Identificación de Sistemas No Lineales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Identificación de Sistemas No Lineales"

Transcripción

1 Idetfaó de Ssteas o Leales Ja Calos Góez Idetfaó de Ssteas Depataeto de Eletóa FCEIA Uvesdad aoal de Rosao ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - - Cotedo. Itodó. Modelos o Leales 3. Alas éas de Idetfaó de Modelos Haeste-Wee ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - -

2 Itodó La aoía de los ssteas tee opotaeto o leal exepto e deteado ao de opeaó dode pede se osdeados leales. Modelos Leales apoxa al sstea o leal alededo de pto de opeaó. La pefoae del odelo leal (.e. ss aateístas pedtvas se ve deteoadas al vaa el pto de opeaó del sstea o leal. Paa des loalete el opotaeto del sstea se dee e a Modelos o Leales. ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez La a vaedad de odelos o leales hae qe o sea posle otee étodos eeales de detfaó so sólo paa deteadas lases de odelos o leales. Mhos ssteas o leales pede se epesetados po la teoexó de ssteas leales estaoaos o lealdades estátas. Estos odelos se deoa oetados a loqes (lo-oeted olea odels. Las o lealdades estátas apaee po eeplo dedo a sataó de atadoes sesoes o aateístas o leales et. De ete los odelos oetados a loqes los qe ha sdo ás estdados so los Modelos Haeste los Modelos Wee. ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - 4 -

3 Modelos Haeste Modelos o Leales (t L LI (t Modelo Wee (t LI L (t Modelo Haeste-Wee (t L LI L (t Modelos oetados a loqes: Ile los ateoes ás otas posles oexoes (see paalelo e etoaletaó de loqes LI o lealdades estátas. ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez Modelo eesvo leal o eeso oo fó o leal de los datos pasados t t t t t t ( t θ θ ϕ ( θ ϕ ( θ ϕ ( ϕ (θ t ˆ d d ϕ foes o leales ataas de los datos pasados Polea Cóo ele las foes ϕ Posles soloes Expasó tpo aa ea. Po eeplo: t t ϕ ( poloos e las etadas saldas pasadas. Uso de lees fdaetales (físa qía et. paa deteta las o lealdades e el sstea. ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - 6 -

4 Modelos o Leales e Espao de Estados x( t f ( t x( t ( t ω( t θ ( t h( t x( t ( t υ( t θ dode ω ( t υ( t so petaoes (poesos aleatoos θ veto de paáetos (desoodo B: El polea de halla pedto ópto paa este odelo o leal estoásto es dfl (o exste soló fto desoal. Modelos o Leales po Caa ea Pedtoes de la foa: t ( t θ ( Z θ ˆ ( ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez dode t Z : datos pasados t t t Z ( t t ( ( ( ( ( Polea Cóo ele ( Posles Soloes " Uso de eesoes o t ( Z θ ϕ( t t ( t ϕ( Z ( θ ϕ veto de eesó " U odelo ás eeal seía petedo qe el eeso depeda del paáeto t ϕ t θ ϕ Z θ ( ( ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - 8 -

5 " Co este efoqe el polea de ele ( Z t θ e ( se desopoe e dos poleas:. Cóo ele el veto de eesó ϕ ( t oo fó de los datos pasados.. Cóo ele la fó o leal ( ϕθ. " Eeplos de eesoes Po aaloía o los odelos leales se pede otee odelos ARX ARMAX OE FIR. Los ás oes so odelos ARX FIR e los ales el eeso depede sólo de valoes eddos (o estados. " Eeplos de foes ( ϕθ ípaete se tlza expasó e foes ase ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez [ α ] θ ( ϕ θ α ( ϕ ( α veto de paáetos ( : foes ases Polea Clave Posles Soloes " Sees de Voltea Cóo ele las foes ase dode ϕ { ϕ ϕ ϕ d d } o ( ϕ ϕ d ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - 0 -

6 " Efoqes ás odeos ee las setes aateístas: #"odas las está foadas a pat de a fó ase ade κ ( x. #"Esta fó κ ( x es fó de a vaale esala x. #"ípaete las so vesoes esaladas (dlatadas tasladadas de κ ( x. Po eeplo paa d se tedía ( ϕ ( ϕ β γ κ ( β ( ϕ γ dode β so los paáetos de esalado γ so los paáetos de taslaó. ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - - Eeplos de 'foes ase ade' $"See de Foe (aso esala κ ( x os( x $"Foes seoalete ostates κ ( x s 0 x 0 o o γ β α f (. Esto da a apoxaó seoalete ostate de alqe fó e tevalo. " Clasfaó de Foes Base $"Bases Loales: las vaaoes sfatvas de la fó se da e etoo. $"Bases Gloales: tee a vaaó sfatva e todo el ee eal. ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - -

7 " Foes Base Mltvaales $"Podto esoal d ( ϕ ( ϕ β γ κ ( β ( ϕ γ $"Costó adal Las foes depede sólo de la dstaa de ϕ a dado pto etal (eto. ( ϕ ( ϕ β γ κ ( ϕ γ dode β deota a dada oa e el espao de los eesoes ϕ. ípaete β dode ϕ β ϕ β ϕ β es a atz de esalado defda postva. ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez $"Costó de Las foes depede sólo de la dstaa de ϕ a dado hpeplao d ( ϕ ( ϕ β γ κ ( β ϕ γ ϕ R La fó es ostate paa todos los ϕ qe peteee al hpeplao d { ϕ R : β ϕ ost} ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - 4 -

8 "Caldad de la apoxaó El odelo sado expasó e foes ase eslta ( ϕ θ α κ ( β ( ϕ γ Se el teoate de á e esta expasó pede epeseta a alqe posle sstea eal ' 0 ( ϕ '. La espesta es qe (exepto paa poloos alqe fó ade κ ( x pete apoxa alqe azoale 0 ( ϕ ataaete e paa sfeteete ade. Oto teoate qe se es la efea de la expasó es de á ade dee se paa loa deteado ado de apoxaó. o ha a espesta eeal paa esto. ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez Idetfaó de Modelos Haeste Modelos Haeste " Método o teatvo (Ba 998 υ B ( ( q A( q B q A q B q A q ( ( ( ( ( ( υ dode υ so la salda etada petaó e el state espetvaete ( so foes o leales sadas paa des la o lealdad estáta ( υ ( ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - 6 -

9 ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez ( ( q q B q q a q a A q o q deotado el opeado desplazaeto deto. Se ase qe los ódees s las foes o leales ( so oodas qe el oetvo es esta los paáetos de la pate leal: ( a a de la pate o leal: ( a pat de datos de etada-salda. Ua eleó típa de las foes ( es ( e o aso la pate o leal qeda epesetada po a expasó poloal. La eaó ( pede esse a υ ( Defedo los vetoes ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez ( a a θ ( φ la eaó ( pede esse υ θ φ (3 Falete osdeado el oto de datos { } la eaó (3 pede esse V Y Φ θ (4 dode ( ( ( V Y φ φ υ υ Φ

10 Leo la esta de íos adados θˆ del veto de paáetos θ vee dada po ˆ ( Φ Φ Φ Y θ (5 sepe qe la vesa exsta. Defedo ahoa los vetoes la atz ( a a ( ( a Θ " " # " el veto de paáetos θ pede esse ( a ve( Θ θ ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez Θ. ve pede etoes oteese de la esta θˆ e (5. Deoteos â ve ( Θ a esas estas. El polea es oo opta estas de los vetoes a pat de ( dode ve ( Θ es el veto ola otedo aplado las ols de Estas de los vetoes a ( Θ ve Θ. Es lao qe las ás eaas e el setdo de la oa- estas ˆ ĉ so tales qe za la oa es de dode ve ( ˆˆ ve( Θ ( ˆ ˆ ˆˆ Θˆ F a Θˆ F es la oa de Foes. F ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - 0 -

11 La soló de este polea de zaó vee dada po la desoposó SVD de la atz Θˆ. El esltado está esdo e el sete Lea (Ba 998. Lea: Sea Θˆ R a atz o la sea Θˆ USV s desoposó SVD dode U V so ates otooales as olas so los vetoes slaes zqedos deehos espetvaete U ( µ µ µ V ( ν ν ν dode S es a atz daoal o los valoes slaes ( σ σ σ ( 0 e la daoal. Etoes ( Θˆ σ ( σ ν F ˆ µ a Θ F. ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - - Pea: Ve (Ba 998. El aloto de detfaó o leal pede esse: Paso. Copta la esta de íos adados θˆ e (5. Ua esta â del veto de paaetos a vee dada po las peas opoetes de θˆ a esta Θˆ de la atz Θ pede ostse a pat de las últas opoetes de θˆ. Paso. Copta la SVD de Θˆ oo e el Lea de dode estas de los paaetos pede allase oo ˆ µ ˆ σ ν espetvaete. ISIS -Idetfaó de Ssteas o Leales - Ja Calos Góez - -

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS Julo Olva Coteo Estadístca TEMA 6 MEDIDA DE FORMA: AIMETRÍA Y CURTOI. MOMETO. Moetos de ua dstbucó Los oetos de ua dstbucó so eddas obtedas a pat de todos sus datos y de sus fecuecas absolutas. Estas eddas

Más detalles

Desarrollo temporal: riesgo moral. N juega. Riesgo moral 1. Riesgo Moral

Desarrollo temporal: riesgo moral. N juega. Riesgo moral 1. Riesgo Moral Mcocooía I: Rgo oa A d a Pofoa: Eh ak Daoo oa: go oa P dña coao A aca o chaa N jga Rado Pago Rgo oa A aa fo o fcab Rgo Moa Cooao fo d ag o obab ahoa ca q da co a ag aa g fo q á co a ca > ha do cco: codcó

Más detalles

Capítulo 2 Análisis de datos (Bivariados( Bivariados) Estadística Computacional I Semestre 2006 Parte II

Capítulo 2 Análisis de datos (Bivariados( Bivariados) Estadística Computacional I Semestre 2006 Parte II Uvesdad Técca Fedeco Sata Maía Uvesdad Técca Fedeco Sata Maía Depatameto de Iomátca ILI-80 Capítulo Aálss de datos (Bvaados( Bvaados) Estadístca Computacoal I Semeste 006 Pate II Poesoes: Calos Valle (cvalle@.utsm.cl)

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades

Más detalles

Celdas lineales como un ejemplo de reuso de frecuencia en FDMA

Celdas lineales como un ejemplo de reuso de frecuencia en FDMA Celdas lieales oo u ejeplo de euso de feueia e FDM f f f f f f Celda Celda Celda Celda Celda Celda egió egió ea total dividida e egioes, que e-usa la isa atidad C de aales de adio feueia. Esto iplia que

Más detalles

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO ESACIOS AFÍN Y EUCLÍDEO Nota: Los pocedimietos expestos o so los úicos qe eselve los poblemas Defiició El espacio afí so los ptos coexistiedo jto al espacio vectoial V, co sistema de efeecia ( pto fijo

Más detalles

3 Características asociadas a una distribución de frecuencias.

3 Características asociadas a una distribución de frecuencias. Estadístca Tea 3. Caacteístcas asocadas a ua dstucó de fecuecas. Pá. 3 Caacteístcas asocadas a ua dstucó de fecuecas. 3. Meddas de tedeca cetal. 3.. Medaa 3...a Caso o aupado. 3... Caso aupado. 3.. Moda.

Más detalles

11. Optimización no lineal con restricciones

11. Optimización no lineal con restricciones . Optzacó o leal co restrccoes. Optzacó o leal co restrccoes Prcpos y teoreas para la búsqueda de óptos lobales Modelos co restrccoes de ualdad Codcoes de uh-tucker Alortos uércos báscos Prcpos y teoreas

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Pogesioes itétics y geoétics Pogesioes itétics U pogesió itétic es scesió de úeos, tles qe l difeeci ete dos cosectivos clesqie de ellos es costte, po ejeplo, l scesió de los úeos ipes,,, dode l difeeci

Más detalles

Formulario 1: Teoría de Conjuntos = (1.1) Formulario 2: Propiedades de las Probabilidades y Métodos de Conteo = (2.1)

Formulario 1: Teoría de Conjuntos = (1.1) Formulario 2: Propiedades de las Probabilidades y Métodos de Conteo = (2.1) NVERSDD SMÓN OLÍVR O ROLDDES R NGENEROS FORMLRO Fomulaio : Teoía e ojutos Lees Distibutivas:. Le e omlemetos:. Lees e Moa:. Fomulaio : oieaes e las obabiliaes Métoos e oteo iomas e obabilia: L L L etoes

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003 CÁLCULO Pime cuso de Igeieo de Telecomuicació Pime Exame Pacial. 7 de Eeo de 3 Ejecicio. Deducilafómuladeláeadeusegmetopaabólico e fució de su base y su altua. Se cosidea u coo cicula ecto co adio de la

Más detalles

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Poblema º Calcula el ídce de efaccó elatvo del vdo al acete. Halla la velocdad de popagacó y la logtud de oda, e el acete y e el vdo de u ayo de

Más detalles

CAPÍTULO IV CORRESPONDENCIA: TEORÍA. El análisis de tablas de contingencia es una aplicación del análisis de

CAPÍTULO IV CORRESPONDENCIA: TEORÍA. El análisis de tablas de contingencia es una aplicación del análisis de 36 CAÍTULO IV 4. ANÁLISIS E CONTINGENCIA Y ANÁLISIS E CORRESONENCIA: TEORÍA. 4. Aálss de Tablas de Cotgea. El aálss de tablas de otgea es ua aplaó del aálss de tablas X. La hpótess ula que se desea poba

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple:

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple: CAMPO LCTRICO Cosdeemos e pcpo ua stuacó deal: l Uveso está vacío y o exste ada supogamos ue e el ceto de ese Uveso colocamos ua caga putual podemos pegutaos: Sufe algú cambo el Uveso? S o exste ota caga

Más detalles

Tema 5 parte II La línea microstrip

Tema 5 parte II La línea microstrip Tema 5 pate II La líea micostip Tasmisió po Sopote Físico 4º e Igeieía e Telecomuicació Pofeso: José Luis Masa Campos (joseluis.masa@uam.es) Gupo e Raiofecuecia: Cicuitos, Ateas Sistemas (RFCAS) Dpto.

Más detalles

TEMA 4. ESTÁTICA. 4.2 Composición de fuerzas concurrentes, coplanares y paralelas.

TEMA 4. ESTÁTICA. 4.2 Composición de fuerzas concurrentes, coplanares y paralelas. EA 4. ESÁICA 4. Itodó 4. Composó de feas oetes oplaaes paalelas. 4.3 ometo de vaas feas. 4.3. ometo de a fea. 4.3. ometo de vaas feas oetes. 4.3.3 ometo de vaas feas oetes oplaaes. 4.4 Composó de feas

Más detalles

Definición. una sucesión, definimos la sumatoria de los n primeros

Definición. una sucesión, definimos la sumatoria de los n primeros MATEMATICA GENERAL 00, HERALDO GONZALEZ S SUMATORIAS Suto sle Defcó U sucesó el es tod fucó co doo u sucouto de los úeos tules y co vloes e, sólcete, l sucesó es : N tl que Osevcó Deotos l sucesó o N,

Más detalles

5. Estimación puntual. Curso Estadística

5. Estimación puntual. Curso Estadística 5. stmacó utual Cuso - stadístca Poblacó % DFCTUOSA Pobabldad Coocdo cuato vale? Muesta Nº Defectuosa Coocdo cuato vale? Ifeeca stmacó utual N Paámetos? MUSTRA... Datos Coocdos? stmacó utual 3 sesoes de

Más detalles

Mancha que deja el café vertido sobre una hoja de papel, después de secarse.

Mancha que deja el café vertido sobre una hoja de papel, después de secarse. Maha que deja el afé vetido sobe ua hoja de papel después de sease. Membaa esféia tazos blaos oteiedo ua mezla oloidal de esfeas duas gades fluoesetes y pequeñas o se obseva e la image. INTERACCIONES EFECTIVAS

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

TEORÍA DE DISOLUCIONES Yr 13

TEORÍA DE DISOLUCIONES Yr 13 TEORÍA E ISOLUCIONES Y 13 CONCEPTO E ISOLUCIÓN Ua iolució e ua ezcla hoogéea e o o á utacia. La iolucioe etá foaa po el oluto y el iolvete (oalete el oluto e eo catia que el iolvete). iolució oluto + iolvete

Más detalles

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES 7 CAPITULO 4 AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES Existe vaios métodos de ayudas gáficas paa el diseño, acople y solució de poblemas e líeas de tasmisió, que ha ido evolucioado co el tiempo. Keell

Más detalles

El juego de caracteres de LATEX.

El juego de caracteres de LATEX. Capítulo 3 El juego de caracteres de LATEX. 3.1. Algunos caracteres especiales. En L A TEX hay algunos caracteres que están reservados para algunas funciones especiales y que, por tanto, no aparecerán

Más detalles

HERRAMIENTAS. Qué son los vectores? Matemáticamente: Es la cantidad que tiene magnitud y dirección.

HERRAMIENTAS. Qué son los vectores? Matemáticamente: Es la cantidad que tiene magnitud y dirección. Y ALGUNAS HERRAMIENTAS MATEMATICAS Qué son los vectoes? Mateáticaente: Es la cantidad que tiene agnitud y diección. Físicaente: Es la cantidad que podeos eplea paa descibi algunos paáetos físicos. Qué

Más detalles

LA PARTÍCULA SOBRE UNA ESFERA

LA PARTÍCULA SOBRE UNA ESFERA Fundaentos de Quíica Teóica LA PARTÍCULA SOBRE UNA ESFERA E odeo de una patícua oviéndose en una configuación de esfea pefecta, es deci, a una distancia fija de un cento dado, peo en tes diensiones, es

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

ejemplo j 4 j 2 Tanto de interés nominal, tanto efectivo y tanto periódico.-

ejemplo j 4 j 2 Tanto de interés nominal, tanto efectivo y tanto periódico.- Tto e teés ol, tto efectvo y tto peóco.- El tto e teés ol o tee e cuet l evesó e los teeses cobos o pgos peócete ute los peoos posteoes. Poeos epeset l tto ol ul cptlzble c / e ño coo. Se poí tepet el

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

ESTIMACION DEL HIDROGRAMA UNITARIO. ESTUDIO COMPARATIVO DE CUATRO METODOS LINEALES

ESTIMACION DEL HIDROGRAMA UNITARIO. ESTUDIO COMPARATIVO DE CUATRO METODOS LINEALES ESTIMACION DEL HIDROGRAMA NITARIO ESTDIO COMARATIVO DE CATRO METODOS LINEALES José Lus Ayuso, Adolfo eña y M a la Motesos Aea de oyectos de Igeeía ETS Igeeos Agóoos y de Motes vesdad de Códoba RESMEN:

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

3.5 Factores y Coeficientes de Forma

3.5 Factores y Coeficientes de Forma Autoes: Patco Covalá Vea Jame eáez Palma 3.5 Factoes y Coecetes e Foma A es el slo XIX, Towa esaolla la ea e los actoes e oma como ua espuesta a las cultaes suas el uso e los sólos e evolucó. La ea e Towa

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

Dinámica Relativista

Dinámica Relativista Dináia Relatiista Debido a que las leyes de las físia deben se inaiantes fente a tansfoaiones de Loentz, se deben genealiza las leyes de Newton y las Definiiones de enegía y oentu tal que sean opatibles

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

Procesamiento Digital de Señales Octubre 2012

Procesamiento Digital de Señales Octubre 2012 Proceaiento Digital de Señale Octubre 0 Método de ntitranforación PROCESMIENTO DIGITL DE SEÑLES Tranforada Z - (Parte II) Hay tre étodo de antitranforación, o Tranforación Z Invera para obtener la función

Más detalles

1. Introducción 1.1. Análisis de la Relación

1. Introducción 1.1. Análisis de la Relación . Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado

Más detalles

GuíaDidáctica: Geometría AnalíticaPlana UTPL. La Universidad Católica de Loja MODALIDAD ABIERTA Y A DISTANCIA

GuíaDidáctica: Geometría AnalíticaPlana UTPL. La Universidad Católica de Loja MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA P P 1 0 A P 1 P (x (x 2 ) (0) (1) (x 1 )

Más detalles

Índice de materias 2.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3

Índice de materias 2.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3 Ídce de ateas.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3..- FUNDAMENTOS MATEMÁTICOS DE LA MECÁNICA CUÁNTICA...3 Álgeba Leal Opeadoes ucoes popas....3.- LOS POSTULADOS DE LA

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

TEMA 2 MATEMÁTICAS FINANCIERAS

TEMA 2 MATEMÁTICAS FINANCIERAS Tema Matemáticas fiacieas 1 TEMA MATEMÁTICAS FINANCIERAS EJERCICIO 1 : Po u atículo que estaba ebajado u 1% hemos pagado, euos. Cuáto costaba ates de la ebaja? 1 Solució: El ídice de vaiació es: IV = 1

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

(ground. Coordenadas de la traza

(ground. Coordenadas de la traza El punto subsatélite (ground track) Es la intersección sobre la superficie terrestre de la línea que une la posición del satélite en órbita con el centro de la Tierra La traza del satélite es la proyección

Más detalles

El producto de convolución de la derivada de la delta de Dirac en 1-x 2*

El producto de convolución de la derivada de la delta de Dirac en 1-x 2* ISSN 88-67 Impeso e Nicaagua. www.ui.edu.i/neo Vo. No. pp.66-7/diciembe 9 E poducto de covoució de a deivada de a deta de Diac e - * M. Gacía y M. Aguie Núceo Cosoidado Matemática Pua y Apicada-NUCOMPA

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Algunos Métodos de Estimación para Conductividad Térmica

Algunos Métodos de Estimación para Conductividad Térmica Alguos étodos de Estaó paa Codutvdad éa ÍNDICE INRODUCCIÓN... NOACIÓN... CONDUCIIDAD DE GASES UROS A BAJA RESIÓN... eoía éta de Chapa-Esog Euaó de Eue odfada po Stel y hodos étodo de Chug CONDUCIIDAD DE

Más detalles

* Introducción * Principio de mínima energía * Transformaciones de Legendre * Funciones (o potenciales) termodinámicas. Principios de mínimo.

* Introducción * Principio de mínima energía * Transformaciones de Legendre * Funciones (o potenciales) termodinámicas. Principios de mínimo. 5. otencales emonámcos * Intouccón * ncpo e mínma enegía * ansomacones e Legene * Funcones (o potencales) temonámcas. ncpos e mínmo. * Enegía lbe (potencal) e Helmholtz lt * Entalpía. * Enegía lbe e Gbbs.

Más detalles

CLASE #2 de Bessel: Modos normales de una membrana circular (Continuación):

CLASE #2 de Bessel: Modos normales de una membrana circular (Continuación): CLASE #2 de Bessel: Modos nomales de una membana cicula (Continuación): Intoducción En la clase anteio esolvimos usando el Método de Sepaación de Vaiables, la ecuación de ondas paa una membana cicula de

Más detalles

NATURALEZA DE LA LUZ - CUESTIONES Y EJERCICIOS

NATURALEZA DE LA LUZ - CUESTIONES Y EJERCICIOS Dpto. Físia y Quíia NATURALEZA DE LA LUZ - CUESTIONES Y EJERCICIOS. Co qué águlo i, edido espeto a la etial, debe ia u subaiista, S, que está bajo el, paa e u pequeño objeto, P, que está sobe su supefiie?.

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

glosario de BBVA GLOSARIO -Bolsa-

glosario de BBVA GLOSARIO -Bolsa- BBVA GLOSARIO -B- A : Aó: C ó 100 í. V í ó. E. A A : E ó í. S ó í á ó ó. Aó : Aó, ú ó, ó. Aó : S ó. Aó : Aó. S : ) ) ó. Aó : Aó ó. Aó : Tí ó B, ó. Aó : Té,,,, ó. S ó, ó. Aó : (G ):E. C,. E é é ; á. Aó

Más detalles

FORMULARIO DE ESTADÍSTICA

FORMULARIO DE ESTADÍSTICA Reúmee de Matemática paa Bachilleato I.E.S. Ramó Gialdo FORMULARIO DE ESTADÍSTICA Cocepto báico Població: cojuto de todo lo elemeto objeto de ueto etudio Mueta: ubcojuto, extaído de la població,(mediate

Más detalles

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados.

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados. SOLUCIONES ecas. Sea A ) B ) C ). Deemina los vecoes e iección e las ecas AB BC CA. Halla las ecuaciones paaméicas e ichas ecas. A AB ) ) ) AB AB B BC ) ) ) BC BC C CA ) ) ) BC CA ) ) ) ) ). Demosa que

Más detalles

po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li

po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li Sopas Silábicas animales po ta da la te to pa vo ga no de o ca lo ma ca ce me ti to ve po te lo la o so ba te ja to ro po ba ca na ra te os pe sa me al za ca ce ba li po no ce pe li ri be ca ri ce ve sa

Más detalles

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula 4. Vaables Agulaes Las vaables agulaes sve aa eeseta e foma mas smle e dóea al movmeto de otacó. La

Más detalles

ANEXO II. ECUACIONES DIFERENCIALES DEL MOVIMIENTO DE UN SISTEMA DE PARTÍCULAS CON COORDENADAS GENERALIZADAS. ECUACIONES DE LAGRANGE.

ANEXO II. ECUACIONES DIFERENCIALES DEL MOVIMIENTO DE UN SISTEMA DE PARTÍCULAS CON COORDENADAS GENERALIZADAS. ECUACIONES DE LAGRANGE. XO II. cuacioes ifeeciales el oiieto e u sistea e patículas co cooeaas geealizaas. cuacioes e Lagage. XO II. CUCIOS DICILS DL MOVIMITO D U SISTM D PTÍCULS CO COODDS GLIDS. CUCIOS D LGG. ste poyecto fi

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO académicas FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la

Más detalles

,,, z z Y,, é Y E Y é ; Y ; Y á T; x Y ; Y;,, Y, ó,, E, L Y ú Nz, E j Aí, ó,,,, ó z? Y é P Y? é P é, x? zó Y N j í, á Y, á, x, x ú Y E ó zó,, ó, E, Y,

,,, z z Y,, é Y E Y é ; Y ; Y á T; x Y ; Y;,, Y, ó,, E, L Y ú Nz, E j Aí, ó,,,, ó z? Y é P Y? é P é, x? zó Y N j í, á Y, á, x, x ú Y E ó zó,, ó, E, Y, O TRE ENDERO DE PERFECCION L ROLOGO P Tó, I ó Có x C é, N G ó z, ú í x, K, á k, J, G, á A C é, M ñ, ; x ñ já L; á NNIE EANT A O TRE ENDERO L ARMA MARGA K ó, z Ví L, L á,, é, A á x, A ú, Y E - í, M -, K

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

Coordenadas homogéneas

Coordenadas homogéneas Coodenadas homogéneas Una matiz de otación 3 x 3 no nos da ninguna posibilidad paa la taslación y el escalado. Intoducimos una cuata coodenada p(x,y,z) p(wx,wy,wz,w), donde w tiene un valo abitaio y epesenta

Más detalles

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de

Más detalles

Identificación Paramétrica

Identificación Paramétrica Identificación Paramétrica Métodos para la Obtención de un Modelo Discreto Un modelo, incluyendo el ruido o perturbación, a tiempo discreto puede ser representado por la siguiente i ecuación Donde: ( )

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

Regue Sanfonado # # 4 2. œ œ œ œ. œ œ. 2 œ. . r œ œ œ œ œ. . œ. œ œ œ. œ œ œ œ œ œ. . œ œ œ œ œ. Música Maranhense

Regue Sanfonado # # 4 2. œ œ œ œ. œ œ. 2 œ. . r œ œ œ œ œ. . œ. œ œ œ. œ œ œ œ œ œ. . œ œ œ œ œ. Música Maranhense Música Maanhense Regue anfonado Cesa Nascimento A: ilcima Gacez Coea opano # # 1 2 3 4 5 Contalto eno ass 6 6 7 8 9 CAlt gacezmusical@hotamailcom (098)8805 8220 2 Reggae anfonado 10 10 11 Ua % 12 13 CAlt

Más detalles

IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS

IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS Sea el siguiente poblema de un hoga epesentativo en una economía de dos peiodos, en la que los hogaes son gavados con impuestos de suma

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

SISTEMAS ELÉCTRICOS Ecuación de equilibrio Ley de corrientes de Kirchhoff (LCK) m

SISTEMAS ELÉCTRICOS Ecuación de equilibrio Ley de corrientes de Kirchhoff (LCK) m UAB ODEADO DE SSEAS DAOS SSEAS EÉOS Ecuacón de eulbro ey de correntes de rchho () a 0 ; k,,, n k j j j ey de voltajes de rchho (V) j b k j v j 0 ; k,,, l Varables, síbolo y undad V Voltaje a través del

Más detalles

Escapada Navideña 2013

Escapada Navideña 2013 Enadj un o, eha emo ega oe pe a equec at maha d eñadopa a NAVI DADenC at maho e e.al T EN ebenef a ádeunde uen ode 10% ob e ode p opue. Ap o e hamopa a e o da eque amb énd f u á deunde uen ode15% ob e

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

Transformaciones lineales

Transformaciones lineales Semana 8 [1/62] 8 de septiembre de 27 Definiciones básicas Semana 8 [2/62] Definición Transformación lineal U, V dos espacios vectoriales sobre el mismo cuerpo Ã. T : U V es una transformación (o función)

Más detalles

FUERZA ELECTRO MOTRIZ Y RESISTENCIA INTERNA DE UNA PILA

FUERZA ELECTRO MOTRIZ Y RESISTENCIA INTERNA DE UNA PILA FUEZA ELECTO MOTIZ Y ESISTENCIA INTENA DE UNA ILA Intoducción: En la figua 1 se muesta un cicuito de dos esistencias 1 y 2 conectadas en seie, este gupo a su vez está conectado en seie con una pila ideal

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

Tema 2 Teorías del consumo y el ahorro privados: agente representativo

Tema 2 Teorías del consumo y el ahorro privados: agente representativo Tema Teoías del osumo el ahoo pivados: agee epeseaivo. Codiioaes geeales del osumo el ahoo.. Modelos ieempoales..3 Modelos de ilo de vida. Bibliogafía: Gaía del aso Maoeoomía Avazada Asigaua de 5º uso

Más detalles

TEMA 7: PROPIEDADES MÉTRICAS

TEMA 7: PROPIEDADES MÉTRICAS Depatamento e Matemática º Bachilleato TEMA 7: PROPIEDADES MÉTRICAS 1- HAZ DE PLANOS PARALELOS Too lo plano paalelo a un plano Ax + By + Cz + D tenán el mimo vecto nomal que el e : n A, Po lo tanto, too

Más detalles

Ley de Coulomb F = K 2 K = 9 10

Ley de Coulomb F = K 2 K = 9 10 Lcdo. Eleaza J. Gacía Ley de oulob La Ley de oulob se define así: el ódulo de la fueza de atacción o de epulsión ente dos cagas elécticas es, diectaente popocional al poducto de los valoes absolutos de

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO

GEOMETRÍA ANALÍTICA EN EL ESPACIO GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR a b a b cosx (uando sepamos el ángulo que foman a y b). a ba b a b a b (uando sepamos las coodenadas de a y b ). uando los ectoes son pependiculaes su poducto escala

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Posiciones relativas entre rectas y planos

Posiciones relativas entre rectas y planos Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del

Más detalles

1. Propiedades molares y propiedades molares parciales

1. Propiedades molares y propiedades molares parciales erodáca. ea 9 Ssteas abertos y ssteas cerrados de coposcó varable. ropedades olares y propedades olares parcales Ua agtud olar se dee coo: Sepre está asocada a u sstea terodáco de u úco copoete (sstea

Más detalles

UNIVERSIDAD LIBRE SECCIONAL BARRANQUILLA - FACULTAD CIENCIAS DE LA SALUD HORARIOS DE CLASES MORFOFISOLOGIA I (PRACTICA) NOBIS DE LA CRUZ GRUPO B

UNIVERSIDAD LIBRE SECCIONAL BARRANQUILLA - FACULTAD CIENCIAS DE LA SALUD HORARIOS DE CLASES MORFOFISOLOGIA I (PRACTICA) NOBIS DE LA CRUZ GRUPO B actualizado 4/08/2014 POGAA ACADCO: FOTAPA T: PO PODO:2014-2. T: 30 HOA DA POGAACO DA POGAACO DA POGACO DA POGAACO DA POGAACO 8-9. 9-10. 10-11. 11-12. 12-1. 1-2. 2-3. 3-4. 4-5. 5-6. BOOGA ABTO OO AO 203B

Más detalles

Curva de Phillips: trade-off a corto plazo entre inflación y desempleo.

Curva de Phillips: trade-off a corto plazo entre inflación y desempleo. 1. Introducción Curva de Phillips: trade-off a corto plazo entre inflación y desempleo. Evidencia favorable a los modelos keynesianos, ya que no podía explicarse por medio de un modelo clásico. A principios

Más detalles

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos

Bloque 3. Geometría y Trigonometría Tema 3 La recta en el plano Ejercicios resueltos Bloque 3. Geometía y Tigonometía Tema 3 La ecta en el plano Ejecicio euelto 3.3-1 Halla la ecuación vectoial, en paamética, continua y geneal de la ecta que paa po el punto indicado y tiene po vecto dieccional

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

Geometría - Ayudantía Martes 25 Abril

Geometría - Ayudantía Martes 25 Abril 1 Geometría - yudantía artes 5 bril 1. ados los puntos y fuera de una recta y en la misma región, hallar el camino más corto para ir desde hasta tocando la redcta dada. P P Sea la recta dada y y los puntos

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles