EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE"

Transcripción

1 Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO CRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació e la maemáica fiaciera, uilizado or Jaime García e su libro Maemáicas Fiacieras y iee como objeivo resear al lecor ua mayor exlicació. El méodo cosise e uilizar ecuacioes e diferecia fiia de rimer orde, e u caso, oliomial, y e oro caso, co fució exoecial. E ambos casos, a diferecia del uilizado e las series uiformes, esas ecuacioes coiee variables que aumea de maera lieal o geomérica. El rimer caso se refiere a las series variables co gradiee ariméico y el segudo caso, a las series variables co gradiee geomérico, y el gradiee uede ser creciee o decreciee. E adició se uiliza el méodo de los coeficiees ideermiados. El resee documeo desarrolla las series variables co gradiee geomérico creciee, y halla la fórmula que caializa la serie aes mecioada. El reso de fórmulas y facores so desarrolladas e el documeo las series variables disoible e la web del auor del resee documeo. Las Series Variables co Gradiee Geomérico Creciee Sea ua serie variable vecida de eriodos co gradiee geomérico creciee: g + k dode k es la asa de crecimieo de las reas, eriodo a eriodo 2. La rimera rea es de valor y ua asa de ierés i or eriodo. El objeivo es esimar el valor fuuro F de esa serie variable co gradiee o lieal y creciee. La rimera rea será al fial del rimero eriodo, la seguda rea será 2.( + k), al fial del segudo eriodo, la ercera rea será.( + k), al fial del ercer eriodo. Se uede areciar que el crecimieo geomérico de las Jaime García, Maemáicas Fiacieras co ecuacioes de diferecia fiia, cuara edició, Pearso, Saa Fe de Bogoá, D.C., Colombia, k es ua asa orceual de crecimieo, si embargo al uilizarse e la ecuació del gradiee, se uiliza el coeficiee resecivo, es decir, el valor de k dividido ere 00. Para efecos de simlificació, a k lo deomiamos la asa de crecimieo.

2 Mg. Marco oio Plaza Vidaurre 2 reas se iicia e el segudo eriodo, es decir, la rea crece exoecialmee. La ecuació que reresea el valor fuuro de las reas caializadas al eriodo será la siguiee: F k) + F + i. F +.( + () Co la fialidad de faciliar la exlicació, asumimos que se efecúa deósios e u baco comercial, de al maera que desués de ciera caidad de deósios se edrá u valor acumulado. E la ecuació (), el miembro de la izquierda es el valor acumulado e el eriodo +, el rimer érmio del miembro de la derecha es el valor acumulado e el eriodo, el segudo érmio es el ierés devegado e el eriodo, el ercer érmio es el comoee variable de cada uo de los deósios que se efecúa, es decir, es el roduco de dos facores, el rimero es la rea base y el segudo facor es el valor del gradiee geomérico g. Por ejemlo, e el eriodo, el valor de es de cero al como se dijese aeriormee, ya que e ese eriodo o exise gradiee aú; e el segudo eriodo, el valor de es de, y así sucesivamee. Ordeado la ecuació () eemos: F k) + ( F.( + (2) Dode:.( + k) g( ) (3) La ecuació (2) es ua ecuació de diferecia fiia co ua fució exoecial co la variable iemo El méodo El méodo de solució de ua ecuació e diferecia fiia de rimer orde, siguiedo el méodo desarrollado or García 3, es la siguiee: 3 García (2000), ver cia Nº ; ambié e la web del auor del resee documeo exise u documeo del méodo uilizado y su reseciva exlicació co mayor dealle.

3 Mg. Marco oio Plaza Vidaurre 3 a) Caso : la asa de ierés es diferee que la asa de crecimieo de las reas Sea la ecuació de diferecia fiia de rimer orde: a. Y + + aoy. g( ) (4) La solució geeral será la siguiee: Y Y ( ) Y ( ) (5) h + El rimer érmio del miembro de la izquierda es la solució geeral de la ecuació homogéea de la ecuació (4), y el segudo érmio, es la solució aricular de la ecuació mecioada. La solució geeral de la ecuació homogéea Sea la ecuació homogéea: a. Y + ao. Y 0 (6) + Dode: g ( ) 0 licado la solució de ua ecuació de diferecia cuado el érmio g() es ua cosae o iee u valor de 0, eemos que: Dode: Y. C + B. (7) ao a (8) k B a y C es ua cosae arbiraria

4 Mg. Marco oio Plaza Vidaurre 4 Segú la ecuació homogéea (6), el érmio k es igual que cero, luego: B k 0 0 a a (9) Volviedo a la ecuació (2), su reseciva ecuació homogéea es la siguiee: F ( F 0 (0) + licado las ecuacioes (8) y (9), eemos que: ao ( ( ) + i a k B 0 a () y reemlazado () e (7) eemos: ( Fh ( ) (. C + (0). (2) 4 ( Luego, la solució geeral de la ecuació homogéea será: F ( ) ( C (3) h. La solució aricular E cuao a la solució aricular, eemos que:.( + k) g( ) (3) 4 La lera h que esá como sub ídice se refiere a homogéea

5 Mg. Marco oio Plaza Vidaurre 5 La ecuació (3) es ua fució exoecial, or ao, su solució ambié debe ser ua fució del mismo io: F ( ) K.( (4) 5 Coviriedo la ecuació (4) al eriodo + F ( K.( + (5) Reemlazado (4) y (5) e la ecuació (2), eemos: + K.( (. K.(.( (6) Efecuado arreglos algebraicos: K.(.( (. K.( K.( K.( ).( [ + k ( ].(.(.( (7) Igualado coeficiees ara el caso de K.( ) (8) desejado K K (9) Reemlazado K e la ecuació (4): F ( ).( k (20) Sumado ambas solucioes, ecuacioes (3) y (20): F ( ) C.( +.( k (2) 5 La lera que esá como sub ídice se refiere a aricular

6 Mg. Marco oio Plaza Vidaurre 6 La ecuació (2) es la solució geeral de la ecuació (2), si embargo se hace ecesario esimar la cosae arbiraria C. Para el efeco, sabemos que el valor de F e el eriodo 0 es jusamee 0. Reemlazado e (2): Desejado C : 0 0 ( + i ). C +.( + k C (22) i k ) 0 Reemlazado el valor de C e (2): Efecuado arreglos eemos:. F ( ) i k.( +.( k (23) F ( ) i k i k.(.( k (24) Fialmee llegamos a la siguiee ecuació: [( ( k ] F ( ) (25) i k sumiedo que es igual que, obeemos la solució geeral de la ecuació (2): [( ( ] i k F( ) ; (26) i k La ecuació (26) es el valor fuuro de ua serie variable co gradiee geomérico creciee, co la codició de que la asa de ierés sea diferee que la asa de crecimieo de las reas. Si mulilicamos la ecuació (26) or u facor simle de acualizació, eemos:

7 Mg. Marco oio Plaza Vidaurre 7 F( ). ( i k [( ( ]. ( (27) Fialmee, llegamos a la siguiee ecuació: ( P. (28) i k ( b) Caso 2: la asa de ierés es igual que la asa de crecimieo de las reas Cuado la asa de ierés es igual que la asa de crecimieo de las reas, los resulados so oalmee diferees e cuao se refiere a las fórmulas. La ecuació e diferecia a ser resuela será la siguiee: F i) + (. F ( + (29) E la ecuació aerior se uede areciar que la asa de crecimieo de las reas ha sido reemlazada or la asa de ierés. Para efecos de simlificació, asumimos que: (+ i ) a (30) E al seido, la ecuació (29) quedaría de la siguiee forma: F. a + a. F (3) La solució geeral de la ecuació homogéea La solució geeral de la ecuació homogéea será: F ( ) C.( h (32) La solució aricular Siguiedo co el méodo uilizado, eemos que:.( + i) g( ) (33) La ecuació (33) es ua fució exoecial, or ao, su solució ambié debe ser ua fució del mismo io:

8 Mg. Marco oio Plaza Vidaurre 8 F ( ) K..( (34) 6 Coviriedo la ecuació (4) al eriodo + F ( K.(.( + (35) Reemlazado (34) y (35) e la ecuació (29), eemos: + K.( ( ( K..(.( (36) Efecuado arreglos algebraicos: K.(.(.( K.( K.( K.(.( [(.( (. ] [( ( + ) ].(.( (. K..(.(.( (37) Igualado coeficiees ara el caso de K.( (38) desejado K K (39) + i Reemlazado K e la ecuació (34): F ( ) + i..( k (40) Sumado ambas solucioes, ecuacioes (32) y (40): F ( ) + i C.( +..( (4) 6 E ese caso el lecor areciará que la solució aricular icluye a la variable, ues, si observamos la ecuació (3), el coeficiee a esá e el miembro de la izquierda así como e el de la derecha; ese es u caso esecial del méodo de los coeficiees ideermiados, ya que si o se cosidera la variable, o se llegaría a ua solució.

9 Mg. Marco oio Plaza Vidaurre 9 La ecuació (4) es la solució geeral de la ecuació (29), si embargo se hace ecesario esimar la cosae arbiraria C. Para el efeco, sabemos que el valor de F e el eriodo 0 es jusamee 0. Reemlazado e (4): Desejado C : + i C ( )..(0).( i C 0 ) 0 (42) Reemlazado el valor de C e (4): F ( ) + i (0).( +..( (43) Fialmee llegamos a la siguiee ecuació: F ( )..( (44) sumiedo que es igual que, obeemos la solució geeral: F ( )..( (45) Si mulilicamos la ecuació (25) or u facor simle de acualizació, eemos: F ( ). (..(. ( (46) Efecuado arreglos, obeemos la fórmula ara hallar el valor resee de ua serie variable co gradiee geomérico creciee cuado la asa de ierés es igual que la asa de crecimieo de las reas: P. i ( ; k (47)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008 alor de escae Elemeos Acuariales ara su Deermiació Por: Pedro Aguilar Belrá Ocubre de 28 El alor de rescae es u coceo que se refiere al moo que le oorgará la aseguradora al asegurado o beeficiario, e caso

Más detalles

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n =

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n = Hoa Problemas Aálisis II /9 85.- Sea la fució oliómica: N R Demosrar que: i ii iii iv Solució: Cosideremos la ideidad: R N. Derivado e ambos miembros reseco de mulilicado desués or se obiee: - Derivado

Más detalles

TEMA 10. La autofinanciación o financiación interna de la empresa

TEMA 10. La autofinanciación o financiación interna de la empresa Iroducció a las Fiazas TEM La auofiaciació o fiaciació iera de la empresa La fiaciació iera y sus compoees La auofiaciació esá formada por los recursos fiacieros que afluye a la empresa desde ella misma

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

Macroeconomía y pobreza: Lecciones desde Latinoamérica *

Macroeconomía y pobreza: Lecciones desde Latinoamérica * Macroecoomía y obreza: Leccioes desde Laioamérica * Versió 1.2 Luis F. Lóez-Calva Uiversidad de las Américas, Puebla Dearameo de Ecoomía y Mabel A. Adaló Lóez Cero de Aálisis Esraégico y Tecologías de

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

Para las comparaciones hay que tener en cuenta dos aspectos importantes:

Para las comparaciones hay que tener en cuenta dos aspectos importantes: Esadísica Descriiva: Números Ídices Faculad Ciecias Ecoómicas y Emresariales Dearameo de Ecoomía Alicada Profesor: Saiago de la Fuee Ferádez NÚMEROS ÍNDCES Los úmeros ídices so ua medida esadísica que

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES UNIVERSIDAD AUTÓNOMA CHAPINGO PREPARATORIA AGRÍCOLA ÁREA DE MATEMÁTICAS CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES f : R R ( ) h p AUTOR Vícor Rafael Valdovios Chávez Ooño de AUTOR Vícor Rafael Valdovios

Más detalles

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010 FUNCIONES ACUARIALES COMO VARIABLES ALEAORIAS SOBRE UNA SOLA VIDA Por Oscar Arada Maríez Nadia Araceli Casillo García Abril E ese primer documeo se presea el ueo efoque del cálculo acuarial, e dode las

Más detalles

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija Mercado de Capiales Tema 6. Valoració de boos. Gesió de careras de rea fija Liceciaura e Admiisració y Direcció de Empresas Cuaro Curso Liceciaura e Derecho y Admiisració y Direcció de Empresas Sexo Curso

Más detalles

NORMA DE CARACTER GENERAL N

NORMA DE CARACTER GENERAL N NORMA DE CARACTER GENERAL N REF.: MODIFICA EL TÍTULO III DEL LIBRO IV, SOBRE VALORIZACIÓN DE LAS INVERSIONES DEL FONDO DE PENSIONES Y DEL ENCAJE, DEL COMPENDIO DE NORMAS DEL SISTEMA DE PENSIONES. Saiago,

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO CAPÍTULO DOS SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO. Iroducció E ese capíulo se iroduce y discue varias propiedades básicas de los sisemas. Dos de ellas, la liealidad y la ivariabilidad e el iempo,

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

CAPÍTULO 1: ESTIMACIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS

CAPÍTULO 1: ESTIMACIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS Pare II: Esimació de la esrucura emporal de los ipos de ierés a ravés de subcojuos borrosos y esimació de los ipos de ierés fuuros APÍTULO : ESTIMAIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

NÚMEROS ÍNDICES. Julio César Alonso CUARTA EDICIÓN

NÚMEROS ÍNDICES. Julio César Alonso CUARTA EDICIÓN NÚMEROS ÍNDCES Julio César Aloso CUARTA EDCÓN Diciembre 24 Aues de Ecoomía No. 4 APUNTES DE ECONOMÍA SSN 794-29X Cuara edició, diciembre de 24 Edior Julio César Aloso C. jcaloso@icesi.edu.co Asisee de

Más detalles

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma CAPÍULO RES ANÁLISIS DE FOURIER IEMPO CONINUO Iroducció La represeació de la señal de erada a u sisema (eediedo como sisema u cojuo de elemeos o bloques fucioales coecados para alcazar u objeivo deseado)

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN PLANEACIÓN Y CONTROL E LA PROUCCIÓN GRUPO: 0 M. I. Silvia Herádez García M. I. Susaa Casy Téllez Balleseros TEMARIO: I. Iroducció. II. Programació y corol de la producció. III. Balaceo de líea. IV. Sisemas

Más detalles

Resolución numérica de problemas de valor inicial (versión preliminar)

Resolución numérica de problemas de valor inicial (versión preliminar) (versió prelimiar) Cocepos iiciales.- Sea la ecuació diferecial de primer orde co las codició iicial x = f(,x) x( 0 ) = x 0 Para resolverla uméricamee será ecesario previamee comprobar si hay solució y

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción CAPÍTULO UNO SEÑALES Y SISTEMAS. Iroducció Los cocepos de señales y sisemas surge e ua gra variedad de campos y las ideas y écicas asociadas co esos cocepos juega u papel imporae e áreas a diversas de

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años.

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años. Ejerccos Resuelos Números Ídces Faculad Cecas Ecoómcas y Emresarales Dearameo de Ecoomía Alcada Profesor: Saago de la Fuee Ferádez 1. Ua emresa esuda la evolucó de los recos e euros de res comoees (A,

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE Circuio y Siema Diámico (3º IIND) Tema 2 A TRANSFORMADA DE APACE Curo 23/24 Tema 2: a Traformada de aplace 2. Iroducció: de dóde veimo y a dóde vamo 2.2 Defiició de la raformada de aplace 2.3 Traformada

Más detalles

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA.

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA. APÍTULO UTOS EN EL DOMNO DE LA FEUENA... SSTEMAS LNEALES NAANTES. roducció. U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x ( Siema lieal

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA APÍTULO UTOS EN EL DOMNO DE LA FEUENA.. SSTEMAS LNEALES NAANTES roducció U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x () Siema lieal

Más detalles

en. Intentemos definir algunas operaciones en

en. Intentemos definir algunas operaciones en OPERACIONES EN 8 E la secció aterior utilizamos fucioes de el primer couto y estudiar sus propiedades e Itetemos defiir alguas operacioes e Recordemos de cursos ateriores que tomamos al couto de los compleos

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

ANÁLISIS DE LA RENTABILIDAD

ANÁLISIS DE LA RENTABILIDAD ANÁLISIS DE LA RENTABILIDAD DE LOS FONDOS DE PENSIÓN COMISIÓN TÉCNICA DE INVERSIONES DE LA AIOS. INTRODUCCION El documeo cosa del aálisis de cico aspecos écicos referidos al ema de reabilidad: El cálculo

Más detalles

El Transistor de Juntura Bipolar (BJT)

El Transistor de Juntura Bipolar (BJT) l Trasistor de Jutura iolar (JT) J,I. Huircá, R.A. arrillo Uiversidad de La Frotera December 9, 2011 Abstract l Trasistor de Jutura iolar (JT) es u disositivo activo de tres termiales, ase, olector y misor,

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Mg. Marco Antonio Plaza Vidaurre 1 LAS SERIES UNIFORMES

Mg. Marco Antonio Plaza Vidaurre 1 LAS SERIES UNIFORMES Mg. Marco Atoio laza Vidaurre LAS SEIES UNIFOMES Las series uiformes so u cojuto de valores moetarios iguales distribuidos e el tiempo, co ua frecuecia regular. U cojuto de stocks forma ua serie. E la

Más detalles

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL FORMULAS Y EJEMLOS ARA EL CÁLCULO DE NERESES DE UN DEÓSO A LAZO FJO CONVENCONAL 1. GLOSARO DE ÉRMNOS a. Depósito a plazo fijo: roducto e el que el cliete podrá depositar ua catidad de diero a ua tiempo

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

DATOS GENERALES DE LA REPÚBLICA DE PANAMÁ

DATOS GENERALES DE LA REPÚBLICA DE PANAMÁ DATOS GENERALES DE LA REPÚBLICA DE PANAMÁ Superficie: Toal de la República: 75,57 km 2 Població Toal: Segú proyeccioes de la Coraloría Geeral de la República la població oal al º de Julio de 2005 es de

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

Índices de precios y de volumen físico de importaciones y exportaciones de bienes

Índices de precios y de volumen físico de importaciones y exportaciones de bienes Ídices de recios y de voue físico de ioracioes y exoracioes de biees oa eodoógica Seiebre 202 oa eodoógica Coar co u sisea de ídices de recios ara as oeracioes de ioracioes y exoracioes de biees erie o

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No. 3, 2002

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No. 3, 2002 REVISTA INVESTIGACION OPERACIONAL Vol. 23, No. 3, 22 MATRICES ESCALONADAS Y METODOS PRIMAL DUAL DE PUNTO INTERIOR Alibei Kakes Cruz, Deparameo de Maemáica Aplicada, Faculad de Maemáica y Compuació, Uiversidad

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

Página 1 de 34. FILTROS ADAPTIVOS LMS RMS Filtro Kalman INTRODUCCION

Página 1 de 34. FILTROS ADAPTIVOS LMS RMS Filtro Kalman INTRODUCCION Págia de 34 Uiversidad Nacioal de Cordoba FILTROS ADAPTIVOS LMS RMS Filro Kalma INTRODUCCION El cocepo de filro adapaivo, sugiere el de u disposiivo que iea modelizar la relació ere señales e iempo real

Más detalles

Tema 8B El análisis fundamental y la valoración de títulos

Tema 8B El análisis fundamental y la valoración de títulos PARTE III: Decisioes fiacieras y mercado de capiales Tema 8B El aálisis fudameal y la valoració de íulos 8B.1 Iroducció. 8B.2 El aálisis fudameal y la valoració de íulos. 8B.3 Modelos para la valoració

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

José Morón SEÑALES Y SISTEMAS

José Morón SEÑALES Y SISTEMAS SEÑALES Y SISTEMAS José Moró SEÑALES Y SISTEMAS Uiversidad Rafael Urdaea Auoridades Recorales Dr. Jesús Esparza Bracho, Recor Ig. Maulio Rodríguez, Vicerrecor Académico Ig. Salvador Code, Secreario Lic.

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

Duración, Convexidad e Inmunización de Portafolios de Inversiones

Duración, Convexidad e Inmunización de Portafolios de Inversiones Deparameo de Esudios Especiales y Valoració de Riesgo Noa écica N 1 NT-2001-01 Duració, Covexidad e Imuizació de Porafolios de Iversioes Rodrigo Maarria Veegas Abril del 2001 Clasificació JEL: G10 Clave:

Más detalles

Miembros en flexión trabes y vigas

Miembros en flexión trabes y vigas iemros e lexió raes vigas Oicias Ciudad de éxico Presidee asark 111-30 Chauleec orales iguel Hidalgo Disrio Federal éxico 11570 Tel. +5 55) 56 7300 asiseciaecica-mexico@gerdau.com.gerdaucorsa.com.mx a

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

TEORÍA DE LÍNEAS DE ESPERA (COLAS)

TEORÍA DE LÍNEAS DE ESPERA (COLAS) TEORÍA DE ÍEAS DE ESERA COAS Cojuto de modelos matemáticos ue describe sistemas específicos de líeas de espera o colas, usados e la toma de decisioes al ecotrar el estado estable o estacioario del sistema

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

CONVERSORES D/A Y A/D

CONVERSORES D/A Y A/D Uiversidad Nacioal de osario Faculad de iecias Exacas, Igeiería y Agrimesura Escuela de Igeiería Elecróica eparameo de Elecróica ELETÓNIA III ONVESOES /A Y A/ Federico Miyara A / 11010110 00001011 11000110

Más detalles

PERÍODO INFORMADO: Enero a Junio 2009 $ 395.182.780 $ 200.000.000

PERÍODO INFORMADO: Enero a Junio 2009 $ 395.182.780 $ 200.000.000 FORMATO No 4 PLANES DE ACCIÓN U OPERATIVOS Promover el uso de la Irae Guberameal. PERÍODO INFORMADO: Eero a Juio 009 NUMERO ÁREAS INVOLUCRADAS ACTIVIDADES RECURSOS RESPONSABLES TIEMPO PROGRAMADO INDICADORES

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas Las fucioes de Cobb-Douglas como base del esacio vectorial de fucioes homogéeas Zuleyka Díaz Martíez Mª Pilar García Pieda José Atoio Núñez del Prado Uiversidad Comlutese de Madrid Facultad de Ciecias

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

Límite de una función

Límite de una función CAPÍTULO Límite de una función Álgebra de ites Es bastante claro intuitivamente lo siguiente: Si eisten f / y g/ entonces: Œf / C g/ f / C g/ Œf / g/ f / g/ Œf / g/ f / g/ Œf /=g/ f /= g/ si g/ 0 Esto

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS NÁLSS Y ESOLCÓN DE CCTOS. Las Leyes de Kirchhoff..- Euciado de las Leyes de Kirchhoff. Defiició de Nodo y Lazo Cerrado. Las Leyes de Kirchhoff so el puto de partida para el aálisis de cualquier circuito

Más detalles

(a) 11,72 g. (El reactivo limitante es el Ni y el rendimiento teórico es de 13,17 g de NiSO 4 ). (b) 0,1515 g de H 2.

(a) 11,72 g. (El reactivo limitante es el Ni y el rendimiento teórico es de 13,17 g de NiSO 4 ). (b) 0,1515 g de H 2. 80 Respuesas: (a) 11,7 g. (El reacivo limiae es el Ni y el redimieo eórico es de 13,17 g de NiSO 4 ). (b) 0,1515 g de H.. Gases ideales Los gases so ua de las formas e que se presea la maeria e el uiverso.

Más detalles

Aplicaciones del teorema del punto fijo de Banach

Aplicaciones del teorema del punto fijo de Banach UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA Aplicacioes del eorema del puo fijo de Baach TESIS para opar el Tíulo Profesioal de Liceciado e Maemáica Pura

Más detalles

Consideraciones metodológicas para la evaluación de la sostenibilidad y vulnerabilidad fiscal

Consideraciones metodológicas para la evaluación de la sostenibilidad y vulnerabilidad fiscal Colecció Baca Ceral y Sociedad BANCO CENTRAL DE VENEZUELA Coideracioe meodológica para la evaluació de la oeibilidad y vulerabilidad fical Elizabeh Ochoa Lizbeh Seija Harold Zavarce Serie Documeo de Trabajo

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

Análisis de flujos en lámina libre y su interacción con sólidos y estructuras por el método de partículas y elementos finitos (PFEM)

Análisis de flujos en lámina libre y su interacción con sólidos y estructuras por el método de partículas y elementos finitos (PFEM) Aálisis de flujos e lámia libre y su ieracció co sólidos y esrucuras por el méodo de parículas y elemeos fiios (PFEM) E. Oñae B. Suárez F. Salazar R. Morá M.A. Celiguea S. Laorre Publicació CIMNE Nº-365,

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Manual del índice de precios de inmuebles residenciales (IPIR)

Manual del índice de precios de inmuebles residenciales (IPIR) Para la mayor pare de los ciudadaos, la compra de u imueble residecial ua vivieda es la operació más imporae de oda la vida. Los imuebles resideciales hogares y, al mismo iempo, el acivo más valioso. Los

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles