La Teoría de Hückel: Antecedentes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La Teoría de Hückel: Antecedentes"

Transcripción

1 La Teoría de Hückel: Antecedentes c = Las ecuaciones seculares: s [ H as ESas ] (un conjunto de ecuaciones simultáneas para todos los átomos) s () a, s las etiquetas de los átomos c s los coeficientes de orbitales atómicos que forman un orbital molecular, Ψ = Σ c s φ s H as la integral del hamiltoniano S as la integral de traslape (la probabilidad que un electrón tiene en la región de traslape entre dos átomos). De estas ecuaciones es posible construir a un determinante secular y encontrar un conjunto de niveles de energía molecular y los coeficientes c s de las funciones de onda moleculares. La Teoría de Hückel está basada en varias suposiciones:. S aa = S bb = = (los orbitales atómicos están normalizados) 2. S ab = S ba = = (la aproimación del traslape cero) 3. H aa = α la integral de Coulomb (la energía de un electrón en el átomo a) α = constante para los elementos del mismo tipo H ab = H ba =ß la integral de resonancia (la energía de un electrón en la región de traslape, = la ganancia de energía al unirse) H ac = H ca = ninguna unión entre átomos del no-vecinos Esta teoría trabaja bien para los hidrocarburos conjugados. (Para las moléculas planares, todas las uniones de C C se suponen inicialmente que son iguales, todos los átomos de C no tienen carga neta).

2 Ejemplo: Butadieno Construyendo el determinante de Hückel: Las ecuaciones seculares: (átomo ) (átomo 2) (átomo 3) (átomo 4) c [H ES ] + c2 [H 2 ES 2 ] + c3 [H 3 ES 3 ] + c 4 [H 4 ES 4 ] = (2) c [H 2 ES 2 ] + c2 [H 22 ES 22 ] + c3 [H 23 ES 23 ] + c 4 [H 24 ES 24 ] = c [H 3 ES 3 ] + c2 [H 32 ES 32 ] + c3 [H 33 ES 33 ] + c 4 [H 34 ES 34 ] = c [H 4 ES 4 ] + c2 [H 42 ES 42 ] + c3 [H 43 ES 43 ] + c 4 [H 44 ES 44 ] = Aplicando las aproimaciones de la teoría de Hückel: (Saa = Sbb = =, Sab = Sba = =, H aa = α, H ab = H ba = ß, H ac = H ca = ) c [α E] + c 2 β + c 3 + c 4 = (3) c β + c 2 [α E] + c 3 β + c 4 = c + c 2 β + c 3 [α E] + c 4 β = c + c 2 + c 3 β + c 4 [α E] = Divida por ß α E Sustituya = β c + c 2 + c 3 + c 4 = (4) c + c 2 + c 3 + c 4 = c + c 2 + c 3 + c 4 = c + c 2 + c 3 + c 4 = que es igual a c + c 2 = (5) c + c 2 + c 3 = c 2 + c 3 + c 4 = c 3 + c 4 = determinante de Hückel = El Hückel determinante para un sistema de todos-carbono. Los elementos del determinante son: a las diagonales, si hay una unión entre dos átomos a y b, si no hay ninguna unión (6)

3 Resuelva el determinante (con álgebra lineal) encuentre encuentre las energías de los orbitales moleculares E = α β encuentre los coeficientes de los orbitales moleculares c i para cada orbital. Resultados: Energías: E.6 α.6 β.6 α.6 β -.6 α +.6 β -.6 α +.6 β La substitución de cada j en las ecuaciones seculares (5) da los coeficientes c i,j de las funciones de onda para éstos niveles de energía para todos los átomos (tome i las etiquetas de los átomos, j las etiquetas de los niveles de energía). Orbitales moleculares del Butadieno: Energies (más alto a más bajo) Funciones de onda Las formas E 4 = α.6 β Ψ 4 =.37 Φ.6 Φ Φ 3.37 Φ 4 E 3 = α.6 β Ψ 3 =.6 Φ.37 Φ 2.37 Φ Φ 4 E 2 = α +.6 β Ψ 2 =.6 Φ +.37 Φ 2.37 Φ 3.6 Φ 4 E = α +.6 β Ψ =.37 Φ +.6 Φ Φ Φ 4 (Nota: en el Proyecto 2 el programa de Hückel encuentra las E y los c i.)

4 Las moléculas con heteroátomos: Cada elemento químico X se caracteriza por su valor del parámetro de Hückel α, por ejemplo α C, α N, a P Cada unión entre 2 átomos se caracteriza por su valor de ß, por ejemplo ß CC, ß CN, ß NN Por consiguiente las ecuaciones seculares (3) para una molécula con heteroátomos se parece a: X c [α X E] + c 2 β CX + c 3 + c 4 = c β CX + c 2 [α C E] + c 3 β CC + c 4 = c + c 2 β CC + c 3 [α C E] + c 4 β CC = c + c 2 + c 3 β CC + c 4 [α C E] = (3a) Divida por ß CC α E Sustituya, β C = suponga α X = α C + h X β CC, β CX = h CX β CC c [ + h X ] + c2 h CX + c3 + c4 = - - (4a) c h CX + c2 + c3 + c4 = - c + c2 + c3 + c4 = c + c2 + c3 + c4 = o bien c [ + h X ] + c2 h CX = (5a) c h CX + c2 + c3 = c2 + c3 + c4 = c3 + c4 = Determinante de Hückel + h h CX X h CX = en las diagonales para los átomos de C, + h X para heteroátomos, h X = (α X α C )/β CC ; para las unines de C C, h CX o h XX para uniones C X o X X, h CX = β CX /β CC (X heteroátomo) donde no hay ninguna unión (6a)

5 Información dada por la teoría de Hückel:. Energías de los orbitales moleculares (resolviendo el determinante de Hückel, vea arriba): cualquier i, relativo a α en unidades de ß (la salida del programa de Hückel), o los valores absolutos de energías E = α i ß 2. La funciones de onda de estos orbitales. 3. La energía total electrónica de las moléculas = la suma de las energías absolutas de los orbitales ocupados multiplicada por el número de electrones en cada orbital. 4. La diferencia en energía entre los orbitales = las posiciones de las bandas de absorción electrónicas. En particular, la diferencia en el energías entre el orbital molecular más alto ocupado (HOMO) y el orbital molecular más bajo desocupado (LUMO) da la energía (o la longitud de onda) de la primera banda de absorción observada en la espectroscopia de UV (la brecha HOMO-LUMO, Eg). 5. Potencial de Ionización (IP) es la energía requerida para quitar un electrón del orbital molecular más alto ocupado eperimentalmente observable en la espectroscopía foto electrónica. Es igual a la energía absoluta del HOMO. 6. Densidades electrónicas π y cargas: La densidad electronica en un átomo i = la suma de los cuadrados de los coeficientes de los MO para este átomo sobre todos los niveles de energía ocupados k multiplicados por el número de electrones n k en cada nivel: ρ ι = Σ κ n k (c ik ) 2 Para el butadieno: Ψ 4 =.37φ.6φ 2 +.6φ 3.37φ 4 Ψ 3 =.6φ.37φ 2.37φ 3 +.6φ 4 Ψ 2 =.6φ +.37φ 2.37φ 3.6φ 4 Ψ =.37φ +.6φ 2 +.6φ φ 4 desocupados ocupados la densidad electrónica π en átomo = = = 2 electrones en el orbital

6 Carga: q = ρ. Nótese que si la densidad electrónica π en un átomo es> entonces hay un eceso de densidad electrónica en este átomo, es decir el cargo en este átomo es negativa; lo opuesto cuando la densidad electrónica π en un átomo es <. Las densidades electrónicas permiten calcular: a) las constantes hiperfinas de splitting α para ESR: α = Q ρ Q = 22.5 Gauss, ρ la densidad electrónica π en un átomo de carbono. b) los momentos dipolo µ de las moléculas: µ = Σ i r i q i donde q i la carga en el átomo i, r i el vector de la posición de átomo i relativa al origen. Nótese que µ es un vector y caracteriza tanto la magnitud y como la dirección. La unidad del momento dipolo es el Debye: D = Coulomb m. 7. Los órdenes de unión π. el orden de unión π entre los átomos i y j = la suma de productos de los coeficientes de MO para estos dos átomos sobre la energía de todos los niveles de energía ocupados k multiplicados por el número de electrones n k en cada nivel: P ij = Σ k n k (c i k c j k ) 2 Para el butadieno: el orden de unión entre los átomos y 2 o 3 y 4 = =.89 el orden de unión entre los átomos 2 y 3 = (-.37) =.45 El orden de unión dado por la teoría de Hückel para las moléculas con uniones dobles es un número entre y, no incluye el orden de unión σ. 8. Las longitudes de unión. l ij (pm) = 5 6 P ij Correlación empíricamente encontrada. Entre más alto el orden de unión, más fuerte y más corto es la unión.

6. ESTRUCTURA MOLECULAR. MOLECULAS POLIATOMICAS.

6. ESTRUCTURA MOLECULAR. MOLECULAS POLIATOMICAS. 1 6. ESTRUCTUR MOLECULR. MOLECULS POLITOMICS. En la Teoría de OM-CLO, los orbitales moleculares de moléculas poliatómicas se expresan como combinaciones lineales de O de todos los átomos que forman la

Más detalles

El átomo de hidrógeno

El átomo de hidrógeno El átomo de hiógeno Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 15-16 Problema 1 Calcule la probabilidad de que un electrón 1s del H se encuentre entre r r. La probabilidad

Más detalles

Tema 5. ENLACE COVALENTE

Tema 5. ENLACE COVALENTE Tema 5. ENLACE COVALENTE Enlace covalente Teoría del enlace de valencia Teoría de orbitales moleculares Moléculas diatómicas Moléculas poliatómicas Aplicación de la teoría de grupos a los OM http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch8/valenceframe.html

Más detalles

DETERMINANTES UNIDAD 3. Página 76

DETERMINANTES UNIDAD 3. Página 76 UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

Uniones Químicas. Iónicas Covalentes Metálicas

Uniones Químicas. Iónicas Covalentes Metálicas Uniones Químicas Iónicas Covalentes Metálicas Unión iónica Propiedades de los Compuestos iónicos - Puntos de fusión y ebullición elevados - Sólidos duros y quebradizos - Baja conductividad eléctrica y

Más detalles

Enlaces Primarios o fuertes Secundarios o débiles

Enlaces Primarios o fuertes Secundarios o débiles Capítulo III MET 2217 Tipos de enlaces atómicos y moleculares Enlaces Primarios o fuertes Secundarios o débiles Enlaces primarios Iónico Actúan fuerzas intermoleculares relativamente grandes, electrostáticas.

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

Apuntes del Modelo del átomo hidrogenoide.

Apuntes del Modelo del átomo hidrogenoide. Apuntes del Modelo del átomo hidrogenoide. Dr. Andrés Soto Bubert Un átomo hidrogenoide es aquel que tiene un solo electrón de carga e, rodeando un núcleo de carga +Ze. Átomos que cumplen esta descripción

Más detalles

Espectroscopia ultravioleta-visible (temas complementarios)

Espectroscopia ultravioleta-visible (temas complementarios) 1 Espectroscopia ultravioleta-visible (temas complementarios) Ley de Lambert y Beer Cuando se hace incidir radiación electromagnética en un medio, la energía dependerá de la longitud de onda de la radiación

Más detalles

EL ÁTOMO DE HIDRÓGENO

EL ÁTOMO DE HIDRÓGENO EL ÁTOMO DE HIDRÓGENO El átomo de hidrógeno constituye uno de los pocos sistemas de interés químico que admite una solución exacta de la ecuación de Schröedinger. Para todos los demás sólo es factible

Más detalles

Enlace químico II: geometría molecular e hibridación de orbitales atómicos

Enlace químico II: geometría molecular e hibridación de orbitales atómicos Enlace químico II: geometría molecular e hibridación de orbitales atómicos Capítulo 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Teorías de cómo ocurren

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

Introducción al Estado Sólido: El amarre fuerte (tight-binding, en inglés)

Introducción al Estado Sólido: El amarre fuerte (tight-binding, en inglés) Introducción al Estado Sólido: El amarre fuerte (tight-binding, en inglés) R. Baquero Departamento de Física Cinvestav setiembre 2008 amarre fuerte 1 Por qué estudiamos el método de amarre fuerte? Uno

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

Resolución de ejercicios PRÁCTICO 12

Resolución de ejercicios PRÁCTICO 12 Resolución de ejercicios PRÁCTIC 12 1) a) bservando la estructura de Lewis de la molécula BeH 2 podemos decir que el átomo de Be se une a dos átomos de H mediante dos enlaces simples. Una hibridación de

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Enlace químico II: geometría molecular e hibridación de orbitales atómicos

Enlace químico II: geometría molecular e hibridación de orbitales atómicos Enlace químico II: geometría e hibridación de orbitales atómicos Capítulo 10 Modelo de la repulsión de los pares de electrones de la capa de valencia (): Predice la geometría de la molécula a partir de

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

Sistemas lineales con parámetros

Sistemas lineales con parámetros 4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles

Tema I. Matrices y determinantes

Tema I. Matrices y determinantes Tema I. Matrices y determinantes 2007 Carmen Moreno Valencia 1. Matrices sobre un cuerpo 2. Operaciones con matrices 3. Determinante de una matriz cuadrada 4. Menor complementario y adjunto 5. Cálculo

Más detalles

El átomo: sus partículas elementales

El átomo: sus partículas elementales El átomo: sus partículas elementales Los rayos catódicos estaban constituidos por partículas cargadas negativamente ( a las que se llamo electrones) y que la relación carga/masa de éstas partículas era

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

QUÍMICA 2º Bachillerato Ejercicios: Enlace Químico

QUÍMICA 2º Bachillerato Ejercicios: Enlace Químico 1(9) Ejercicio nº 1 Mediante el ciclo de Born-aber, calcula la energía reticular del KBr conociendo los siguientes valores energéticos: ES = 21 5; EI = 100; ED = 53 4; AE = - 80 7 ; = - 93 7 Kcal/mol Ejercicio

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Problemas de exámenes de Geometría

Problemas de exámenes de Geometría 1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule

Más detalles

Física Cuántica Partículas idénticas.

Física Cuántica Partículas idénticas. Física Cuántica Partículas idénticas. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2004-2005 p. 1/18 Partículas idénticas Qué son varias partículas idénticas? Las que tienen

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Modelado de Disolvente

Modelado de Disolvente Seminario Fuerzas Intermoleculares Modelado de Disolvente Presentado por: David Ignacio Ramírez Palma Instituto de Química, Universidad Nacional Autónoma de México Noviembre 2014. 1 Contenido - Concepto

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

EJEMPLO DE PREGU,TAS

EJEMPLO DE PREGU,TAS EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y

Más detalles

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES Ignacio López Torres. Reservados todos los derechos. Prohibida la reproducción total o parcial de esta obra, por cualquier medio electrónico

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Universidad de Puerto Rico-Humacao Departamento de Química Quím 3031 (http://www.uprh.edu/~quimorg)

Universidad de Puerto Rico-Humacao Departamento de Química Quím 3031 (http://www.uprh.edu/~quimorg) 1 Universidad de Puerto Rico-umacao Departamento de Química Quím 3031 (http://wwwuprhedu/~quimorg) ESTRATEGIA PARA LA ESRITURA DE ESTRUTURAS DE LEWIS Primeramente se debe establecer el número de electrones

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Universidad Central del Ecuador Facultad de Ciencias Químicas Fundamentos Espectroscópicos

Universidad Central del Ecuador Facultad de Ciencias Químicas Fundamentos Espectroscópicos Universidad Central del Ecuador Facultad de Ciencias Químicas Fundamentos Espectroscópicos INTEGRANTES: * Nazate Amuy Ana * Veloz Hidalgo Polet TEMA: Combinación Lineal de Orbitales Atómicos ORBITAL ATÓMICO

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

Menor, cofactor y comatriz

Menor, cofactor y comatriz Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

Sistemas de Ecuaciones Lineales y Determinantes. Sistemas de Ecuaciones Lineales y Determinantes. Molecular BásicaB. Fisicoquímica. Clase en Titulares

Sistemas de Ecuaciones Lineales y Determinantes. Sistemas de Ecuaciones Lineales y Determinantes. Molecular BásicaB. Fisicoquímica. Clase en Titulares Sistemas de Ecuaciones Lineales Fisicoquímica Molecular BásicaB Tercer Semestre Carrera de Químico Tema 8 Si tenemos un sistema de n ecuaciones lineales con n incógnitas, podemos resolverlo recurriendo

Más detalles

Efectos del Disolvente modelos implícitos. Esquer Rodríguez Raymundo Química Computacional

Efectos del Disolvente modelos implícitos. Esquer Rodríguez Raymundo Química Computacional Efectos del Disolvente modelos implícitos Esquer Rodríguez Raymundo Química Computacional 1 S Por qué es Importante? La mayor parte de la química y bioquímica tiene lugar en disolución, y el disolvente

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría 6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.

Más detalles

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS La ecuación x 2 +1=0 carece de soluciones en el campo de los números reales. log e (-2) no es un número real. Tampoco es un número real (-2) π Un número complejo

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

FINANZAS CORPORATIVAS

FINANZAS CORPORATIVAS FINANZAS CORPORATIVAS RIESGO Y RENDIMIENTO JOSÉ IGNACIO A. PÉREZ HIDALGO Licenciado en Ciencias en la Administración de Empresas Universidad de Valparaíso, Chile TOMA DE DECISIONES Certeza: resultado real

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

Examen de problemas (SOLUCIONADO)

Examen de problemas (SOLUCIONADO) 1. [3.0 puntos] Aplicaciones de la Química Cuántica 3 de Químicas Convocatoria de Septiembre Curso: 2004-05 Examen de problemas SOLUCIONADO a Determinar las frecuencias rotacionales en Hz de la molécula

Más detalles

CLASE Nº 4 ENLACE QUÍMICO

CLASE Nº 4 ENLACE QUÍMICO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL CLASE Nº 4 ENLACE QUÍMICO 2012 1 Moléculas y compuestos

Más detalles

Teorema de Koopman: La energía de un electrón en un orbital es igual a la energía requerida para remover el electrón y dar el catión Pero:

Teorema de Koopman: La energía de un electrón en un orbital es igual a la energía requerida para remover el electrón y dar el catión Pero: Potencial de ionización y afinidad electrónica Teorema de Koopman: La energía de un electrón en un orbital es igual a la energía requerida para remover el electrón y dar el catión Pero: En el estado ionizado

Más detalles

QUÍMICA LICENCIATURA DE INGENIERÍA EN ENERGÍAS RENOVABLES

QUÍMICA LICENCIATURA DE INGENIERÍA EN ENERGÍAS RENOVABLES QUÍMICA LICENCIATURA DE INGENIERÍA EN ENERGÍAS RENOVABLES 2013-1 Teoría: Dra. Karina Cuentas Gallegos Martes y jueves 10-12 hrs. Laboratorio: M.C. Mirna Guevara García Jueves 12-14 hrs. Curso de Química

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Tema 5: Interacción Radiación-Materia

Tema 5: Interacción Radiación-Materia Tema 5: Interacción Radiación-Materia 1. Interacción de partículas cargadas pesadas con la materia Partículas cargadas: excitación o ionización de los átomos del medio. Partículas pesadas (respecto al

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Capítulo 24. Emisión y absorción de la luz. Láser

Capítulo 24. Emisión y absorción de la luz. Láser Capítulo 24 Emisión y absorción de la luz. Láser 1 Absorción y emisión La frecuencia luminosa depende de los niveles atómicos entre los que se produce la transición electrónica a través de: hν = E f E

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

1 0 4/ 5 13/

1 0 4/ 5 13/ 1 1 1 7 1 0 4/ 5 13/ 5 R1 R 1+1/5R3 0 0 0 2 R2 R3 0 5 9 22 0 5 9 22 0 0 0 2 Como la matriz tiene un renglón (0, 0, 0, 2) indica que el sistema no tiene solución ya que no existe un número que sea 2 y al

Más detalles

Capitulo IV - Inecuaciones

Capitulo IV - Inecuaciones Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o

Más detalles

TEMA 9 Electrostática

TEMA 9 Electrostática Bases Físicas y Químicas el Meio Ambiente TMA 9 lectrostática Cargas eléctricas ntre os cuerpos hay siempre fuerzas atractivas ebio a sus respectivas masas y pueen existir otras fuerzas entre ellos si

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : III 1 / 8 Ejercicios sugeridos para : los temas de las clases del 5 y 7 de mayo de 2009. Temas : Matriz transpuesta. Matriz simétrica. Determinantes; propiedades de los determinantes. Matriz adjunta de

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

Tema 3: Electricidad. eléctricos. 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos

Tema 3: Electricidad. eléctricos. 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos Tema 3: Electricidad 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos eléctricos. 4. Conductores. 5. Potencial de membrana. 6. Corriente eléctrica: ley de

Más detalles

Capítulo 1: Diagonalización de matrices

Capítulo 1: Diagonalización de matrices Capítulo : Diagonalización de matrices Matrices y determinantes Definición Una matriz es un arreglo rectangular de números reales a a a m a A a a m a n a n a nm La matriz es de orden n m si consta de n

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles