto) Determinar el valor del parámetro para que los puntos A(1,2,0), B(5,-4,0)

Más detalles

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones.

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones. Méodos Numéricos 0 Prácica 3 Sisemas sobredeerminados. Aproximación de cuadrados mínimos. Sisemas subdeerminados. Solución de mínima norma. Aplicaciones. Resolución de sisemas sobredeerminados por cuadrados

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

DETERMINANTES, MATRIZ INVERSA Y ECUACIONES MATRICIALES

DETERMINANTES, MATRIZ INVERSA Y ECUACIONES MATRICIALES MATRICES Ejercicio 1. Modelo 2.007 Encontrar todas las matrices X cuadradas 2x2 que satisfacen la igualdad XA = AX en cada uno de los siguientes casos: a. A = ( 1 0 0 3 ) b. A = ( 0 1 3 0 ) Ejercicio 2.

Más detalles

MATRICES. Modificar el segundo miembro de esas identidades para obtener fórmulas., sabiendo que. B y., la matriz X que satisface la ecuación

MATRICES. Modificar el segundo miembro de esas identidades para obtener fórmulas., sabiendo que. B y., la matriz X que satisface la ecuación lgebra Lineal Teoría Maricial MTRICES. Comrueba que las idenidades algebraicas ) ( ) ).( ( no son cieras ara las marices - Modificar el segundo miembro de esas idenidades ara obener fórmulas válidas ara

Más detalles

x y z, X =, O = a a x y z, X =, B =

x y z, X =, O = a a x y z, X =, B = [4] [EXT-A] Dadas las matrices A = a a a a- a, X =, O = a) Determinar el valor o valores de a para los cuales no eiste la matri inversa A - b) Para a = -, hallar la matri inversa A - c) Para a =, calcular

Más detalles

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para

Más detalles

MATRICES 1. Averiguar Si son iguales las siguientes matrices: Dada la matriz A = 131, se pide: 122. , siendo I la matriz unidad de orden 3.

MATRICES 1. Averiguar Si son iguales las siguientes matrices: Dada la matriz A = 131, se pide: 122. , siendo I la matriz unidad de orden 3. MATRICES Averiguar Si son iguales las siguientes matrices: 5 4 4+ 9+ A = 6 ( )( + ) 3 ( )( ) 5 4 5 4 5 B = + Sea A la matriz de una sola fila ( 5 ) y B la de una sola columna (34 t Escribir los productos

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 24 de diciembre de 2017

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 24 de diciembre de 2017 Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 4 de diciembre de 017 Índice general 1. Álgebra 5 1.1. Año 000............................. 5 1.. Año 001.............................

Más detalles

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3.

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3. DETERMINNTES DETERMINNTES DE ORDEN 1, 2 y 3 El deerminane de una mariz cuadrada es un número real asociado a dicha mariz que se obiene a parir de sus elemenos. Lo denoamos como de () o. Llamamos orden

Más detalles

Modelo 2 OPCIÓN A. A y B AB se puede realizar porqueel n decolumnas de Aesigual al n de filas de B AB. t t t

Modelo 2 OPCIÓN A. A y B AB se puede realizar porqueel n decolumnas de Aesigual al n de filas de B AB. t t t Insrucciones: a) Duración: 1 hora y 3 minuos. b) Elija una de las dos opciones propuesas y conese los ejercicios de la opción elegida. c) En cada ejercicio, pare o aparado se indica la punuación máxima

Más detalles

Tema 1. ÁLGEBRA MATRICIAL Y PROGRAMACIÓN LINEAL. y C =

Tema 1. ÁLGEBRA MATRICIAL Y PROGRAMACIÓN LINEAL. y C = Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 1. Hoja 1 Tema 1. ÁLGEBRA MATRICIAL Y PROGRAMACIÓN LINEAL. 1. Sean A = 2 3 1 6, B = 3 4 y C = 3 1 i Hallar A B C, A B C y compararlos.

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

Fundamentos Matemáticos Examen parcial del primer cuatrimestre 18 de enero de 2010, 10h-13h

Fundamentos Matemáticos Examen parcial del primer cuatrimestre 18 de enero de 2010, 10h-13h Fundamentos Matemáticos Examen parcial del primer cuatrimestre 18 de enero de 2010, 10h-13h Nombre y apellidos: Modalidad de examen elegido (primer parcial o final): Preguntas seleccionadas tanto obligatorias

Más detalles

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Determinantes DETERMINANTES Se trata de una herramienta matemática que sólo se puede utilizar cuando nos encontremos con matrices

Más detalles

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial:

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial: Ejercicios. Escribe la matriz traspuesta de: 2 3 3 B= 0 4 3 2 4 C= 2 3 2. Se consideran las matrices: 0 3 2 2 2 2 0 2 3 B= 0 4 C=2 4 3 0 2 5 Calcula: 3A, 3A + 2C, A C, C A y A B. 3. Dadas las matrices

Más detalles