TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES"

Transcripción

1 TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES

2 VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició de rices Propieddes Produco y poeci de rices Propieddes Rgo de u riz 6 Ivers de u riz Propieddes

3 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES CONCEPTO DE MTRIZ ORDEN ELEMENTOS (/) U riz rel de orde o diesió es u cojuo de úeros reles esrucurdos e fils y colus Ls rices ecierr es esrucur ere préesis Pr referiros l eleeo siudo e l fil i-ési y l colu j-ési uilizos l oció de eleeo ij De es for u riz de orde se escrie de for geéric de l siguiee for: direos ié que ( ij ) i j ediedo l orde o diesió de u riz podeos eer vrios ipos de rices: Mriz recgulr que es u riz de orde co Mriz fil que es u riz de orde Mriz colu que es u riz de orde Mriz cudrd que es u riz de orde co De ls rices cudrds se suele decir que iee orde

4 VECTORES Y MTRICES EJEMPLO Deerir el orde de ls rices y clsifícls: C 6 D 9 9 E MTRICES OPERCIONES ELEMENTLES CONCEPTO DE MTRIZ ORDEN ELEMENTOS (/) IGULDD DE DOS MTRICES Dds dos rices j i ij ) ( y j i ij ) ( direos que so igules si y solo si verific: ) Tiee el iso orde ) Los eleeos que ocup u iso lugr so igules es decir ij ij pr odo j i ; EJEMPLO: Deeri los vlores de los práeros cd pr que ls rices y se igules: d c

5 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES CONCEPTO DE MTRIZ ORDEN ELEMENTOS (/) ELEMENTOS DE UN MTRIZ ILS COLUMNS Pr referiros l colu j-ési de u riz uilizos l siguiee oció: j ; y pr referiros l fil i-ési de u riz uilizreos l siguiee oció: i EJEMPLO ; ; E u riz cudrd los eleeos ii cosiuye l digol pricipl de l riz y los eleeos ij co i j cosiuye l digol secudri de l riz

6 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES CONCEPTO DE MTRIZ ORDEN ELEMENTOS (/) EJEMPLOS: Ideific e cd u de ls siguiees rices los eleeos e idic sus órdees 6 6 Dds ls rices: y ) Deeri sus órdees clsifícls e fució del orde ) Deeri los siguiees eleeos: y c) Clcul d) Clcul

7 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES CONCEPTO DE MTRIZ ORDEN ELEMENTOS : EJERCICIOS Deeri los vlores que h de eer c d pr que ls siguiees rices se igules: d ) 9 c c ) c c d c Se l riz clcul: ) 6 ) c) 6 d) U epres de rjo eporl dispoe de cico cdidos pr res puesos de rjo diferees H represedo l idoeidd de cd spire segú el siguiee esque: Cdiddos Pueso C C C EJERCICIOS: Liro : Proles y cuesioes de álger liel P Oreg Pág 99: ejercicios: Escrie l riz que represe esos resuldos (No: uiliz si el cdido es idóeo pr el pueso y e cso corrio)

8 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES TIPOS DE MTRICES CLSIICCIÓN DE MTRICES CUDRDS SEGÚN L DISPOSICIÓN DE SUS ELEMENTOS Mriz rigulr superior: es quell riz que iee ulos odos sus eleeos por dejo de l digol pricipl es decir ij si i j Mriz rigulr iferior: es quell riz que iee ulos odos sus eleeos por eci de l digol pricipl es decir ij si i j Mriz digol: es quell riz que es rigulr superior e iferior es decir cuyos eleeos siudos fuer de l digol pricipl so ulos: ij i j Mriz siéric: es quell riz que iee sus eleeos siéricos igules (odo coo eje de sierí l digol pricipl) es decir ij ji pr odo i j Mriz isiéric: es quell riz que verific isiéric l digol pricipl esá ford por ceros ij ji E u riz

9 VECTORES Y MTRICES EJEMPLOS: So rices rigulres iferiores: 9 So rices digoles: So rices siérics: So rices isiérics: MTRICES OPERCIONES ELEMENTLES TIPOS DE MTRICES LGUNS MTRICES CUDRDS IMPORTNTES Mriz ul de orde : riz cudrd ford od ell por Pr cd orde eeos u riz ul Mriz ideidd de orde : riz digol que iee odos los eleeos de l digol igules Pr cd orde eeos u riz ideidd que se suele ideificr de l for I

10 VECTORES Y MTRICES Clsific ls siguiees rices segú l disposició de sus eleeos: C D E Cosruye res rices digoles de orde diferees que coeg los eleeos Clsific ls siguiees rices cudrds segú l disposició de sus eleeos: C D E 9 9 G 9 9 H I Deeri qué vlores dee eer los práeros y c pr que ls siguiees rices se isiérics: ) ) c c) c C MTRICES OPERCIONES ELEMENTLES TIPOS DE MTRICES EJERCICIOS

11 VECTORES Y MTRICES ) MTRIZ OPUEST Se u riz de orde Se defie l riz opues de y se deo por - l riz de orde que se oiee cido de sigo odos los eleeos de l riz Si ) ( ij eoces ) ( ij Si es l riz opues de se verific que +=O siedo O l riz ul de orde EJEMPLO Clcul l opues de MTRICES OPERCIONES ELEMENTLES SUM Y DIERENCI DE MTRICES PRODUCTO DE UN NÚMERO POR UN MTRIZ TRSPOSICIÓN DE MTRICES ) SUM DE MTRICES Dds dos rices ) ( ij y ) ( ij del iso orde l su de ls rices y es or riz C del iso orde que los sudos l que C siedo ) ( ij ij C EJEMPLOS: ) )

12 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES SUM Y DIERENCI DE MTRICES PRODUCTO DE UN NÚMERO POR UN MTRIZ TRSPOSICIÓN DE MTRICES C) DIERENCI DE DOS MTRICES Dds dos rices y de orde se defie l difereci de rices y se deo por - l operció que resul de sur l prier l riz opues de l segud es decir -=+(-) EJEMPLO: PROPIEDDES DE L SUM DE MTRICES Dds C res rices de orde se verific: Propiedd couiv: +=+ Propiedd sociiv: (+)+C=+(+C) Exiseci de eleeo euro Exise u riz de orde O que verific que +O= (O es l riz ul de orde ) Tod riz iee socid u riz - deoid riz opues que se oiee cido de sigo odos los eleeos de l riz verificádose que +(-)=O

13 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES SUM Y DIERENCI DE MTRICES PRODUCTO DE UN NÚMERO POR UN MTRIZ TRSPOSICIÓN DE MTRICES PRODUCTO DE UN NÚMERO POR UN MTRIZ Dd u riz ( ij ) de orde se defie el produco de u úero rel k por l riz l operció k cuyo resuldo es or riz de orde cuyos eleeos se oiee uliplicdo por k cd eleeo de l riz es decir k ( kij) Se eoces k k k k k k k k k k EJEMPLO: si eoces

14 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES SUM Y DIERENCI DE MTRICES PRODUCTO DE UN NÚMERO POR UN MTRIZ TRSPOSICIÓN DE MTRICES PROPIEDDES DEL PRODUCTO DE UN NÚMERO REL POR UN MTRIZ Dds dos rices de orde y k h R se verific: Propiedd disriuiv respeco de l su de rices: k ( ) k k Propiedd disriuiv respeco de l su de úeros reles: ( k h) k h Propiedd pseudosociiv: ( k h) k ( h ) Exiseci de eleeo uidd: El úero rel verific que

15 TRSPOSICIÓN DE MTRICES: VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES SUM Y DIERENCI DE MTRICES PRODUCTO DE UN NÚMERO POR UN MTRIZ TRSPOSICIÓN DE MTRICES Se u riz de orde Se defie l riz rspues de y se deo coo o ie l riz de orde que se oiee colocdo ls fils de coo colus de EJEMPLO: eoces ' Propieddes de l rsposició de rices: Si es u riz de orde eoces se verific que ( ')' Si es u riz siéric de orde eoces se verific ' Si so rices de orde eoces ( )' ' ' Si es u riz de orde y k u úero rel o ulo eoces ( k )' k ' Si es u riz de orde x de orde xp es de orde xp y ( ) = VER EJEMPLOS DE ESTS PROPIEDDES

16 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES SUM Y DIERENCI DE MTRICES PRODUCTO DE UN NÚMERO POR UN MTRIZ TRSPOSICIÓN DE MTRICES PROPIEDDES SIMPLIICTIVS: Se C rices de orde Si +C=+C eoces = Si es u riz de orde y k es u úero rel disio de cero eoces se verific que k k Si es u riz o ul de orde y h k dos úeros reles eoces se verific que h k h k EJEMPLO: d c d c d c EJEMPLOS ) Se ls rices: C Clcul: ) ) C c) C d) ) ( e) ) Coprue que si y so dos rices siérics de orde c y d e e d eoces ) ( es u riz siéric

17 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES SUM Y DIERENCI DE MTRICES PRODUCTO DE UN NÚMERO POR UN MTRIZ TRSPOSICIÓN DE MTRICES EJERCICIOS ) Se y 6 C Clcul: ) C ) ( ) C ) ( c) ) 6 ( C d) C C ) ( e) f) C ) Si y clcul ) ( ) (

18 VECTORES Y MTRICES ) PRODUCTO DE UN MTRIZ IL POR UN MTRIZ COLUMN Se ls rices ) ( j de orde (riz fil) y ) ( i de orde (riz colu) Defiios el produco i i i es decir EJEMPLO: Efecú los siguiees producos de rices fil por rices colu: ) ) ( ) 9 c) MTRICES OPERCIONES ELEMENTLES PRODUCTO Y POTENCI DE MTRICES

19 VECTORES Y MTRICES ) PRODUCTO DE MTRICES Se ls rices ) ( ij u riz de orde y se ) ( ij u riz de orde p Se defie el produco de ls rices y l riz C de orde p e l que cd el eleeo ij c de C se oiee uliplicdo l fil i-ési de por l colu j-ési de : j i ij c Por ejeplo si y l riz C será de orde y sus eleeos se oiee de l siguiee for: c ; c ; 6 c ; c ; c ; c L riz C será: 6 C MTRICES OPERCIONES ELEMENTLES PRODUCTO Y POTENCI DE MTRICES

20 EJEMPLO: VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES PRODUCTO Y POTENCI DE MTRICES Clcul si es posile: C C C C siedo 6 C c)propieddes DEL PRODUCTO DE MTRICES ) Propiedd sociiv Dds res rices uliplicles es decir de orde de orde r y C de orde r s se verific que ( ) C ( C) ) Si es u riz cudrd de orde e I l riz ideidd de orde eoces se verific que: I I ) No se verific l propiedd couiv Se u riz de orde y u riz de orde uque exis los producos y e geerl ) Propiedd disriuiv respeco de l su de rices - Se u riz de orde y dos rices y C de orde r Se verific: ( C) C - Se y dos rices de orde y C u riz de orde r Se verific: ( )C C C ) No se verific l propiedd cceliv: Si C eoces o podeos segurr que C 6 6 Por ejeplo y si ergo EJERCICIOS: Liro: Proles y cuesioes de álger liel P Oreg Pág ejercicio 6) Si (siedo l riz ul del orde correspodiee) eoces y o iee por qué ser ecesriee rices uls Por ejeplo

21 EJEMPLO VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES PRODUCTO Y POTENCI DE MTRICES Se ls rices: coprue que 6 D) POTENCI DE MTRICES Se u riz cudrd de orde Se defie l poeci -ési de coo el resuldo de uliplicr por sí is veces: veces EJEMPLO: Se clcul ls siguiees poecis de l riz : Podrís deducir el vlor de?

22 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES RNGO DE UN MTRIZ Se defie el rgo de u riz de orde coo el úero áxio de fils o de colus lielee idepediees que iee l riz Se suele deor por rg() Se verific que rg( ) í{ } EJEMPLO: Clculr el rgo de: C 9 Méodo de Guss pr l oeció del rgo de u riz Pr hllr el rgo de u riz de orde plicos el éodo de Guss pr oeer u riz esclod es decir u riz cuyos eleeos por dejo de l digol pricipl se ulos El rgo de l riz será el úero de fils o uls que coeg l riz esclod fil El Méodo de Guss perie relizr res ipos de rsforcioes eleeles ere ls fils (o colus) de u riz: ) Iercir dos fils ere sí siudo l fil i-ési e el lugr de l fil j-ési y vicevers es decir i j ) Susiuir u fil i por el resuldo de uliplicrl por u úero o ulo es decir i k i k ) Susiuir u fil por u coició liel de es co or u ors fils es decir i i j EJEMPLO (co l riz C erior) OSERVCIÓN El rgo de u riz coicide co el rgo de su rspues: rg( ) rg( )

23 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES RNGO DE UN MTRIZ EJERCICIOS ) Clcul el rgo de ls siguiees rices: 6 C 6 D 6 9 G ) Deerir el vlor que h de eer los práeros y pr que ls siguiees rices eg rgo áxio: C EJERCICIOS: Liro Proles y cuesioes de álger liel P Oreg Pág ejercicio 6

24 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES 6 INVERS DE UN MTRIZ ) CONCEPTO DE MTRIZ INVERS Se u riz cudrd de orde Direos que l riz de orde es l ivers de y lo deoreos por si se verific que I dode I es l riz ideidd de orde EJEMPLO Dds ls rices y coprue que es l ivers de ) CONDICIÓN DE INVERTIILIDD U riz cudrd de orde iee ivers si y sólo si rg()= Ls rices que iee ivers se ll rices regulres o o sigulres y ls rices que o iee ivers se ll sigulres EJEMPLO: Clcul si exise l ivers de ls siguiees rices: C D E

25 VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES 6 INVERS DE UN MTRIZ c) Méodo de Guss pr el cálculo de l ivers Pr el cálculo de l ivers de u riz o sigulr de orde cosideros u riz que cos de dos loques: u prier loque que coiee los eleeos de l riz y u segudo loque que coiee l riz ideidd I de orde : I El éodo de Guss cosise e relizr rsforcioes disiles co ls fils de es riz pr coseguir que l suriz de l izquierd se covier e l riz ideidd de orde E l suriz de l derech oedreos l riz ivers: I I Recuerd que ls rsforcioes disiles so: - Iercir dos fils - Muliplicr u fil por u úero disio de cero - Sur u fil l coició liel de ors fils

26 VECTORES Y MTRICES c) Méodo de Guss pr el cálculo de l ivers EJEMPLO: MTRICES OPERCIONES ELEMENTLES 6 INVERS DE UN MTRIZ

27 EJEMPLO: VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES 6 INVERS DE UN MTRIZ Clcul si exise l ivers de ls siguiees rices: C EJERCICIOS ) Coprue que es l riz ivers de ) Deeri el vlor que h de eer x pr que ls siguiees rices eg ivers: x x x 6 C D x x ) Coprue que si es u riz que verific I eoces iee ivers y Ls rices que verific ess propieddes se ll rices orogoles EJERCICIOS: Liro Proles y cuesioes de álger liel P Oreg Págs: 6-- Ejercicios 6

BLOQUE DE ÁLGEBRA TEMA 1: MATRICES

BLOQUE DE ÁLGEBRA TEMA 1: MATRICES Álgebr Liel Memáics º chillero LOQUE DE ÁLGER TEM : MTRICES U mriz es u cojuo de úmeros reles colocdos recgulrmee ecerrdos ere préesis o corchee o doble brr. Pr or u mriz se uiliz o: u ler myúscul, por

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles

TEMA1: MATRICES Y DETERMINANTES:

TEMA1: MATRICES Y DETERMINANTES: TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos.

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos. Meáis (hillero e ieis) Soluioes e los proles propuesos Te wwweisjo José Mrí Mríez Meio TEM Mries Proles Resuelos Operioes o ries Ds, y, hll os úeros y pr que se verifique que Soluió Esriieo l euió exei

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie

Más detalles

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Teorí ejercicios de teátics II. Álger Sistes de ecucioes lieles - -. SISTES DE ECUCIONES INEES. DEFINICION U ecució liel es u ecució de l for e l que, so los coeficietes de ls icógits, es el tério idepediete

Más detalles

Tema 4. SISTEMAS DE ECUACIONES LINEALES

Tema 4. SISTEMAS DE ECUACIONES LINEALES Te SISTS D CUCIONS LINLS Sises de res ecucioes co res icógis So de l for: Ls lers i, ij i represe, respecivee, ls icógis, los coeficiees los érios idepediees L solució del sise es el cojuo de vlores de,

Más detalles

FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE POTENCIACIÓN Y RADICACIÓN DOCENTE: IDALY MONTOYA A.

FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE POTENCIACIÓN Y RADICACIÓN DOCENTE: IDALY MONTOYA A. . POTENCIACIÓN FACULTAD DE INGENIERIA Y CIENCIAS BASICAS Llos poteci de u úero reltivo, l producto de torlo coo fctor tts veces coo se quier. Si es u úero reltivo culquier es u úero turl, tedreos l otció,

Más detalles

Matrices = A. Matriz cuadrada, si tiene el mismo nº de filas que de columnas. ... ... ... ...

Matrices = A. Matriz cuadrada, si tiene el mismo nº de filas que de columnas. ... ... ... ... Mtrices Mtrices INTRODUCCIÓN E el te terior heos usdo l tri plid de u siste, pr ejr, co ás coodidd, los úeros que iterviee e u siste liel E otros uchos proles es útil dispoer ejr u cojuto de úeros dispuestos

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

ÁLGEBRA MATRICIAL. INVERSA DE UNA MATRIZ

ÁLGEBRA MATRICIAL. INVERSA DE UNA MATRIZ Cpíulo Álgebr mricil vers de u mriz Cpíulo ÁLEBRA MARCAL NVERSA DE UNA MARZ Mrices E el cpíulo erior se irodujo el cocepo de mriz, defiiédose u mriz A de mño m x co elemeos e u cuerpo (geerlmee cosiderremos

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

3 Potencias y raíces de números

3 Potencias y raíces de números Potecis y ríces de úeros reles. Potecis de expoete turl. Defiició. El producto tiee sus siete fctores igules. Este producto se puede idicr de for brevid coo. se ll poteci, y l fctor, bse. El úero de veces

Más detalles

1.- POTENCIAS DE EXPONENTE ENTERO

1.- POTENCIAS DE EXPONENTE ENTERO º ESO - UNIDAD.- POTENCIAS Y RAÍCES OBJETIVOS MÍNIMOS DE LA UNIDAD.- Clculr potecis de se rciol y epoete etero.- Relizr opercioes co potecis de epoete etero usdo sus propieddes.- Epresr úeros e otció cietífic.-

Más detalles

Algunas funciones elementales

Algunas funciones elementales Apédice B Algus fucioes eleetles B Fució poteci -ési U fució poteci -ési es u fució de l for f ( ) dode l se es u vrile y el epoete u úero turl Es l for ás secill de ls fucioes polióics f ( ) Ls fucioes

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V COMBINATORIA Por Aálisis Cobitorio o Cobitori, se etiede quell prte del álgebr que se ocup del estudio y propieddes de los grupos que puede forrse co eleetos ddos, distiguiédose etre sí: por el úero de

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero www.clseslcrt.co Clsificció de Núeros Reles Te.- Núeros Reles Reles R Rcioles Q Irrcioles Ι Eteros Z Nturles N Negtivos Deciles Exctos Frcciorios Deciles Periódicos Puros Deciles Periódicos Mixtos Rcioles

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N)

16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N) rrcioles () //0 Te : úeros reles úeros reles (rcioles e irrcioles) Aproxició de úeros reles L rect rel Vlor soluto tervlo y seirrects Potecis de expoete etero otció cietífic dicles Potecis de expoete frcciorio

Más detalles

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3 . DEFINICIÓN. http://mtemticsconsole.wikispces.com/ TE trices TRICES Un mtriz de m fils n columns es un serie ordend de m n números ij, i=,,...m; j=,,...n, dispuestos en fils columns, tl como se indic

Más detalles

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr . OPERIONES ON MRIES.. Sum de mtrices Pr oder sumr dos mtrices ésts debe teer l mism dimesió. Etoces se sum térmio térmio: b b m m m Proieddes de l sum de mtrices: socitiv: omuttiv: Elemeto eutro: L mtriz

Más detalles

REALES EALES. DEFINICIÓN Y LÍMITES

REALES EALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES EALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrile rel. Doiio de u fució.. Doiios de ls fucioes ás hitules. Coposició de fucioes. Propieddes. Fució

Más detalles

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2 Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Te Resolución de sises edine deerinnes Meáics II º chillero TEM RESOLUIÓN DE SISTEMS MEDINTE DETERMINNTES Resolución de sises Regl de rer Teore de Rouché-Froenius EJERIIO Resuelve plicndo l regl de rer

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

Tema 7: Determinantes, Matriz Inversa y Rango

Tema 7: Determinantes, Matriz Inversa y Rango www.seleivi-gr.o Te 7: Deeries, Mriz Ivers y Rgo El eerie e l riz ur e ore se sioliz or o esriieo los eleeos e ere os res veriles...................... 7..- Cálulo e Deeries e Ore U eerie e seguo ore es

Más detalles

Vectores 1 ; Ejercicio nº 1.- Ejercicio nº 2.-

Vectores 1 ; Ejercicio nº 1.- Ejercicio nº 2.- Vectores. dij so los sigietes ectores Si ) Ejercicio º.- ( ) : Oté ls coordeds de Ls coordeds de dos ectores so ). ; ; los qe estr l figr: siedo Dij los ectores ) Ejercicio º.- ( ) : oté ls coordeds de

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

APLICACIONES DE LAS MATRICES

APLICACIONES DE LAS MATRICES PLIIONES DE LS MTRIES Ejercicio nº.- ) Encuenr los vlores de pr los que l ri: no es inversible. Ejercicio nº.- lcul, si es posible, l invers de l ri: Pr los csos en los que. Ejercicio nº.- Hll un ri,,

Más detalles

1. Discutir según los valores del parámetro k el sistema

1. Discutir según los valores del parámetro k el sistema . Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES E l epresió c, puede clculrse u de ests tres ctiddes si se cooce dos de ells resultdo de este odo, tres opercioes diferetes: º Poteci º Rdicció º Logrito c pr clculr,

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

ANEXO: Determinantes de matrices de orden 2 x 2 y 3 x 3. Aplicaciones al cálculo de la inversa de una matriz.

ANEXO: Determinantes de matrices de orden 2 x 2 y 3 x 3. Aplicaciones al cálculo de la inversa de una matriz. Profesor: Rf Gozález Jiméez Istituto St Eulli TEM : MTRICES ÍNDICE..- Cocepto de mtriz..2.- Tipos de mtrices..3.- Opercioes co mtrices..3..- Sum de mtrices. Propieddes..3.2.- Producto por u esclr. Propieddes..3.3.-

Más detalles

Unidad 7: Sucesiones. Solución a los ejercicios

Unidad 7: Sucesiones. Solución a los ejercicios Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio

Más detalles

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Ptrici Crdo COMPLEJO EDUCATIVO Dr. OSCAR ABDALA CONTENIDOS DE REVISIÓN CONJUTOS NUMÉRICOS Nturles: N = 1

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA ejeriiosemees.om MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / /

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la

ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la ECUACIONES DE SEGUNDO GRADO Ojetivos: Defiir ecució de segudo grdo. Resolver l ecució de segudo grdo plicdo propieddes de l iguldd. Resolver l ecució de segudo grdo plicdo fctorizcioes. Resolver l ecució

Más detalles

TEMA 8: MATRICES. Para notar una matriz se utiliza o: una letra mayúscula, por ejemplo A, o también a

TEMA 8: MATRICES. Para notar una matriz se utiliza o: una letra mayúscula, por ejemplo A, o también a emáis º hillero. Profesor: rí José Sáhez Queveo TE : TRES. DENÓN DE TRZ. GULDD DE TRES. TPOS DE TRES. OPERONES ON TRES..- SU DE TRES..- PRODUTO DE UN Nº REL POR UN TRZ..- PRODUTO DE TRES. TRNSORONES ELEENTLES

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Mtrices Tem MATRICES Y DETERMINANTES. DEFINICIÓN Y DESCRIPCIÓN DE MATRICES Un mtriz es un ordención rectngulr de elementos dispuestos en fils y columns encerrdos entre préntesis, por ejemplo A 3 4 Ls mtrices

Más detalles

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos)

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos) Escuel Técic Superior de Iformátic Covoctori de Juio - Primer Sem Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA 27 de Myo de 2-8, hors Durció: 2 hors. Por qué se crcteriz u operció ficier? (, putos)

Más detalles

Circuito equivalente de un transformador con regulación. Equivalent circuit of a regulating transformer

Circuito equivalente de un transformador con regulación. Equivalent circuit of a regulating transformer Igeire. Reis chile de igeierí, ol. 9 Nº, 0, pp. 93-09 Circuio equilee de u rsformdor co regulció Equile circui of regulig rsformer Ju A. Mríez-elsco Frcisco de Leó Reciido 6 de juio de 00, cepdo 3 de oiemre

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES . TERMINOLOGÍA Y NOTACIÓN A prtir de los coociietos de ritétic, se desrrollrá u leguje edite síolos térios, pr elorr u serie de técics de cálculo; el leguje ls técics, costitue u r iportte de l teátic,

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles

Resumen: Límites de funciones. Asíntotas

Resumen: Límites de funciones. Asíntotas Resue: Líites de ucioes. Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. Ejeplos: *?

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1 TEMA DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente modo:

Más detalles

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució

Más detalles

TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES

TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES SUCESIÓN NUMÉRICA: es u fució cuyo domiio es el cojuto de los úmeros turles (o u subcojuto de él) y l imge está icluid e el cojuto de los Reles ( ) SUCESIÓN ARITMÉTICA:

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ NVES E UN TZ l igul que pr hllr determinntes, restringiremos nuestro estudio mtrices cudrds utiliremos l mtri identidd de orden n ( n ). Podemos demostrr que si es culquier mtri cudrd de orden n, entonces

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES ) Resolver el siguiente sistem de ecuciones lineles t t z emplendo el método de Guss utilizndo trnsformciones elementles de fils En qué csos es comptible? b) Relcionr ls mtrices

Más detalles

Liceo Marta Donoso Espejo Raíces para Terceros

Liceo Marta Donoso Espejo Raíces para Terceros . Ríces cudrds y cúics Liceo Mrt Dooso Espejo Ríces pr Terceros Coeceos el estudio de ls ríces hciédoos l siguiete pregut: Si el áre de u cudrdo es 64 c 2, cuál es l edid de su ldo? Pr respoder esto deeos

Más detalles

Universidad Abierta Interamericana. Facultad de Tecnología Informática

Universidad Abierta Interamericana. Facultad de Tecnología Informática Uiversidd Abier Iermeric Fculd de Tecologí Iformáic Crrer: Liceciur e Memáic U speco de l Diámic de Poblcioes: Relció Depreddor-Pres por Prici Móic Grcí Direcor de Tesis: Dr Mrí Lore Bergmii Tesis presed

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces.

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces. POTENCIAS.- determi l oteci de se y exoete, sigific ue hemos de multilicr or si mismo veces. Defiició: L otció Bse Exoet El exoete,, idic ls veces ue se reite l se e el roducto de ést or si mism. L se,,

Más detalles

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0,

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0, Uidd EL NÚMERO REAL E etps sucesivs del estudio de l Mteátic se trbj co cpos uéricos que v pliádose co l icorporció de uevos y distitos tipos de úeros. Así, se coiez lizdo el cpo de los úeros turles (

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

Matrices. números reales. Los jardines cifrados. Carlo Frabetti

Matrices. números reales. Los jardines cifrados. Carlo Frabetti Solucionrio Mtrices números reles LITERATURA Y MATEMÁTICAS Los jrdines cifrdos De l pred del fondo prtí un lrgo psillo débilmente ilumindo; lo recorrí y, l finl, me encontré nte un puert con pertur de

Más detalles

Matrices. Matrices especiales

Matrices. Matrices especiales UNIVERSIDD UÓNO DE NUEVO EÓN FUD DE INGENIERÍ EÁNI Y EÉRI tries triz: ojuto de eleetos ordedos e fils y olus os eleetos puede ser úeros reles o oplejos E este urso solo se osider tries o eleetos reles

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes

Más detalles

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina MTRICES Mtrices de números reles. Definimos mtriz rel de elementos pertenecientes R y de dimensión n fils por m columns, quel conjunto de números reles escritos de l form siguiente: n n mtriz nxm m m nm

Más detalles

Radicación en R - Potencia de exponente racional Matemática

Radicación en R - Potencia de exponente racional Matemática Rdiccio e R Poteci de eoete rciol Mtemátic º Año Cód. 0- P r o f. V e r ó i c F i l o t t i P r o f. M r í d e l L u j á M r t í e z C o r r e c c i ó : P r o f. S i l v i A m i c o z z i Dto. de M t emátic

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles