es ligada, siendo v V Dos subespacios F y G de V son suplementarios si y solo si se verifica:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "es ligada, siendo v V Dos subespacios F y G de V son suplementarios si y solo si se verifica:"

Transcripción

1 1- Dado el sbcojto F={ ( λ μ, λ,μ, μ) R / λ, μ R} de R, se verifica qe: a) dim F= b) {(1,1,0,0),(-,0,,-1)} es a base de F c) F o es sbespacio vectorial de R - E sistema ligado, se verifica qe: a) Agregado otro vector es libre b) Todo sbcojto de él es ligado c) Existe vector qe es combiació lieal de los restates - Sea espacio vectorial de dimesió, etoces: a) Todo sistema de geeradores tiee úmero de vectores igal o meor qe b) Todo sistema de vectores qe tega más de vectores es ligado c) Todo sistema de vectores qe tega meos de vectores es libre - Sea F a recta vectorial de R y F sbespacio splemetario de F Se verifica: a) F pede ser plao vectorial calqiera de R b) F es a recta vectorial de R c) F es calqier plao vectorial de R qe o cotega a F 5- Sea V(R) espacio vectorial, si dim (V) =, etoces: a) Todo sbcojto F de V co vectores es base de V(R) b) Todo sistema geerador de V tiee vectores c) El máximo úmero de vectores liealmete idepedietes es 6- Sea F y G dos sbespacios vectoriales de R a) F G es sbespacio vectorial de R b) F G es sbespacio vectorial de R c) Niga de las ateriores 7- U sistema geerador G de R : a) Está costitido por vectores b) Está costitido por vectores liealmete idepedietes etre sí c) Calqier vector de R es combiació lieal de los vectores de G 8- E el espacio vectorial R, la ecació geeral de hiperplao es de la forma a) Ax+By+Cz=0, A, B, y C o todos los b) Ax+By+Cz+D=0, A, B, y C o todos los c) (x,y,z)= λ (a,b,c), λ R,, de vectores de V(R), es ligada, podemos asegrar: 9- Si la familia { } 1 a) 1 es combiació lieal de y b) dim V < c) { 1,,, v} es ligada, siedo v V 10- Dos sbespacios F y G de V so splemetarios si y solo si se verifica: a) F G = { 0} b) F G = V c) F + G = V y F G = { 0} 11- Sea A Mmx (R) tal qe rago(a)=r, se verifica: a) Todos los meores de orde r de A so distitos de cero b) El sbespacio geerado por los vectores fila de A tiee dimesió r U D de Matemáticas de la ETSI e Topografía, Geodesia y Cartografía 5

2 de r Espacio Vectorial c) El sbespacio geerado por los vectores colma de A pede teer dimesió distita { R / λ, μ R} 1- Dado el sbcojto F ( λ μ, λ + μ,μ, μ) = de R, se verifica a) dim F = 1 b) {( 1,1,0,0),( 1,1,, ) } es sistema geerador de F c) {( 1,0,0,0),(0,1,0,0) } es a base de F 1- Sea F y G dos sbespacios vectoriales de R a) F G es sbespacio vectorial de R b) F G es sbespacio vectorial de R c) F + G = R 1- Sea F y G dos sbespacios vectoriales de R, B y B dos bases de F y G respectivamete, etoces: a) B B' es base de F G b) B B' es sistema geerador de F+G c) B B' es base de F+G 15- Si G = { 1,,, m} es sistema geerador de R, podemos asegrar: a) m= b) m c) m 16- Sea A a matriz de rago r Podemos afirmar qe: a) Todos los meores de A de orde r so distitos de cero b) El sbespacio egedrado por los vectores fila de A es de dimesió r c) A tiee r filas liealmete idepedietes, pero, o podemos asegrar lo mismo de las colmas 17- U hiperplao de R es: a) Ua recta b) U plao c) {0} 18- Cál de las afirmacioes sigietes es falsa? a) E R todas las bases tiee vectores b) Toda familia de vectores de R es libre c) Toda familia libre de R tiee como máximo vectores (1,0),(0,1) B' = (,),(, ) es: 19- La matriz de cambio de base e R de la base B = { } a la base { } a) ; b) ; c) 0- Sea E y F dos sbespacios vectoriales de espacio vectorial V, tales qe: dim(e+f)=dim(e)+dim(f), etoces: a) E y F so sbespacios splemetearios b) E+F=V c) E F = { 0} 1- Si S = { e 1,e,e, e } es sistema de geeradores de espacio vectorial V, etoces podemos afirmar qe: a) dim V 6 U D de Matemáticas de la ETSI e Topografía, Geodesia y Cartografía

3 b) dim V = c) dim V < - Sea B = { 1,,, } a base de espacio vectorial V Podemos afirmar: a) 1 = (1,0,0,,0) respecto de la base caóica b) = (0,1,0,,0) respecto de la base B c) 1 + = (1,1,0,,0) respecto de la base caóica - Sea B a base de V y G sistema geerador de V Se verifica: a) B y G tiee el mismo úmero de vectores b) B y G está costitidos por vectores liealmete idepedietes c) V = < B > y V = < G > - Sea B 1 y B dos bases de V y M la matriz de cambio de base de B 1 a B Si X 1 y X so los vectores de coordeadas de vector geérico V respecto de B 1 y B respectivamete Se verifica: a) La ecació de dicho cambio es X 1 = M X b) La ecació de dicho cambio es X = M X 1 c) El rago de M o tiee porqé ser 5- Se sabe qe {a, b, c} es a base de V Cál de las afirmacioes sigietes es FALSA? a) {a, b, c} es libre b) a = 0 c) {a, b, c} es base de V Sea P = 5 0 la matriz del cambio de base de B = { a,b,c} a B' = {, v, w}, etoces: 6 a) a = + v + 6w b) v = 5b + c c) c y w so liealmete idepedietes 7- Sea V espacio vectorial de dimesió, etoces: a) No hay sistemas ligados co más de vectores b) No hay sistemas libres co más de vectores c) Los sistemas libres tiee todos vectores 8- Sea V espacio vectorial de dimesió, etoces: a) Calqier sistema de vectores co meos de elemetos es libre b) U sistema libre de V tiee como mcho vectores c) Hay sistemas geeradores co vectores qe o so base de V 9- Cál de las afirmacioes sigietes es la verdadera? F = x, y,z R / x + y = z es sbespacio vectorial de R de dimesió { } { R / x = y = z} { R / x + y = z + 1} a) ( ) b) F ( x, y,z) c) F ( x, y,z) = es sbespacio vectorial de R de dimesió = es sbespacio vectorial de R de dimesió 0- Sea V espacio vectorial de dimesió, etoces: a) Calqier sistema libre de V tiee como máximo vectores b) Calqier sistema ligado de V tiee como míimo vectores c) Pede existir a base de V co meos de vectores U D de Matemáticas de la ETSI e Topografía, Geodesia y Cartografía 7

4 1- El cojto F ( x, y,z) 8 Espacio Vectorial { R / x + y + z = 0, x = a} = es sbespacio vectorial de dimesió 1: a) Si a=0 b) Para calqier valor real de a c) Si a= - Sea las bases B 1 = { a,b,c} y B = {, v, w} del espacio vectorial R, tales qe la ecació del 0 1 cambio de base de B 1 a B es: X = 1 0X1, etoces las coordeadas del vector b respecto 0 0 de la base B so: a) ( 0,-1,) b) ( 1,-1,0) c) ( 0,1,0) - Sea E y F dos sbespacios vectoriales de R distitos de { } 0 Etoces: a) E F = R E = F b) E F = R E y F so splemetarios c) E + F = R - Sea B 1 y B dos bases de espacio vectorial V La matriz de cambio de base de B 1 a B verifica qe: a) Ss colmas so las coordeadas de los vectores de la base B 1 respecto de la base B b) Ss colmas so las coordeadas de los vectores de la base B respecto de la base B 1 c) Niga de las ateriores 5- E espacio vectorial V, se verifica: a) Todo sistema geerador es a base de V b) Toda base de V, es sistema geerador c) Todo sbcojto de sistema geerador de V, es a base 6- Sea B = { 1,,, } a base de espacio vectorial V Podemos afirmar siempre qe: a) 1 = (1,0,0,,0) respecto de la base caóica b) = (1,1,0,,0) respecto de la base B c) 1 + = (1,1,0,,0) respecto de la base B 7- Sea { a,b,c} a base de espacio vectorial V Se verifica etoces qe: a) a + b + c = 0 b) { a,b,c} es tambié a base de V c) { a,b,0} es tambié a base de V 8- Sea S sbespacio vectorial de R defiido por S = {( x, y,z) R / x + y = 0;x + z = 0} se cmple qe: a) dim(s)=1 b) dim(s)= c) dim(s)= 9- E espacio V de dimesió se verifica: a) Calqier sistema geerador co vectores es base b) No hay sistemas libres co meos de vectores U D de Matemáticas de la ETSI e Topografía, Geodesia y Cartografía

5 c) Todo sistema co meos de vectores es libre 0- El rago de cojto arbitrario de vectores de R es siempre: a) Meor o igal qe b) Mayor o igal qe c) Igal qe 1- La itersecció de dos sbespacios vectoriales a) E geeral o es sbespacio vectorial b) Es sbespacio vectorial c) Es sbespacio vectorial si o cotiee al vector lo - E R sea el sbespacio vectorial S defiido por las ecacioes vectores calesqiera de S, podemos asegrar qe: a) Forma sistema libre b) Forma a base de S c) Forma sistema geerador de S - Sea S y S dos sbespacios vectoriales de V Se verifica: a) dim(s+s )= dims+dims b) S+S = < S S' > c) S+S o tiee por qé ser sbespacio vectorial de V - Si E y F so sbespacios vectoriales de R, ambos de dimesió, etoces: E F 0,0,0 a) {( )} x = 0 Tomado x + y = 0 b) E + F = R c) E + F o es sbespacio vectorial de R 5- Sea V espacio vectorial de dimesió Se verifica: a) Calqier sistema libre tiee como mcho vectores b) Calqier sistema ligado tiee más de vectores c) U sistema geerador tiee como mcho vectores 6- Si F y G so sbespacios splemetarios de espacio vectorial V de dimesió, se verifica: a) F G = b) F+G es sma directa c) dim(f+g)< 7- La ecació matricial e R, del cambio de base de la base B = {( 1,0,1 )(, 0,0,1 )(, 1,, )} a la base caóica B c es: x 0 1 x c x c 0 1 x x c a) y = 0 0 y c ; b) y c = 0 0 y ; c) y c z 1 1 z B c z B c c 1 1 z B z c B c Bc 8-Se sabe qe {a, b, c} es a base de V Pede ocrrir qe: a) {a, b, c,0} es libre b) a = 0 c) {a, b, c,0} es sistema geerador de V 9- Sea A={,, 1 } sistema libre de R y sea < A >, etoces: a) A b) Calqier sbespacio vectorial splemetario de A cotiee a = 0 1 U D de Matemáticas de la ETSI e Topografía, Geodesia y Cartografía x y z B

6 c) {,,,} es base de R 1 Espacio Vectorial 50- Sea B= {,,, } y B' = { v,v,v,v } dos bases de R y MB B' 1 cambio de B a B, etoces: a) v = b) 1 = v 1 + v + v + v c) v = = la matriz de 51- Dadas las bases B={(1,0,0),(0,1,0),(0,0,1)} y B ={(1,,),(1,,),(1,0,0)} de R La matriz 1 1 P = 0 es la matriz de cambio de base de: 0 a) B a B b) B a B c) Niga de las ateriores 5- Sea,,, 1 R vector es combiació lieal de y a) El rago(m)= b) El rago(m)= catro vectores o los y distitos etre sí Si M= {,,, } y el etoces: c) El rago(m) G =,,, es sistema geerador de R, podemos asegrar: 5- Si { } 1 m a) G es a base de R para calqier úmero atral m b) Si m>, etoces G es ligado c) Sea F y G dos sbespacios vectoriales de V Se verifica: 55- Si { } 1 a) dimf + dimg = dim(f G) dim(f G) b) dimf + dimg = dim(f + G) dim(f G) c) dimf + dimg = dim(f + G) + dim(f G) G = 1,,, es sistema geerador de R, podemos asegrar: a) b) = c) x, y,z / x y = 0 Etoces 56- Sea V 1 el sbespacio egedrado por el vector (1, 1, 1) y V = {( ) } se cmple qe: a) V 1 V = V 1 b) V 1 V = V c) V 1 V = 50 U D de Matemáticas de la ETSI e Topografía, Geodesia y Cartografía

7 57- Se cosidera el vector x R de coordeadas (1, 1, 1) e la base caóica E la base {( 1,1,1 ),( 1,,1 ), ( 1,, )} las coordeadas de x so: a) (1, 0, 0) b) (1, 1, 1) c) (1, 1, 0) B,, D= v,v,v bases del espacio vectorial V tales qe: 58- Sea = { } y { } = v, 1 = v + v, = v + v + v 1 1 1, etoces la matriz a) Es la matriz del cambio de base de B a D b) Es la matriz del cambio de base de D a B c) Niga de las ateriores 59- Sea y v vectores liealmete idepedietes de R, cál de los sigietes cojtos forma sistema libre? a) { 0,, v} b) { + v, v },v, + v c) { } 60- Si S { 1,,, } a) dim( V ) > = es sistema geerador de espacio vectorial V, etoces: b) dim( V) c) rago(s)= 61- Sea F sbespacio vectorial de R, co dim F = m Se verifica: a) Si B es a base de R, pede elimiarse vectores de B hasta obteer a base de F b) Si B es a base de F, pede añadirse vectores a B hasta obteer a base de R c) Si B es sistema ligado de R, pede elimiarse vectores de B hasta obteer a base de R U D de Matemáticas de la ETSI e Topografía, Geodesia y Cartografía 51

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

Aplicaciones Lineales. Diagonalización 1.- Sean xy

Aplicaciones Lineales. Diagonalización 1.- Sean xy Aplicacioes Lieales. Diagoalizació.- Sea xy, vectores propios de ua matriz A asociados al mismo valor propio. Etoces: a) x+ y tambié es vector propio de A. b) x+ y tambié es vector propio de A, si x +

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes:

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes: Aplicacioes lieales Diagoalizació Defiició: Sea V y W dos espacios vectoriales sobre el mismo cuerpo y sea la aplicació f:v W v f v w La aplicació f es lieal si se verifica las dos codicioes siguietes:

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R

Más detalles

CLASE SOBRE APLICACIONES LINEALES

CLASE SOBRE APLICACIONES LINEALES Álgebra Mauel Hervás Curso 0-0 CLAS SOBR APLICACIONS LINALS. INTRODUCCIÓN l problema que se va a abordar es la forma de RLACIONAR los elemetos de dos espacios vectoriales, mediate expresioes matemáticas.

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

CAP ITULO I ALGEBRA LINEAL. 1

CAP ITULO I ALGEBRA LINEAL. 1 CAPÍTULO I ÁLGEBRA LINEAL 1 Tema 1 Espacios Vectoriales Notaremos por R al cuerpo de los úmeros reales Defiició 11 Sea E u cojuto o vacío e el que se tiee defiida ua ley de composició itera (llamada suma):

Más detalles

ÁLGEBRA LINEAL Ingenierías ÁLGEBRA II. Unidad Nº 4 LM - PM. Espacios Vectoriales con Producto Interior. FCEyT - UNSE

ÁLGEBRA LINEAL Ingenierías ÁLGEBRA II. Unidad Nº 4 LM - PM. Espacios Vectoriales con Producto Interior. FCEyT - UNSE ÁLGEBRA LINEAL Igeierías ÁLGEBRA II LM - PM Uidad Nº 4 Espacios Vectoriales co Prodcto Iterior FCEyT - UNSE Álgebra II (LM-PM) - Álgebra Lieal (Igs.) - F.C.E. y T.- UNSE Uidad Nº 4: ESPACIOS VECTORIALES

Más detalles

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u.

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u. EJERCICIO PARA ENTREGAR Sean los sbespacios vectoriales: Hoja Problemas Espacio Vectorial 6-7 {( ) } F {( ) R / } E αγ βγ αβ γ / α β γ R Se pide: a) ases de E F EF E F b) Ecaciones implícitas de E F Sea

Más detalles

CAPÍTULO PRIMERO. 1. Transformaciones geométricas. Isometrías o movimientos

CAPÍTULO PRIMERO. 1. Transformaciones geométricas. Isometrías o movimientos CAPÍTULO PRIMERO Trasformacioes geométricas Isometrías o movimietos Defiicioes - Sea E espacio afí eclídeo de dimesió Llamaremos trasformació geométrica de E, a toda aplicació T:E E biyectiva - Dada T,

Más detalles

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes. ESPACIOS VECTORIALES 1. INTRODUCCIÓN Escalares y Vectores E la técica existe catidades como Logitud, Área, Volume, Temperatura, Presió, Masa, Potecial, Carga eléctrica que se represeta por u úmero real.

Más detalles

Espacio Euclídeo. a b = a b. a b = b a c)

Espacio Euclídeo. a b = a b. a b = b a c) .- Un hiperplano de R es: a) Una recta. b) Un plano. c) {0}..- Sean a y b dos vectores de R, si a es ortogonal a b, entonces: a) a b = 0 b) a b = b a c) a b = a b.- Sea F una recta vectorial de R y F un

Más detalles

UNIDAD N 2 BASES Y DIMENSIÓN

UNIDAD N 2 BASES Y DIMENSIÓN UNIDAD N ASES Y DIMENSIÓN UNIDAD Nº : ASES Y DIMENSIÓN PROF. MARÍA EUGENIA RIVERO ASES Y DIMENSIÓN DEFINICIÓN Nº : Sea V u espacio vectorial sobre el cuerpo F. U subcouto S de V se dice LINEALMENTE DEPENDIENTE

Más detalles

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales ESPACIO VECTORIAL.- Itroducció.- Espacio Vectorial.- Subespacios vectoriales 4.- Geeració de Subespacios vectoriales 5.- Depedecia e idepedecia lieal 6.- Espacios vectoriales de tipo fiito 7.- Cambio de

Más detalles

Tema 2. Espacios vectoriales, aplicaciones lineales, diagonalización

Tema 2. Espacios vectoriales, aplicaciones lineales, diagonalización Tema 2. Espacios vectoriales, aplicacioes lieales, diagoalizació Asigatura: Matemáticas I Grado e Igeiería Electróica Idustrial Uiversidad de Graada Prof. Rafael López Camio Uiversidad de Graada 3 de septiembre

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS TEMA 0: POSICIONES RELATIVAS DE RECTAS Y PLANOS Ates de itroducir los coceptos que correspode a este apartado, haremos u repaso de dos coceptos que ecesitamos, matrices y determiates, así como alguas de

Más detalles

TEMA 12 ESPACIOS VECTORIALES. A lo largo de este tema 12 denotaremos mediante la letra K un cuerpo conmutativo, (K, +, ).

TEMA 12 ESPACIOS VECTORIALES. A lo largo de este tema 12 denotaremos mediante la letra K un cuerpo conmutativo, (K, +, ). 1. Espacios Vectoriales. 2. Subespacios Vectoriales. 2.1. tersecció de Subespacios. 2.2. Uió de Subespacios. 2.3. Suma de Subespacios. 2.4. Suma Directa de Subespacios. 3. Aplicacioes Lieales. Espacio

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

TEORÍA DEL CONTROL III

TEORÍA DEL CONTROL III Igeiería e Cotrol y Atomatizació Formas caóicas Trasformació de similitd TEORÍA DEL CONTROL III 5 de agosto de 5 Ator: M. e C. Rbé Velázqez Cevas Escela Sperior de Igeiería Mecáica y Eléctrica Formas caóicas

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades

Más detalles

Vectores ortonormales

Vectores ortonormales Vectres rtrmales Defiició U cjt de ectres e espaci ectrial V se dice qe es cjt rtgal si cada par de ectres e el cjt es rtgal. Se dice qe el cjt es cjt rtrmal si es rtgal y cada ectr es itari Demestre qe

Más detalles

UNIVERSIDAD DIEGO PORTALES Instituto de Ciencias Básicas. Álgebra Lineal. Isabel Arratia Zárate

UNIVERSIDAD DIEGO PORTALES Instituto de Ciencias Básicas. Álgebra Lineal. Isabel Arratia Zárate UNIVERSIDAD DIEGO PORTALES Istituto de Ciecias Básicas Álgebra Lieal Isabel Arratia Zárate Matrices y Sistemas de ecuacioes lieales Algebra Lieal - I. Arratia Z. Matrices: defiicioes y otacioes básicas

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

Hemos de destacar que a lo largo del tema la letra K denotará un cuerpo conmutativo con característica de dos.

Hemos de destacar que a lo largo del tema la letra K denotará un cuerpo conmutativo con característica de dos. 1. INTRODUCCIÓN. El cocepto de determiate es posible itroducirlo de diferetes formas: Por medio de aplicacioes multilieales alteradas, por iducció o mediate sumas de! sumados para u determiate de orde.

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordiació de Matemática II MAT0 Guía de ejercicios Ejercicios Mat0 parte complemetos Operacioes co matrices. Cosidere A = 0 0 3 B = cuado sea posible si o se puede justificar 0 3 5 6 y C = 0 calcular

Más detalles

1. Sistemas de referencia. TEMA 51. Sistemas de referencia en el plano y en el espacio. Ecuaciones de la recta y el plano. Relaciones afines.

1. Sistemas de referencia. TEMA 51. Sistemas de referencia en el plano y en el espacio. Ecuaciones de la recta y el plano. Relaciones afines. 1. Sistemas de referecia. TEMA 51 Sistemas de referecia e el plao y e el espacio. Ecuacioes de la recta y el plao. Relacioes afies. E la primera secció se itroduce los sistemas de referecia afies de, y

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Capítulo 9. Método variacional

Capítulo 9. Método variacional Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes

Más detalles

GEOMETRÍA MÉTRICA EN UN SIMPLEX DE R n por MANUEL DIAZ REGUEIRO

GEOMETRÍA MÉTRICA EN UN SIMPLEX DE R n por MANUEL DIAZ REGUEIRO GEOMETRÍA MÉTRICA EN UN SIMPLEX DE R por MANUEL DIAZ REGUEIRO Gaceta Matemática ª Serie Tomo XXXII Madrid 98 Pág 73-79 Comezaré por alguas ocioes elemetales relatias al simplex -dimesioal a utilizar más

Más detalles

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices:

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices: EJERCICIOS PROPUESTOS. Tarea 3. Cosiderar las siguietes particioes de S 5 σ = 354 τ = 354 π = 453. a) Determiar el sigo de cada ua de las ateriores particioes. b) Ecotrar: τ o σ ; π o σ ; σ y τ.. Usar

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado y=f tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

Desigualdad entre las medias Aritmética y Geométrica

Desigualdad entre las medias Aritmética y Geométrica Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica

Más detalles

; implícitas: x = 0. z. ; implícitas: -x+3y+2z = 0. z. , en general.

; implícitas: x = 0. z. ; implícitas: -x+3y+2z = 0. z. , en general. Solciones de la hoja Espacio Vectorial Crso 9- - En cada caso, determinar si F es n sbespacio ectorial de R En caso afirmatio, bscar na base nas ecaciones implícitas paramétricas de F F,, R /, R a) b)

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

SISTEMAS DE ECUACIONES LINEALES.

SISTEMAS DE ECUACIONES LINEALES. SISTEMS DE ECUCIONES LINELES. SISTEMS DE ECUCIONES LINELES. U sistema de ecuacioes lieales es u cojuto de m ecuacioes co icógitas de la forma: a x + a2 x2 + a3 x3 + + a x b a2 x + a22 x2 + a23 x3 + + a2

Más detalles

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 9 CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 7 INTRODUCCIÓN E el capítulo 3 calculamos el águlo etre dos vectores del espacio y obtuvimos que si ad be cf u a, b, c, v d, e, f y es el águlo etre u y v,

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - Curso de Verao 016 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c y

Más detalles

Álgebra I Práctica 4 - Números enteros (Parte 1)

Álgebra I Práctica 4 - Números enteros (Parte 1) Divisibilidad y úmeros primos Álgebra I Práctica 4 - Números eteros (Parte 1) 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z: i) a b c a c y b c, ii) 4 a 2 2 a, iii) 2 a b 2 a ó

Más detalles

1. Indique para cada una de las afirmaciones siguientes, si es verdadera o falsa, justificando su determinación. r r r r r r

1. Indique para cada una de las afirmaciones siguientes, si es verdadera o falsa, justificando su determinación. r r r r r r 0.8 Vectores geométricos álisis de elemetos teóricos. Idique para cada ua de las afirmacioes siguietes, si es verdadera o falsa, justificado su determiació. r. Si a, b r E, co a b y a // b, etoces, a b

Más detalles

TEMA 12. Espacios Vectoriales. Variedad lineal. Aplicaciones lineales. Teorema de la Isomorfía.

TEMA 12. Espacios Vectoriales. Variedad lineal. Aplicaciones lineales. Teorema de la Isomorfía. Tema 2- Espacios Vectoriales. Variedad Lieal. Aplicacioes lieales. Teorema de la Isomorfia TEMA 2. Espacios Vectoriales. Variedad lieal. Aplicacioes lieales. Teorema de la Isomorfía.. Itroducció. La utilizació

Más detalles

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE Objetivos Comprobar que la suma de variables aleatorias idepedietes y co la misma distribució es aproximadamete ormal. Estudiar la robustez de la aproximació frete

Más detalles

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid CURSO DE GEOMETRÍA ANAÍTICA Oscar Cardoa Villegas Héctor Escobar Cadavid UNIVERSIDAD PONTIFICIA BOIVARIANA ESCUEA DE INGENIERÍAS 06 MÓDUO VARIEDADES INEAES Esta uidad abarca el estudio de la líea recta

Más detalles

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid CURSO DE GEOMETRÍA ANAÍTICA Oscar Cardoa Villegas Héctor Escobar Cadavid UNIVERSIDAD PONTIFICIA BOIVARIANA ESCUEA DE INGENIERÍAS 6 MÓDUO VARIEDADES INEAES Esta uidad abarca el estudio de la líea recta

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 1 Junio) Enunciado Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 1 Junio) Enunciado Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 001 (Modelo 1 Juio) Euciado Germá-Jesús Rubio Lua EJERCICIO 1_A 3x - y - z 3 Sea el sistema: x - z 1 y - z 0. OPCIÓN A (0 5 putos) Expréselo e forma matricial. (0 5

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Pág. Grado Ig. Tec. Telecomuicació NOTA: E todos los ejercicios se deberá justificar la respuesta eplicado el procedimieto seguido e la resolució

Más detalles

Resumen que puede usarse en el examen

Resumen que puede usarse en el examen Resume que puede usarse e el exame ema. Optimizació Irrestrigida. Codicioes ecesarias y suficietes de optimalidad. Proposició (C. Necesarias) Sea x* u míimo local irrestrigido de f :!! y supogamos que

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

EL REML SIN LAGRIMAS. A. Blasco Instituto de Ciencia y Tecnología Animal Universidad Politécnica de Valencia

EL REML SIN LAGRIMAS. A. Blasco Instituto de Ciencia y Tecnología Animal Universidad Politécnica de Valencia 1 EL RE SIN LAGRIMAS A. Blasco Istituto de Ciecia y Tecología Aimal Uiversidad Politécica de Valecia El Baby model y i = e i y = X + e = 1 + e dode X = 1 es u vector de uos. La matriz de variazas-covariazas

Más detalles

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS. Qué es cierto: 3 < 3 o 3 < 3? 2. Sea a 2 R tal que a 3 2a 2 0a = 20.

Más detalles

bc (b) a b + c d = ad+bc a b = b a

bc (b) a b + c d = ad+bc a b = b a 1 Cojutos 1 Describa los elemetos de los siguietes cojutos A = { x x 1 = 0 } D = { x x 3 x + x = } B = { x x 1 = 0 } E = { x x + 8 = 9 } C = {x x + 8 = 9} F = { x x + 16x = 17 } Para los cojutos del ejercicio

Más detalles

Distribución Multinomial

Distribución Multinomial Uiversidad de Chile. Rodrigo Assar Facultad de Ciecias Físicas y Matemáticas M A34B 3 Adrés Iturriaga Departameto de Igeiería Matemática. Víctor Riquelme Distribució Multiomial Resume E el presete artículo

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

Por P. Diaz Muñoz y M. Sánchez Marcos.

Por P. Diaz Muñoz y M. Sánchez Marcos. APLICACIONES DE LA INTERPOLACION A LA REPRESENTACION DE FUNCIONALES LINEALES SOBRE UN SUBESPACIO DE DIMENSION FINITA DE C (Q). Por P. Diaz Muñoz y M. Sáchez Marcos. 0.- INTRODUCCION Sea C(Q) el espacio

Más detalles

Mínimos cuadrados ordinarios

Mínimos cuadrados ordinarios CAPíTULO 2 Míimos cuadrados ordiarios E el Capítulo 1, hemos defiido el modelo lieal geeral como ua relació estadística lieal etre ua variable depediete y ua o más variables explicativas, relació que podemos

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:...

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 6 de julio de 5 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... Ejercicio Ejercicio Ejercicio Ejercicio 4 Ejercicio 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

Tenemos k objetos distintos para distribuir en n cajas distintas con

Tenemos k objetos distintos para distribuir en n cajas distintas con Departameto de Matemática Aplicada. ETSIIf. UPM. SELECCIONES ORDENADAS Teemos objetos distitos para distribuir e cajas distitas co de cuátas formas distitas se puede itroducir los objetos e las cajas,

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices.

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices. Edgar Acuña/ ESMA 6665 Lecc 8 75 6.3. Uso de la SVD para determiar la estructura de ua matriz Primero defiiremos alguas características de matrices. Rago de ua matriz: Sea A ua matriz m x se etoces su

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales UNIVERSIDAD DE JAÉN FACULTAD DE CIENCIAS SOCIALES Y JURÍDICAS Departameto de Matemáticas (Área de Álgebra) Curso 24/5 PRÁCTICA Nº 4 Sistemas de ecuacioes lieales E esta práctica veremos cómo los determiates

Más detalles

Burgos Simón, Clara Cortés López, Juan Carlos; Navarro Quiles, Ana

Burgos Simón, Clara Cortés López, Juan Carlos; Navarro Quiles, Ana Las Matemáticas para la Gestió de Carteras co Riesgo. Carteras compuestas por activos co correlacioes estadísticas arbitrarias. El caso e que se fija el redimieto esperado de la cartera Apellidos, ombre

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

Ejercicio 1- Sea Q el conjunto de los números racionales y N el de los números naturales incluido el cero. Se define en Q la siguiente relación R:

Ejercicio 1- Sea Q el conjunto de los números racionales y N el de los números naturales incluido el cero. Se define en Q la siguiente relación R: PREPARADORES DE OPOSICIONES PARA LA ENSEÑANZA Matemáticas MATEMATICAS Ejercicio - Sea Q el cojuto de los úmeros racioales y N el de los úmeros aturales icluido el cero. Se defie e Q la siguiete relació

Más detalles

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Determiates Ramó Espioza Armeta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Sea A M ( K), dode 2. El i-ésimo meor de A es la matriz A i, obteida a partir de A elimiado el regló i y la columa. Eemplo. Sea 3

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

4.4 Sistemas mal condicionados

4.4 Sistemas mal condicionados 7 4.4 Sistemas mal codicioados l resolver u sistema de ecuacioes lieales usado u método directo, es ecesario aalizar si el resultado calculado es cofiable. E esta secció se estudia el caso especial de

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

ESTAS NOTAS NO PUEDEN SUSTITUIR A BUEN LIBRO, NI EL ESFUERZO PERSONAL CONTINUADO PARA ASIMILAR Y APLICAR LAS IDEAS EXPUESTAS!!!

ESTAS NOTAS NO PUEDEN SUSTITUIR A BUEN LIBRO, NI EL ESFUERZO PERSONAL CONTINUADO PARA ASIMILAR Y APLICAR LAS IDEAS EXPUESTAS!!! . SERIES MM_III. EDO HOMOGÉNEAS: SOLUCIONES TIPO SERIE.. Clasificació de las siglaridades de a EDO hoogéea de º orde lieal.. Solcioes ptos siglares de a EDO hoogéea de º orde lieal..3 Método de Frobeis..4

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía 3ª Prueba de Evaluación Continua 7 05 12 (Grupo C) Espacio vectorial 1. a) Definir vectores linealmente dependientes en un espacio vectorial V. u,u,,u de un espacio vectorial V son b) Demostrar que si

Más detalles

NOTA: EN TODO EL CAPÍTULO Usamos H para representar un espacio de Hilbert separable. la traza también se puede definir como tra = n=1

NOTA: EN TODO EL CAPÍTULO Usamos H para representar un espacio de Hilbert separable. la traza también se puede definir como tra = n=1 CAPÍTULO 7: DE LOS IDEALES DE LA CLASE DE TRAZA Y DE HILBERT -SCHMIDT. NOTA: EN TODO EL CAPÍTULO Usamos H para represetar u espacio de Hilbert separable. Defiició Sea A B(H) u operador positivo si {ϕ }

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles